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MEASUREMENT OF THE OVERLAP BETWEEN QUANTUM STATES WITH THE
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We will show how to project two-photon polarization states onto symmetric and antisymmet-
ric subspaces of Hilbert space with the use of linear optics and postselection only. It enables
to measure the overlap between photon polarization states. Our scheme is based on quantum
teleportation and succeeds with the probability of

�����
.

PACS: 03.67.-a

1 Introduction

Many concepts of quantum information processing have been first implemented with the use of
linear optics. Among them there are e.g. quantum teleportation [1], dense coding [2], quan-
tum cryptography (e.g. [3, 4]). These schemes use polarization degrees of freedom of single
photons for encoding qubits. Unfortunately, linear optics does not allow to perform arbitrary
two-qubit operations in a deterministic way. However, it was shown theoretically [5-9] as well
as experimentally [10, 11] that it is possible to achieve this aim in a nondeterministic way. The
main idea is to use quantum measurement as a source of nonlinearity. For example, one can
construct CNOT gate which succeeds with the probability of ���	� [12]. Although, the scheme
was proposed [6] that achieves the probability of success as close to unity as needed, it requires
very complex network and will not be considered here. As is well known [13] CNOT gate to-
gether with one-qubit gates are universal, i.e. they can be used to implement an arbitrary unitary
operation. It was recently shown that linear optics enables also to project the state of two pho-
tons on a given subspaces of Hilbert space in a non-deterministic way [14, 15]. However, in
the specific case of projection onto symmetric and antisymmetric subspaces, it is possible to do
it deterministically, which was shown both theoretically and experimentally by M. Hendrych et
al. [16]. Unfortunately the cost we have to pay is the destruction of photons under study. On
the other hand, as was recently pointed by some authors [17-22] nondemolition projection onto
symmetric and antisymmetric subspaces can be performed with the use of the quantum circuit
presented in Fig. 1. This scheme consists of two Hadamard gates H and one controlled SWAP
operation (C-SWAP). The SWAP gate is defined as follows: 
������� ����� ������� ����� ��� . It is the
aim of this paper to present how this circuit can be implemented with the use of linear optics. Of
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Fig. 1. Quantum circuit which allows one to perform projection onto symmetric and antisymmetric sub-
spaces of Hilbert space. H is Hadamard gate and P  "! # is a measurement in the computational basis.

course, the C-SWAP gate (as any gate) can be constructed from two-qubits gates (e.g. five two-
qubit gates as proposed by Smolin and DiVincenzo [23]), which can be independently performed
with the probability of success bounded from the above by ���	� . So the projection based on this
naive approach to the construction of C-SWAP gate succeeds with the probability bounded by�%$'&)(+*-, *.*-� . In contrast, the scheme presented here has the probability of success equal to ���0/ .

2 Method and discussion

Let us now present the C-SWAP gate in a slightly different way. This gate (Fig. 2) involves five
spatial modes: one control ( 1�2 , two input ( � , 3.2 and two output ( 4 , �52 modes. The polarization
states of photons in the input modes are transmitted to different output modes. Obviously, there
are two possible ways of such a transmission. Which one of them is taken depends on the
polarization state of the photon in the control mode. Namely, if the control photon is in the
state � 67� then the states of the photons in modes � and 3 are transmitted to modes 4 and � ,
respectively. However, if the control photon is in the state � 89� then the state of the photon in
mode � is transmitted to mode � and the state of the photon in mode 3 is transmitted to mode 4 .
In particular, this transmission can be performed with the use of quantum teleportation (Fig. 3).
In this case, one needs two teleportation channels. Each channel consists of a pair of photons in
the Bell state � :<;��>=@? ACB , where

DD :<EGF =@? ACB � �H 3 I � 67�>=�� 89�JA B%K � 89�J=�� 67�LA BNM , (1)

If the control photon is in the state � 67� ( � 89�L2 , the quantum channel should be of the form� :O;��JPC? P"B-� :O;��>QC? QRB ( � :O;��>PC? Q"B%� :O;��>QS? P"BT2 . In the particular case of the measurement of the over-
lap between two photon polarization states, the control photon is in the state UV W)X � 67�JY[Z\� 89�>YG2
so we perform teleportation with the use of the following state:
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� 1\]^
�����_��� �H 3 I DD : ; F PC? PLB DD : ; F QC? QRB � 67�>Y`Z DD : ; F PC? Q"B DD : ; F QC? P"B � 8_�JY�M9, (2)

(The above state does not allow execution of C-SWAP operation for arbitrary state of the
control photon.) Let us now suppose that we perform two Bell measurements, the first one on
photons in modes � and 4ba , and the second one on photons in modes 3 and �ca . Eq. 2 then tells
us that the state of the photon in the mode � is teleported to the mode 4 or � , depending on the
state of the control photon. For example, if the control photon is found in the state � 67� then the
state of the photon in the mode � appears in the mode 4 . One can thus think that the state of
the control photon plays the role of the teleportation address. Of course, the construction of the
state � 1\]^
�����_� ensures that the states of photons in modes � and 3 are always teleported to
different modes. The following equations allow us to see more clearly how the above scheme
works. The states of photons in modes � and 3 are � ��� and � ��� , respectively, where

� �����edO� 67��Zgf�� 8h� (3)

and

� �����ji�� 67��Zlkm� 89�n, (4)

Thus the state of the whole system, consisting of two input qubits (modes � and 3.2 , control
qubit (mode 1�2 and four auxiliary qubits (modes 4 , 45a , � and �@ao2 , is

� ��� U � ��� W � 1\]^
�����_���
� ��� U � ��� W �H 3 I DD : ; F PC? PLB DD : ; F QC? QRB � 6p�>YqZ DD : ; F PC? Q"B DD : ; F QC? P"B � 8h�>Y M , (5)

Because we are interested in Bell measurements we will write the above state in a more
convenient way where the states of photons in modes � and 45a as well as photons in modes 3 and�@a are expressed in the Bell basis. The resulting state consists of �Sr orthogonal terms
Measurement of the overlap between

� ��� U � ��� W � 1\]^
�����_��� ��hs E s E B
DD :<E�F U ? P B DDD :<E But W ? Q B DDD v E ? E Bwxw t Py? QS? Y Z

Z �� s E s E B
DD :<E F U ? P B DDD{z E B t W ? Q B DDD v E ? E Bwx| t Py? QS? Y Z

Z �� s E s E B
DD z E�F U ? P B DDD :<E B t W ? QRB DDD v E ? E B|%w t Py? QS? Y Z

Z �� s E s E B
DD z E F U ? P"B DDD}z E B t W ? QRB DDD v E ? E B|%| t Py? QS? Y ~ (6)
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Fig. 2. Controlled SWAP gate.C is control mode,
�
, � are input modes and � , � are output modes.

where � : E � was defined in Eq.1,

DD z E F =@? A B � �H 3 I � 67�>=<� 67�JA B%K � 89�L=O� 89�LA B M (7)

and � v � are some normalized states of three photons in modes 4 , � and 1 . We will not present
explicit form of all states � v � because we will only use two of them, namely

DD v ;x;wxw F and
DD v $�$wxw F .

Because linear optics allows a discrimination of only two of four Bell states i.e. � : E � we cannot
make use of the three last sums in Eq. 6. The reason for which we also ignore two terms in
the first sum is much more subtle and will become apparent later. The useful states

DD v ;x;wxw F andDD v $�$wxw F are given by

DD v $�$wxw F � �H 3�� DD � $ F P DD � $ F Q � *@�uY7Z DD � $ F P DD � $ F Q �����JY�� (8)

and

DD v ;x;wxw F �\1+]�
���m� � �H 3 X � 67�JY[Z\� 8_�LY�2�� ����� ���>� ~ (9)

where

DD � ; F�� d<� 67�xZgf�� 8_����� ���DD � $ F�� d<� 67��]^f�� 8_���+�l� ���DD � ; F � i�� 67�xZ�kO� 8h����� ���DD � $ F�� i�� 67��]�kO� 8h���\��� ����, (10)



Measurement of the overlap between. . . 289

Fig. 3. Optical circuit which allows one to measure the overlap between two quantum states � �n� and � ��� .� �������g����� is five-photon auxiliary state. BM is Bell measurement, P � is measurement in � ��� basis.

If one performs two Bell measurements and obtains as a result � :_;���� :O;�� or , � :h$���� :9$��
then the state of the remaining photons is

DD v ;x;wxw F or
DD v $�$wxw F respectively. One can see that the

state
DD v ;x;wxw F is what we should expect as a result of C-SWAP operation performed on three

photons in the state UV W�X � 6p�JY�Z\� 8h�>Y�2�� ���[� ��� , i.e.

DD v ;x;wxw F �\1+]�
���m� � �H 3 X � 67�JY[Z\� 8_�LY�2�� ����� ��� � , (11)

Furthermore, the state
DD v $�$wxw F can be transformed into the state

DD v ;x;wxw F by one-photon unitary
operations. On the other hand, the states

DD v $);wxw F and
DD v ;_$wxw F , which appear when the results of

Bell measurements are � :h$��x� :O;�� and � :O;���� :9$�� , cannot be transformed into the state
DD v ;�;wxw F

by the same means and are thus useless. So one is forced to accept only two results of Bell
measurements, namely � :<;��x� :O;�� and � :h$��x� :9$�� . Each of them appears with the probability
of �	�5�Sr , so the total probability of obtaining the state

DD v ;x;wxw F with the use of linear optics and
postselection equals to ���	/ .

The second Hadamard transform (Fig. 1) is equivalent to the change of basis in which the
control photon is measured, i.e. � *@�� ¡� Z<� and �{���� ¡��]�� , where

� K ��� �H 3 X � 67� K � 8h�J2�, (12)

Eq. 8 in this new basis has the form
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DD v ;x;wxw F � �3 � DD � ; F P DD � ; F Q Z DD � ; F P DD � ; F Q � � Z<�JY[Z�3 � DD � ; F P DD � ; F Q ] DD � ; F P DD � ; F Q �`��]��>Y�, (13)

The measurement performed on the control photon gives us the results � Z<� and �{]�� with the
probabilities

� ; � �3 I �GZ+�£¢T�¤�����C� W M� $ � �3 I ��]¤�£¢T�¤�����C� W M (14)

respectively. Thus the aim of the above scheme was achieved.
Let us also notice that the measurement performed on the state

DD v $�$w�w F instead of
DD v ;x;wxw F gives

the results � Z<� and �{]�� with the same probabilities. Thus, if one restricts the use of C-SWAP
gate to the measurement of the overlap between two states, the transformation of the state

DD v $�$wxw F
into

DD v ;x;wxw F can be omitted.

3 Conclusions

We have presented a method allowing nondemolition projection onto symmetric and antisym-
metric subspaces of Hilbert space of two-photon polarization states with the use of linear optics
and postselection only. The scheme succeeds with the probability of ���0/ .
Acknowledgement: We would like to thank the State Committee for Scientific Research for
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