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OPTICAL PARAMETERS DETERMINATION

�
S. Jurečka
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��
Department of Physics,�

Department of Mathematics Military Academy Liptovský Mikuláš
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Optical parameters of thin films are important for several optical and optoelectronic appli-
cations. In this work the genetic algorithm method is proposed to solve optical parameters
of thin film values. The experimental reflectance is modelled by the Forouhi – Bloomer dis-
persion relations. The refractive index, the extinction coefficient and the film thickness are
the unknown parameters in this model. Genetic algorithm use probabilistic examination of
promissing areas of the parameter space. It creates a population of solutions based on the
reflectance model and then operates on the population to evolve the best solution by using se-
lection, crossover and mutation operators on the population individuals. The implementation
of genetic algorithm method and the experimental results are described too.

PACS: 78.20.Ci, 78.20.Bh, 42.25.Gy

1 Introduction

Thin films optical data estimation is critical for a variety of applications. Microstructure and
composition of thin films are deposition process-dependent and determine values of optical re-
fractive index ( � � and extinction coefficient ( � � . The validity of spectroscopic results is often
reported and discussed especially in case of thin films prepared on absorbing or thick substrates
when only reflectance measurements are possible. Ellipsometry and reflectometry belong to the
most important optical methods appropriated for this analysis. The difference between various
optical methods is in the way of the inversion of reflection or transmission data to obtain the op-
tical constants values. The genetic algorithm (GA) implementation in optical parameters solving
from the experimental reflectance measurements uses information concerning different regions
of parameter space and lends efficiency to the GA approach. The implicit parallel nature of the
GA approach makes it an robust method for optimization of functions of many variables [1–5].

2 Optical characterization of thin films

The spectral refractive index, extinction coefficient and the thickness of the film can be found by
a reflectance � ( � ) spectrum of the thin film deposited on transparent substrate. Optical reflection
of an ideal paralell-sided thin film on a thick substrate illuminated at normal incidence with�
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monochromatic radiation can be described by a classical optics theory. A thin isotropic film
with the thickness 
 is chacterized by the complex refractive index � � - ik � and the substrate is
characterized by � � - ik � , where � � , � � being the real part and the extinction coefficient � � , � �
being the imaginary part of the complex refractive index. The optical reflectance of a parallel–
sided thin isotropic homogeneous film on a thick partly absorbing substrate is then given by

��� 
������������ �� ����������� ��� (1)

In this equation
�

= exp(-  d) is the absorbance,  =(4 ! k � � / � is the absorption coefficient. Let us
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Optical constants can be solved from a nonlinear equation

��ACBED ' � � $&�GFIHJACKML ' �0NM� � NO� � NM
 � �QP (3)

The reflectance � FIHJACKML is calculated according to equation (1) and fitted to the measured re-
flectance ��ARB(D by GA method. The Forouhi and Bloomer dispersion equations are used for � �
and � � description [6]:

� � � � 'TSU� � �GVW�GXY���-V� �X $ �+�GXG�U� � � � 
 ' �GX $ �%Z � �� �X $ ���GXY�U�� V � 
[ \ $ � �6 ��� Z � $ � �Z �U��] � V � 
[ \ ' � �Z ��� � � 6 $.6 � Z ��][ � ,6_^1` � $ � �?a �cbd� (4)

where
� X

denotes the photon energy and
� Z

denotes the energy gap.
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3 The GA method for optical parameters solution

GA-based optimization is a stochastic search method that involves the random generation of
potential design solutions and then systematically evaluates and refines the solutions until a stop-
ping criterion is met. The GA is based on the principles of evolution - calculation is carried out
for a sequence of populations. The population is represented by the block of binary numbers
in our implementation. Each row in the block is an individual that represents one solution to
the design problem. One individual is made up of all of the design variables concatenated. Ini-
tially, the population is generated randomly, and then the solutions are ranked from best to worst
and a specified number of the lowest ranked individuals are replaced with combinations of the
highest ranked individuals. The process of determining which of the highest ranked individuals
are to be used is called selection. There are several differing methods of selection that can be
used. Once selected, two individuals go through a process called crossover. During the crossover
operation the two individuals (or parents) exchange a segment of the binary digits creating two
new individuals (offspring). Another basic GA operation is mutation. The mutation operation
randomly mutates the bits within the individual based on the mutation probability set by the user.
Finding optimal values for the parameters used in the GA operations can be problematic. Para-
meter values that result in a relatively fast convergence for one problem may be slow for another.
The algorithm can generate inferior points if the design variables are not represented accurately
enough, or if the feasible domain of the problem is irregular. So, there is no absolute guarantee
that the GA will converge to the best solution, but in most cases, it will converge to a very good
approximation of the best solution. The GA may also require a large amount of computational
time to generate solutions when compared to a conventional gradient-based optimization method.
Therefore, the main advantage is that it solves problems that include discrete-type variables and
problems where global rather than local solutions are sought. In order to extend the GA to a
multiobjective problem, some steps have to be taken. The methods considered in this paper are
briefly explained in the following sections.

a) Problem formulation and coding of variables. The reflectance model is developed ac-
cording to Eq.(1). Each variable in the reflectance function is represented by a binary string. The
length of the string is determined by the desired precision. Strings, representing all variables, are
then concatenated to form an individual.

b) Generation of initial population An initial population of individuals is randomly genera-
ted. Each individual consists of a sequence of binary values with a length of 64 bits. Each model
parameter X / is represented by the 16 bit sequence as a constituent part of the individual.
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therefore be defined as appropriate function of reflectance function parameters. The reflectancies
giving rise to good agreement between experimental and calculated data have low fitness. The
evolution of the GA is such that the strings of lowest fitness have the best chance of passing on
their characteristics to the next population. The fitness function� �fe<g ' �Ghji(k ' � � $l�GFIHJACKML ' � �d� � (5)

provides good discrimination between good and bad synthetized reflectancies within the popula-
tion at all stages of the evolution of the population.

d) Selection. In the evolution process pairs of strings are selected from the population on
the basis of their fitness. The selection probability is higher for strings with lower fitness value.
Only the strings of lowest fitness are chosen to form the next population. This step ensures that
the overall quality of the population increases during evolution process.

e) Crossover and Mutation. The selected individuals are crossed-over and mutated to pro-
duce the next generation. That is, each individual exchanges a segment of its binary string.
Double point crossover is used in this work with random selection of cutting points within the
string length.

( ) ( )( )∑ −=
λ

λλ       (5) 
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After crossing procedure the two new offsprings from the two parents are produced mixing
their genetic information.

The mutation operation occur independent of crossover. In the mutation procedure strings
are selected randomly from the population and random changes are made to part of their symbols
to generate new mutant strings. The introduction of mutant strings within the population is neces-
sary to maintain the diversity and prevent the GA converge to a false optimum. It allows the new
regions of parameter space to be explored. For a given population, certain regions of parameter
space might not be accessible through the crossing procedure alone, because crossing procedure
does not introduce new information into population, it only mixes the existing information. After
crossover and mutation occur the next generation is formed.

Steps a) through e) are repeated until the decision maker pauses the algorithm in order to
impose/review constraints on the objectives or until the stopping criterion has been satisfied.
Advantages of the GA method for optical parameters solution include the fact, that the GA cal-
culation does not stop when a local optimum of the hypersurface is reached. Before running the
GA we fix some parameters for optimization process – the number of populations, the number
of individuals in each population, the crossing probability and the probability of mutation. It
is necessary to make an appropriate choice of the reflectance model parameters 
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too. An instant set of model parameters is represented by a binary string and inserted into pop-
ulation as its individual. The values of these parameters are real numbers. Our application use
strings of 16 binary numbers to construct a constituent part of individual for each parameter of
the reflectance model.

The number of individuals in the population remains constant for all generations as well as
the number of crossing and mutation operations. The selection process is based on the so-called
’roulette-wheel’ selection procedure, in which strings in a given population are selected with
probability proportional to their fitness and copied into a temporary population. Crossing and
mutation operations are then performed by selecting strings from this temporary population. The
parent chromosomes used to create the mutants are not replaced by the mutants but remain within
the intermediate population. The next population is produced by taking the best members of the
intermediate population (individuals with the lowest fitness). It is guaranteed, that the fitness
value for the best solution � in the population monMp � is less or equal to the value of fitness for
the best reflectance � in population m�n . In summary the best model reflectance survive onto
successive populations.

In our work the GA calculation involved a population size of 1000 individuals (optional).
In each generation, CP crossing and MP mutation operations were carried out, where CP is op-
tional value of crossing probability (usually 20% of population size) and MP is optional value
of mutation probability (40%). The progress of the GA reflectance solution calculation can be
monitored by plotting the evolution of the best fitness values as a function of the generation num-
ber. The best reflectance solution are searched in several independent GA evolution processes.
The first GA evolution searches optimal reflectance function parameters in wide interval of the
parameter space while the next refinement steps are performed in the regions defined by formulaqsr $tP � , r N r � P � , rvu . The r value is the value of the individual variable of the
hypothetical reflectance function, reached in the previous step of GA evolution process.

4 Experimental results

At the effectiveness of the GA method of the equation 1 inversion study we simulated a set of the
experimental reflectance functions by a computer. We systematically modified the model param-
eters of the thin films. In independent successive steps we changed all values of the reflectance
function variables wW
 , n(

SU�
,
�GZ

,



,
�

,
�+x

. The optical parameters � � , � � in this experiments
were taken for the Si substrate from [8]. Various probabilities of the mutation and crossover
operators as well as the influence of various individual and generation counts were studied. The
values of the theoretical reflectance model reached by the GA method converge very closely to
the simulated experimental reflectance model in all studied cases. The fitness function values�

decrease rapidly in the early stages of the GA calculation, where the most significant im-
provements in the quality of the best reflectance solution occur. Computer simulation results are
summarized in table 1. Presented differences between simulated values and GA output values for
the refractive index y+� and the extinction coefficient y�� are typical values reached for thin films
of the thickness 
 and various values of other simulated reflectance function variables. Genetic
algorithm solution in this table uses one iteration cycle in wide search parameter space and one
iteration cycle when using refinement method. The iteration cycle length is given by generation
count. We use 500 GA generations, 1000 individuals, the probability of the crossing operator
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Tab. 1. Experimental results. zO{}|�~��_���G������zC���������E�T�c�+�������d�?�R��

 � SQR( y�� � � SQR( y�� �

nm 1.00E-08 1.00E-08
100 1.25 2.34
200 1.46 1.88
300 1.38 1.83
400 1.82 1.96
500 1.77 2.11
600 1.63 1.65
700 1.12 1.54
800 0.92 1.57
900 1.03 1.28
1000 0.89 1.33

CP = 0.2 and the probability of the mutating operator MP = 0.4 in these simulations. The values
of CP and MP operators are set after empirical search concerning the speed of GA convergence.

Very good agreement of the refractive index and extinction coefficient spectral dependencies
with the envelope method results was obtained for several reflectance function simulations [7].
The differences when comparing GA and envelope method results are of 10 � � order of magni-
tude in the z / ' ��FIHJACKML�$���hji(k � �/ value.

Similar results were obtained in the real sample studies. Reflectance measurements were
carried out by a double-beam Carl Zeiss Jena spectrophotometer Specord M40 at room temper-
ature. The possibilities of the GA method illustrates the ZnO thin film sample case. The ZnO
sample was deposited on the polished Si substrate by rf. diode sputtering. The thickness of the
film estimated from deposition conditions was 1000 nm. The absolute errors of the reflectance
measurements were   0.01. The experimental reflectance of the sample is in Fig.3. The values
of spectral dependencies of the refractive index and extinction coefficient reconstructed by the
GA method are summarized in in Fig.4.

The spectral dependencies of the optical constants of the ZnO sample determined by the GA
method are smaller than values reported for bulk material. The values of the refractive index
decrease uniformly in the whole wavelength range while the values of the extinction coefficient
slightly increase. This result is in agreement with the Kramers – Krönig relations.

5 Conclusion

The GA method is used for the optical parameters of thin film determination from experimen-
tal reflectance measurements. Using the GA inversion of the reflectance function enables rela-
tively arbitrary constraints and objectives to be incorporated painlessly into a single optimization
method. There are many different settings associated with predictions in optical parameters so-
lutions. Most of these settings are maintained automatically using rules of the GA that create
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Fig. 3. ZnO/Si reflectance.
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Fig. 4. The refractive index and extinction coeffi-
cient of the ZnO sample.

the best results in the general case. However, by fine-tuning these settings, it can be possible
to get significantly better results from previous predictions. It can take a significant amount of
time to determine what settings give better results. To speed this process in the direction of the
best solution, GA approach can be made to experiment and supplemented with the direct search
methods, especially when the extended set of independent model variables is refined. In this
work the values of � 'TSU� N%� � NY� � and

�YZ
were fixed during the GA optimization. We search

unknown model parameters in two independent steps – in the wide region of the parameter space
and then we refine obtained results near their values obtained in the previous step. This treatment
can speed up the GA solution and enables comfortable estimation of unknown optical constants
values of the real sample. The results of the computer simulation of the hypothetical thin film
reflectance show good convergence of the GA solution to the simulated parameter values. Recon-
structed spectral dependencies of the optical constants of the real ZnO sample are in agreement
with the envelpe method results.
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