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After introducing the quaternions and its algebra, the equations of the linear acoustics are
defined. The local conservation equation for energy of the linear acoustics using quaternions
and a quaternionic first-order Lagrangian description is then formulated. Using the variational
principle, the local conservation equation for the energy is derived from the quaternionic
gauge transformation. The purpose is to provide an alternative for the usual derivations.

PACS: 43.20.+g, 41.20.Bt, 12.15.-y, 02.10.De

1 Introduction

Quaternions as generalization of complex numbers were first invented by Sir W. R. Hamilton [1]
after a lengthy struggle to extend the theory of complex numbers to three dimensions. Clifford
extended Hamilton’s notation of a quaternion as the ratio of two vectors. Quaternions are divis-
ible algebraically. This property is advantageous for physicists. Quaternions play an important
role for the justification of the postulates in the special relativity, quantum and classical mechan-
ics as well as solving high energy physics’ problems. They can also be used to represent physical
quantities. There are a lot of studies with quaternions in physics. Some examples include Re-
visiting Quaternion Formulation and Electromagnetism [2], If Hamilton Had Prevailed: Quater-
nions in Physics [3], Quaternionic Electron Theory: Dirac’s Equation [4], Quaternionic Formu-
lation of the Classical Fields [5], Quaternions and Simple D=4 Supergravity [6], Dimensional-
Directional Analysis by a Quaternionic Representation of Physical Quantities [7], Quaternions
and the Heuristic Role of Mathematical Structures in Physics [8], and Molecular Symmetry with
Quaternions [9].

In the analysis of linear acoustics, the two basic variables are pressure and particle velocity.
In general, both p and U are functions of position and time. The usual derivations of the local
conservation equations for energy, linear momentum and angular momentum of acoustics are
based on time translation, space translation and space rotation invariance.

The rest of the paper is organized within 3 sections. Section 2 reveals quaternion algebra
with notations and preliminaries. In section 3, the gauge transformation, Lagrange description,
linear acoustics and their definitions are given, in which the quaternionic energy conservation
equation for the acoustics is also defined. Conclusion is drawn in the last section.
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2 Quaternion Algebra

A quaternion is a quantity represented symbolically by @) and it is defined through the following
equation

Q@ = qoeo + qier + gzex + gzes = [qo, 41,92, 93] = Zlek; ey

where the real numbers g denote the components of () relative to the unitary quaternion ey (k =
0,1,2,3). The scalar and vectorial parts of ) are designated, respectively, by (Q)s and (Q),,
and defined as

(Q)s = qoeo, (Q)v = qre1 + gae2 + gzes. )

A quaternion is a scalar(or vector) quaternion if its vectorial(or scalar) part is equal to zero. The
unitary quaternions satisfy the Hamilton and Taif multiplication table as follows:

€0 [} €2 €3
€o 1 el (D) €3

e1 el -1 €3 -€9
ey | es -€3 -1 €1
€3 €3 €9 -€1 -1

The quaternion conjugate (Q*of a given quaternion () is defined as
q jug g q

Q" = qoeo — qre1 — q2e2 — gz€3 = [go, —q1, —q2, —G3)- 3)

The product of two quaternions, namely () and P, with components gy, and py, is given by [10]

QP = [gopo — (q1p1 + g2p2 + q3p3)] €0 + [gop1 + q1po + (g2p3 — g3p2)] €1

+ [gop2 + 2P0 + (g3p1 — q1p3)] €2 + [qops + g3po + (q1p2 — g2p1)] €3. “4)

It must be noted that the product of quaternions is not commutative (QQ P # P(Q), but associative

P(QR) = (PQ)R. )
The inverse Q) ~! of a quaternion @, the norm N, ¢ of which is different from zero, is given by
4 QF
Q7 =, 6)
Ng

where the norm of a given () is defined as Ng = /Q@Q*. The quotient between quaternions P
and () with Ng # 0 is defined as

P . PQ*
— =PQ'= ) 7
0 Q No (7)
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The vector quaternion P with components [0, p1, p2, p3] and a vector P of the Euclidean tridi-
mensional space with components (p1, p2, p3) are reciprocally associated.

If P and @ are the vectors associated with the quaternion vectors P and @, the scalar and
vectorial products of these vectors can be expressed as

PQ: (PQ)SJ
Px Q= (PQ),.

It must be noticed that

PQ=—-P-Q+PxQ. )]
The quaternion notation of the V operator in the Hamilton’s notation can be written as

V =e;V;. ©))
The divergence and curl operators are expressed as [11]

VF(z) ==V -F(z)+V x F(z) = —divF(z) + curl F(x), (10)

s

where ‘-’ and ‘X’ are the dot and cross product of two vector quaternions, respectively. The
Laplace operator can also be defined as follows:

N(V) =V,V,. a1
The inner (dot) product of two vector quaternions is simply written
1
P-Q=-3[PQ+(PQ)7, (12)

and the cross (vector) product of two vector quaternions is
1
P xQ=3[PQ - (PQ)"] (13)

3 Linear Acoustics

The equations of linear acoustics are expressed in the following form

p=cp,c® = (6—p)07 (14)

% =—pV- U, (15)
o

P = ~V), (16)

where pg is the ambient fluid density, p(?,t) is the small deviation from ambient density,
p(7,t) is the small deviation from ambient pressure, and @ (Z,t) = (u,v,w) is the fluid
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velocity vector [12]. Eq.14 is the adiabatic equation of state relating density to pressure, Eq.15
is the conservation of mass equation, and Eq.16 is the fluid linear momentum equation. Using
Eq.14,Eq.15 and Eq.16, the equations of linear acoustics can be written as follows:

ANp/p) _ <
act) v (@@/e), (17)
o(d /e) _
St = —% o/ o). (18)
By changing variables to
P = p/po, (19)
t' = ct, (20)
w = /e, Q1)
and dropping primes, Eq.17 and Eq.18 then become
op .
5 = v/ o, (22)
o
S =-Ve (23)

which are the form of the acoustic equations [13]. By taking the curl of Eq.23 and assuming that
o and p are twice differentiable in space and time, it can be written as

0
(¥ x @) =0. (24)

This shows that the curl of ¥ is constant in time . It is accepted as the usual acoustic assumption
that _V) x U = 0. The acoustic state vector can be written by quaternions as

U = [p,u,v,w] = peg + uey + ves + wes. (25)

The Eq.22 and Eq.23 can be expressed as

0¥ = (VI)*, (26)
where
o 0 0
—mn 2 Y 9 27
v [07 6.’17’ 6y7 62]’ ( )
and
0

0= [7,0,0,0]. (28)
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The quaternionic Lagrangian density can be derived from Eq.26 as
£ =000 - (VD), (29)

and the variational principle is [14]

6A:6/dt/dx£20. (30)

¥ and ¥* are considered as independent variables in the calculus of variations.
The conservation law associated with the acoustic field can be obtained via quaternionic
transformation of the form

v — lI’I = eia‘IJ ~ [1 + a,0,0,0]lIl, (31)

where « is an arbitrary infinitesimal function of = and ¢. The type of transformation in Eq.31
can be called a quaternionic gauge transformation of the first kind although the properties of the
quantity « in this study are not considered. When the quaternionic transformation defined by
Eq.31 is applied to Eq.29, the quaternionic Lagrangian density can be given the following form

L£'(¥) = £(0 +[1+,0,0,0)9) = £ +46£, (32)
where

0£ =9" - {{{([e, 0,0,0]F) — (V([ex, 0,0,0]T))*}. (33)
Expanding the derivatives in Eq.33 gives

0£ =9" - {(Jw,0,0,0)¥ — ((V][e,0,0,0])¥)* + [, 0,0,0(LT — (VE))}. (34)
According to Eq.26, the terms multiplying « in Eq.34 vanish, and the variation in the action A
becomes

5A = —/dt/dm{D[a,O,O,O](\IJ* LT) = T - (V]a, 0,0,0])T)"}. (35)

After an integration by parts in space and time, the requirement that the variation in the action
must vanish for arbitrary a leads to the quaternionic equation

E(T* - ) — T* . (VI)* = 0. (36)

It has been assumed here that the boundary terms in space and time are vanishing. Eq.36 is a
quaternionic local conservation equation of energy for acoustics, and it can be written as

a0 u+vi+w? 0 0 0

~(F+—F)+ — — =0. 37
5lg t 5 )+ax(p“)+ay(””)+az(pw) 37
Eq.37 is the energy conservation equation for acoustics. The quantity W is the acoustic energy
density and it has the following form

P2 w40 +w?

W=—+—"-—7— 38
5t 2 ) (38)

and the vector 1,
I = (pu, pu, pw), (39)

is the acoustic energy flux.
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4 Conclusions

The usual method for deriving the local energy conservation law is to apply the Noether’s
theorem by making use of the translational and rotational invariances of a second-order La-
grangian [13]. In the present study, the local energy conservation equation for the linear acoustics
using quaternionic Lagrangian and the first kind of gauge transformation have been reformulated
by eliminating the use of translational and rotational invariance. The quaternionic equations de-
fined above for the acoustics have compact representation, and the results are the same as the
results found by Nagem et al. These equations can be easily used for similar calculations. The
procedure used here to derive the local energy conservation equation may be applied to derive the
linear momentum equation for the acoustics and the local conservation equation for the acoustic
angular momentum.
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