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SPIN-DEPENDENT SCATTERING ON THE INTERFACE LAYERS
IN MAGNETIC MULTI-LAYERS
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We present a calculation of the transmission coefficients
�������	�

. The idea of the calculation
of

�
�����	�
is the following: Starting from the exchange Hamiltonian of the Heisenberg type

which describes the exchange energy of the � -electrons in the ferromagnetic layers and the
exchange interaction energy between � and � electrons, we statistically averaged the exchange
interaction energy according to the distribution function of � -electrons at the given temper-
ature and magnetic field. The average energy represents the potential discontinuities at the
interface between paramagnetic and ferromagnetic layers. The scattering of the � -electrons
on the potential discontinuities represents the microscopic origin of the coefficients

� �����	�
. It

was shown that these coefficients are angular and spin-dependent.

PACS: 71.25.Pi, 72.15.Gd, 75.50.Rr

1 Introduction

Magnetic multi-layers (MML) reveal a range of interesting and attractive features resulting from
the interplay of electronic and magnetic properties which cannot be observed in a single film.
The MML are composed of metallic layers where there is a paramagnetic layer in between two
ferromagnet layers. By layering one can modify the material properties or obtain new properties,
uncharacteristic for bulk materials and this was the reason for studying the MML. The study of
the transport properties of these MML is very interesting because they exhibit giant magnetore-
sistance (GMR). The GMR was observed first on Fe-Cr-Fe layered structure in [1] and at the
same time in [2]. The GMR is due to the existence of magnetic coupling between two ferro-
magnetic layers separated by a paramagnetic layer (spacer layer). In attempting to explain this
exchange coupling, theorists have proposed a wide variety of models, in many cases drawing
on earlier works. Many of the models proposed for exchange coupling between two ferromag-
net (FM) layers through a paramagnet (PM) layer are based on the model of coupling between
magnetic impurities in the host metal. The most widely applied one of these early models is
Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling [3–5]. The magnetization of neighbouring
FM layers can be parallel (ferromagnetic alignment F) or anti-parallel (anti-ferromagnetic align-
ment AF). The character of the exchange coupling (F or AF) depends on the thickness of the
spacer layer and with an increase of the thickness it oscillates with a certain period. The short-
period oscillations in the interlayer exchange coupling in Fe-Cr-Fe have been attributed to an
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RKKY-type interaction through paramagnetic Cr [6]. Evidence has been found for two periods
of oscillations in Fe-Cr-Fe(001) [7] and [8]. Two periods of oscillations have also been found in
Co-Cu-Co(001) [9] and Fe-Ag-Fe(001) [10–12] and [13]. Additionally, short period oscillations
in the magnetic coupling have been observed for Fe-Cu-Fe(001) [9]. If the exchange coupling
is AF, then by applying a strong enough magnetic field in the layer plane the AF coupling may
be overcome and the magnetic moments of all FM layers can be forced to be oriented in the
same direction. Experimentally it has been observed that the resistance decreases when the layer
magnetization rotates from AF alignment to the F one. The GMR is defined by the formula������������������� �� ���
where ��� � is the resistivity in AF alignment, �!��� is the resistivity in F alignment.

The magnetoresistance effect increases by about a factor of "$#&% when the temperature
changes from room temperature to that of liquid He. Experimentally it has been shown that
the large magnetoresistance effect in layered structures is nearly the same for current flowing
parallel or perpendicular to the magnetizations and the small difference can be attributed to the
magnetoresistivity anisotropy effect.

The large magnetoresistance effect is also observed in granular alloys where the ferromag-
netic granules are embedded in a nonmagnetic matrix [14, 15] and [16]. The approach to the
theoretical description of the magnetoresistance in MML may be based either on a semiclassi-
cal model or on a quantum one. The semiclassical model was worked out first by Camley and
Barnas [17] and [18]. The semiclassical model is an extension of the Fuchs-Sondheimer semi-
classical model for the conduction in thin films [19] and [20] to the case of MML. The model of
Camley and Barnas has been extensively used for numerical calculations of the GMR in sand-
wiches and multilayers [21].

The quantum approach to the GMR has been worked out by Levy et al. [22]. This approach
is based on the Kubo-Greenwood formula, which is used to treat the scattering of electron waves
(free electrons) by spin dependent potential randomly distributed in the interface planes or within
the layers (spin dependence scattering only within the FM layers). The quantum models have
been extensively used also for numerical calculations of the GMR [23–26] and [27].

Now we focus our attention to the semiclassical approach to the GMR in MML because the
testing of the results of the semiclassical theory by comparing them with the experimental one is
quite good. Using the same procedure as in [18] we can write the Boltzmann transport equation')( �+*,��-�.0/)13254' / 6 ( �+*,��-�.0/)132748 �9*:��-<;>= �@?BAC ; = 'ED *,F�-�.G274' ;>H 1 (1)

where ? ( ?JILK ) and C denote the electron charge and electron effective mass (assumed inde-
pendent of electron spin), 8 �+*,��- are the relaxation times for spin-up and spin-down electrons, A
is the electric field, which is parallel to M -axis. M -axis is parallel and / -axis is perpendicular to
the layer plane. In each layer the electric current is determined by the appropriate distribution
function

D �+*,��-�.0/)13274 for electrons with spin-up and spin-down and with the velocity 2 . The dis-
tribution function

D �+*,��- .N/O1	274 is decomposed into two parts: the equilibrium distribution functionD *:F -�.G2P4 and small contribution
( �+*,��-�.N/O1	274 induced by the external field. The general solution of
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equation (1) can be written in the form( �+*,��-Q .N/O1	274 �R?BA 8 �+*,��-C 'ED *,F�-�.G274' ; H SUT 6WV �9*:��-Q .0274!XZY![]\ ^ /8 �+*,��-Z_ ;>`a_cbed 1 (2)

where 6 and � are for ; = I�K and ; =gf K , respectively. The unknown functions V �+*,��-Q .G274 are
determined from the boundary conditions. There are four Fuchs boundary conditions at the free
surfaces:( �+*,��-h .N/ � K 13274 �]i �+*,��- .0/ � K 4 ( �+*,��-j (3)( �+*,��-j .N/ �lk 13274 �mi �9*:��- .N/ �lk 4 ( �+*,��-h 1 (4)

where
i �+*,��-�.N/ � K 4 and

i �9*:��-�.N/ �nk 4 are the Fuchs specularity factors.
Boundary conditions at the interface / �nk!o

:( �+*,��-j .N/ �lk jo 132P4 �qp �9*:��- ( �+*,��-j .0/ �nk ho 1	274 6 � �9*:��- ( �+*,��-h .0/ �lk jo 1	274 (5)( �+*,��-h .N/ �lk ho 13274 �qp �+*,��- ( �9*:��-h .N/ �lk jo 1	274 6 � �9*:��- ( �+*,��-j .0/ �lk ho 1	274r1 (6)

where
p �+*,��- and

� �9*:��- are the non-diffusive (specular) transmission and reflection coefficients at
the interface between neighbouring layers. In [18] there was neglected any angular dependence
of these coefficients and the same transmission and reflection coefficients for electrons incident
on interface from the left and right sides were assumed.

If we have s layers, then there are tus unknown functions of the V �+*,��-Q type. At the free
surfaces there are four boundary conditions. At interface layers we have t . s � T 4 boundary
conditions of the type (5) and (6). Together we have t 6 t . s � T 4 � tus boundary conditions and
this is enough for the determination of all unknown functions of the V �+*,��-Q type.

We suppose that the spin dependent interface scattering may play an essential role in GMR,
and therefore the main aim of this papers is to determine the origin of the transmission and
reflection coefficients.

Before we start to solve the problem of the origin of
p �+*,��- and

� �+*,��- , we summarize the
experimental facts which were the motivation for this paper. By summarizing some experimental
data we come to the following conclusions:

1. The existence of GMR is promising for applications in magneto-resistance sensors.

2. GMR can arise from two different mechanisms: spin-dependent bulk scattering anisotropy
( 8 �wv� 8 � ) and spin-dependent interface scattering anisotropy (

p �ev�lp � ).

3. Significant effect on the resistivity of the MML is expected only for scattering by interface
roughness.

4. The spin-flips scattering in the spacer layers suppresses the GMR arising from both the
bulk and surface scattering anisotropies of the spin-up and spin-down electrons [21].

5. The spin-flip scattering in ferromagnetic layers selectively suppresses the bulk-scattering
anisotropy and enhances the relative role of the surface-scattering anisotropy [21].
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2 Theoretical model of spin-dependent scattering on the interface layers in MML

2.1 Hamiltonian of xzyL{ electrons

As it was mentioned in the introduction, one of the methods of the theoretical description the
transport properties of the magnetoresistance in MML is the semiclassical model which is an
extension of the Fuchs-Sondheimer model for the conduction in thin films to the case of MML.
This semiclassical approach needs to known the transmission coefficients

p �+*,��- at the interface
between neighbouring layers. Nevertheless, the major open problem is still the microscopic ori-
gin of the spin dependent scattering by interfaces, i.e, the problem of the microscopic mechanism
giving rise to different values of

p � and
p � . For this reason the main aim of this paper is to show

the microscopic origin of these coefficients. For this purpose let us consider the Hamiltonian of
the | and } electrons of the MML as~� � ~��� 6 ~��� 6 ~��� j � 1 (7)

where ~��� � ��� o��!�" Cq� o 6 � o �� � �B�� o ? �t��r� F T_ � � o � � � � _ (8)

is the Hamiltonian of the | -electrons in ferromagnetic layers,~� � � � �a� �!�" C � � 6 �O���� � � �� � ? �tu�r� F T_ � � � � � � � _ (9)

is the Hamiltonian of } -electrons in both paramagnetic and ferromagnetic layers,~� � j � � � o �O� ? �tu�r� F T_ � � o � � � � _ (10)

is the interaction Hamiltonian of | and } electrons. There is no doubt that the } -electrons in both
types of layers are conduction ones. For this reason one can use the one electron approximation
in which the quantum state of the } -electron is described by Bloch’s function. This cannot be
said about the | -electrons in the transition metals. The large value of the electronic part of the
specific heat capacity is interpreted with the conception that some part of the | -electrons are
localized and others are delocalized. Until now, this problem has not been resolved satisfactorily.
Nevertheles, we will use the results of [28, 29] and [30], where the authors started from the
general many-body Hamiltonian and treated

~� � j � up to the second order in perturbation theory.
In this approximation the exchange part of the Hamiltonian can be written in the following form~��� H � ~� � 6 ~� �<� 1 (11)

where ~��� � ��� ��� ����5� ���� �5� . _ � � � �w�$_ 4 ~� . � � 4¡  ~� . �w� 4�1 (12)



Spin-dependent scattering on the interface layers in. . . 85~���<� � � � �>¢ � ���m£� � ~� . � � 4�  ~� �>¢ 1 (13)¤ ~� . � � 4�¥ are the spin angular momentum operators (in units of � ) of
k
-electrons of the atom at

the place � � in the ferromagnetic layer,~� �¦¢ is the spin angular momentum operator (in units of � ) of the electron in the s -band and in
the quantum state determined by the § ,¤ � � ¥ and

¤ � � ¥ are the vectors in Bravais lattice,� . _ � � � �g�e_ 4 are the exchange integrals which are assumed to be positive,£� � is the exchange integral between
k

and ¨ electrons. The £� � do not depend on the wave vector § .
For the calculation of the transmission coefficient it is sufficient to consider only one } elec-

tron. In the double sum in (12) it is sufficient to consider only the nearest neighbours. Consid-
ering this fact the exchange Hamiltonian of the Heisenberg type [31] in the external field can be
written in the following form~��� H � � � � � � ����5� ���� � ~� . � � 4¡  ~� . � � 4 � £� � � � � ~� . � � 4¡  ~� �¦¢ � � � � ~© . � � 4�  ª � ~© �¦¢   ª«1 (14)

where vectors
¤ � � ¥ are the position vectors of the nearest neighbours of the atom at the place� � in Bravais lattice,~© . � � 4 � � (!¬®­ ~� . � � 4 (15)

is the magnetic moment operator of the
k
-electrons belonging to the atom at the place � � in the

Bravais lattice,~© �¦¢ � � " ¬ ­ ~� �¦¢ (16)

is the magnetic moment operator of the sE§ -electron,
¬7­ �°¯�
± � ± ²¦³�´� ³ is the Bohr magneton,

(
is

the Landé factor.
The idea of the calculation of

p �9*:��- will be the following: At first we will calculate the
statistical average of the interaction energy between | -electrons and one sE§ electronµ � � ��¶ � � � £� � ~� . � � 4�  ~� �¦¢a·   (17)

When we know the
µ � , then we can use the well-known formula for the calculation of the

p �+*,��- .
2.2 Low temperatures

For the averaging procedure we have to know the elementary exitation quantum states of the~���
. But this can be done analytically only for low and high temperatures. As mentioned in the

introduction, the GMR increases when the temperature changes from room temperature to that
one of liquid He. This is the second reason why we are interested in the spin-dependent scattering
on the interface layer at sufficiently low temperatures. In this case it is more convenient to
transform the exchange Hamiltonian to the boson creation and annihilation operators

~¸ h . � � 4 ,



86 Š. Barta~¸ . � � 4 by the Holstein-Primakoff transformation [32]. The transformation is defined by the
relations~¹ h . � � 4 � ~¹ H . � � 4 6]º ~¹ ` . � � 4 � . " ¹ 4�»¼)½ T � ~¸ h . � � 4 ~¸ . � � 4" ¹ ~¸ . � � 4r1 (18)~¹ j . � � 4 � ~¹ H . � � 4 � º ~¹ ` . � � 4 � . " ¹ 4 »¼ ~¸ h . � � 4 ½ T � ~¸ h . � � 4 ~¸ . � � 4" ¹ 1 (19)~¹ = . � � 4 �l¹ � � ~¸ h . � � 4 ~¸ . � � 4r  (20)

The creation and annihilation operators
~¸ h . � � 4 and

~¸ . � � 4 fulfill the commutation relation¾ ~¸ h . � � 4�1 ~¸ . � � 4À¿ �qÁ ��� � � �   (21)

At sufficiently low temperature it is enough to be concerned mainly with low-lying states of the
system of | electrons such that the fractional spin reversal is small:¶ ~¸ h . � � 4 ~¸ . � � 4 ·¹ �Â¶ ~s . � � 4 ·¹ Ã T 1
where ¶ ~s · is the average number of electrons at the place � � . Then we can expand the square
roots in (18) and (19):½ T � ~¸ h . � � 4 ~¸ . � � 4" ¹ Ä T � ~¸ h . � � 4 ~¸ . � � 4t ¹ 6  Å :  (22)

Introducing (22) into (18) and (19) one obtains~¹ h . � � 4 � . " ¹ 4 »¼ \ ~¸ . � � 4 � ~¸ h . � � 4 ~¸ . � � 4 ~¸ . � � 4t ¹ 6  Å :  b (23)~¹ j . � � 4 � . " ¹ 4 »¼ \ ~¸ h . � � 4 � ~¸ h . � � 4 ~¸ h . � � 4 ~¸ . � � 4t ¹ 6  : Å  b   (24)

In this case we choose / -axis parallel to the layer plane and we will assume that the spin angular
momentum

~� �¦¢ has only / -component. The Hamiltonian (14) has the following form~� � H � � � � ���Æ� � � ~� . � � 4�  ~� . �w� 4 � £� � � ��� ~¹ = . � � 4 ~¹ �¦¢ = � (�¬ ­ � ��� ~¹ = . � � 4 � �� " ¬®­ ~¹ �¦¢ = � 1 (25)

where we consider that ª � � ��ÇÉÈ
(
� IÊK ). The unit vector

Ç!È
is parallel to the / -axis. At

temperature
pn� K K we will assume that the / component of the spin angular momentum of allk

electrons has direction up, so the magnetization Ë � � � ÇOÈ
(
� IÌK ). This is the reason why

we chose the magnetic field in the same direction as the Ë . In the opposite case the system of
k

electrons would be thermodynamically unstable at the large value of
�

.
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It may be convenient to make a transformation from the atomic operators
~¸ h . � � 4 , ~¸ . � � 4 to

the magnon variables
~Í hÎ and

~¸ Î defined by~Í Î � TÏ Ð � ��� ? o Î!Ñ � � ~¸ . � � 4E1 (26)~Í hÎ � TÏ Ð � ��� ? j o Î!Ñ ��� ~¸ h . � � 4r  (27)

Introducing (23), (24), (26) and (27) into (25) one obtains~��� H � � � Ð / ¹ � � £� � Ð ¹ ~¹ �>¢ = � (!¬®­ Ð ¹ � 6 ~� F 6 ~� o �¦Ò 1 (28)

where / is the number of neighbouring atoms to the atom at the place � � in the Bravais lattice,~� F � � � / ¹ � Î ¤ZÓ Î ~Í Î ~Í hÎ 6 Ó j Î ~Í hÎ ~Í Î � " ~Í hÎ ~Í Î ¥ 6 (!¬ ­ � � Î ~Í hÎ ~Í Î 66 £� � � Î ~Í hÎ ~Í Î ~¹ �¦¢ = � " ¬ ­ � ~¹ �>¢ = 1 (29)

where
Ó Î �Ô¯=ÖÕØ×9Ù ? o Î!Ñ × Ù . Vectors Ú o connect the atom at the place � � with its nearest neigh-

bours in the Bravais lattice.~� o �¦Ò contains fourth and higher order terms in magnons operators, and it may be neglected
when the excitation is low. We note that Õ Î Ó Î � K .

If there is a center of symmetry
Ó Î � Ó j Î , then~� F � � Î ¤ " � / ¹ . T � Ó Î 4 6 (!¬ ­ � 6 £� � ~¹ �¦¢ = ¥ ~Í hÎ ~Í Î � " ¬ ­ � ~¹ �¦¢ =   (30)

For a body-centered cubic lattice we can write/). T � Ó Î 4 �qÛ � Û�Ü¡Ý�Þ ¸ "7ß H ÜZÝ�Þ ¸ "7ß ` ÜZÝ�Þ ¸ "7ß =   (31)

Near to the bottom of the magnon band ( ß H ¸ Ã T
, ß ` ¸ Ã T

and ß = ¸ Ã T
) relation (31) can be

written in the form/). T � Ó Î 4 Ä ¸ � . ß �H 6 ß �` 6 ß �= 4r  (32)

Introducing (32) into (30) we obtain~� F � � Î ~s Î�à7Î � " ¬®­ � ~¹ �¦¢ = 1 (33)

where à Î � " � / ¹ . T � Ó Î 4 6 (�¬ ­ � 6 £� � ~¹ �¦¢ = Ä " ¹ � ¸ � . ß �H 6 ß �` 6 ß �= 4 6 (!¬ ­ � 66 £� � ~¹ �¦¢ = � �!�" C � . ß �H 6 ß �` 6 ß �= 4 6 (!¬®­ � 6 £� � ~¹ �>¢ = 1 (34)
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´ ¼� �âá � " ¹ � ¸ � , C �
is the effective mass,

~s Î � ~Í hÎ ~Í Î is the number of magnons with wave-
vector ã .

The interaction energy between
k

and ¨ electrons is expressed by the relation£� � . ~s Î � Ð ¹ 4 ~¹ �¦¢ = 1 (35)

where the eigenvalues of
~¹ �¦¢ = are ^ ¯� . We see that the interaction energy between

k
and ¨

electrons is spin-dependent.

2.3 High temperatures

It woud be very good to know how the GMR changes continuously with temperature. But as
it was mentioned, one can determine analytically only the average energy

µ � only in extreme
cases, i.e. at low and high temperatures. In this case we will use the mean field approximation.
From relation (15) we calculate

~¹ . � � 4 and introduce it in (14). After introducing we obtain~� � H � � �. (�¬®­ 4 � � ��� � � � ~© . � � 4�  ~© . �w� 4 6 £� �(�¬®­ � ��� ~© . � � 4�  ~� �¦¢� � ��� ~© . � � 4�  ª � ~© �¦¢   ª«  (36)

In the framework of the mean field approximation we substitute
~© . � � 4 in (36) by ¶ ~© . � � 4 · .

Due to the translation symmetry we can writeË � Ð F�¶ ~© . � � 4 · 1 (37)

where Ë is the magnetization,
Ð F is the number of atoms in the unit volume.

Introducing (37) into (36) one obtains~� � H � � � ��� ~© . � � 4�  ¾ Í Ë 6 ª � £� �(!¬®­ ~� �¦¢ ¿ � ~© �¦¢   ª«1 (38)

where
Í � =�äå ³ *,æ ²>ç - ¼ .

According to (38) the interaction energy between
k

and ¨ electrons is expressed by the term� � � ~© . � � 4¡  £� �(!¬ ­   ~� �¦¢   (39)

We see again that the interaction energy between
k

and ¨ electrons is spin dependent.

3 Average interaction energy between x and { electrons

3.1 Low temperatures

According to (28) and (29) the average interaction energy between
k

and ¨ electrons is expressed
by the relationµ � � £� �zè � Î ¶ ~s Î · � Ð ¹5é ~¹ �¦¢ = 1 (40)
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where ¶ · means the statistical average value at the given temperature. The averaging at the given
temperature is defined by the Gibbs canonical distribution functionê Î � ? j)ë �>ìZí3ìî 1 (41)

where ê Î is the probability that the system of
k

electrons has the excitation energy s Î � Î ,� Î � �!�" C � . ß �H 6 ß �` 6 ß �= 4 6 (!¬®­ � 1 (42)î
is the statistical summ and ï � ¯ð çòñ .

The average value is defined by the relation¶ s Îa· � ó��>ì � F ê Î s Î   (43)

Using (41) and (43) one can write¶ s Î · � T? ë í3ì � T   (44)

Substituting (44) into (40) we obtainµ � � £� �zè � Î T? ë í3ì � T � Ð ¹5é ~¹ �>¢ =   (45)

Considering the periodic boundary conditions, then ß H � � ôõ å » s ¯ , ß ` � � ôõ å ¼ s � , and ß = � � ôõ å7ö s È
.

According to relation (44) and the periodic boundary conditions we can write� Î T? ë í ì � T Än÷ k s ¯ ÷ k s � ÷ k s È T? ë í ì � T �
� "¦�ùøûú " C �9ü ­ pý � þ

ö¼ ÷ óF Ï M k M? H h ë æ ²>çOÿ � T   (46)

Multiplying (45) by
(!¬ù­

we obtain(�¬®­ µ � � £� � è (�¬®­ � Î T? ë í	ì � T � ø � F é ~¹ �¦¢ = 1 (47)

where
� F is the magnetization at temperature

pq� K K.
Magnetization of the

k
electrons is expressed by the relationø � � (!¬ ­U¹ . s � � s � 4 � (�¬ ­
¹ . Ð � "¦s � 4 �� (!¬®­ ¹ è Ð � " � Î T? ë í3ì � T é&� ø � FÖ� " (!¬®­ ¹ � Î T? ë í3ì � T 1 (48)
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where s � is the number of atoms with spin-up and s � is the number of atoms with spin-down.
We calculate

� F from (48) and substitute it into (47). Doing this we obtain(�¬®­ µ � � £� � � ø � 6 . " ¹ � T 4 (!¬®­ � Î T? ë í	ì � T�� ~¹ �¦¢ =   (49)

After introducing (46) into (48) we obtainµ � � � £� � � ø � 6 . " ¹ � T 4 (�¬®­ "¦�ùø ú " C �9ü ­�pý � þ
ö¼ ÷ óF Ï M k M? H h ë æ ² ç ÿ � T � ~¹ �¦¢ =   (50)

What is the sign of the
µ � that depends on the sign of the exchange integral £� � . In the case when

the £� � is positive then for
¹ �¦¢ = � ¯� ,

µ � f K and for
¹ �¦¢ = � � ¯� ,

µ � I K . In the case when
the £� � is negative then for

¹ �¦¢ = � ¯� ,
µ � IÌK and for

¹ �>¢ = � � ¯� ,
µ � f K . This is the original

result.

3.2 High temperature

In this case the average interaction energy of
k

and ¨ electrons according to relation (39) is
expressed by the relationµ � � � ��� ¶ ~© . � � 4 ·   £� �(!¬®­ ~� �¦¢   (51)

Substituting relation (37) into (51) one obtainsµ � � � � � ËÐ F   £� �(�¬®­ ~�ù� � � ÐÐ F £� �(!¬®­ � ~¹ �>¢ = (52)

because
~� �¦¢ � ~¹ � = Ç�È and Ë � � � Ç!È

. If £� � is positive then for
¹ �>¢ = � ¯� ,

µ � f K and for¹ �¦¢ = � � ¯� ,
µ � I�K . But if £� � is negative then for

¹ �¦¢ = � ¯� ,
µ � I&K and for

¹ �¦¢ = � � ¯� ,µ � f K . The same results we obtained in the part 3.1. If we know the interaction energy
µ � ,

we can calculate the transmission coefficient
p �+*,��- and the reflection

� �+*,��- one. In this case of
the perfect interface layer the

p �+*,��- and
� �+*,��- can be easily calculated. This calculation is done

in many textbooks of quantum mechanics and, therefore we briefly denote the procedure of the
calculation of

p �+*,��- . For this aim we will consider that the electron goes from the spacer layer
to the ferromagnetic one. At the interface layer we can use Snell’ law:� o � ���Þ��
	�� ÒÞ��
	��¦o � Ï C ¯ A o� C � . A Ò � µ � 4 1 (53)

where
� o

is the angle of incidence,
���

is the angle of reflection,
� Ò is the angle of transmission,A o�� ´ ¼� � » . ü �H o 6 ü �` o 6 ü �= o 4 is the energy of the incident electron, A Ò � ´ ¼� � ¼ . ü �H o 6 ü �` o 6 ü �= o 4is the energy of the transmitted electron, C ¯ and C � are the effective masses of the electrons. In
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the case of MML the effective masses in paramagnetic and ferromagnetic layers are equal. In the
ferromagnetic layers the energy of electron in the � band is expressed by the relationA � . § 4 � �!�" C . ü �H 6 ü �` 6 ü �= 4 6 " ¬®­ ¹ �¦¢ = � 6 µ �   (54)

According to (54) the density of states in the � -band is expressed by the relation( � . A � . § 434 � ">�ùø ú " Cý ��þ
ö¼ � A � . § 4 � " ¬®­ ¹ �¦¢ = � � µ �   (55)

Relations (54) and (55) one can apply to the different cases:

1. £� � IÌK� ¹ � = � ¯�( � . A � . § 434 � ">�ùøûú " Cý ��þ
ö¼ � A � . § 4 � " ¬®­ ¹ �>¢ = � 6 _ µ � _ (56)

and A � � � o � � A � . K 4 � " ¬ ­U¹ �¦¢ = � � _ µ � _ (57)� ¹ � = � � ¯�( � . A � . § 434 � ">�ùøûú " Cý ��þ
ö¼ � A � . § 4 � " ¬®­ ¹ �>¢ = � � _ µ � _ (58)A � � � o � � A � . K 4 � " ¬ ­U¹ �¦¢ = � 6 _ µ � _   (59)

Relations (56) and (58) determine the density of states of the majority spin and the
minority spin electrons, respectively. Relations (57) and (59) determine the minimum
energies in the majority spin and the minority spin bands, respectively.

2. £� � f K� ¹ � = � ¯�( � . A � . § 434 � ">�ùø ú " Cý ��þ
ö¼ � A � . § 4 � " ¬®­ ¹ �>¢ = � � _ µ � _ (60)A � � � o � � A � . K 4 � " ¬ ­U¹ �¦¢ = � 6 _ µ � _ (61)� ¹ � = � � ¯�( � . A � . § 434 � ">�ùøûú " Cý ��þ
ö¼ � A � . § 4 � " ¬®­ ¹ �>¢ = � 6 _ µ � _ (62)A � � � o � � A � . K 4 � " ¬ ­U¹ �¦¢ = � � _ µ � _   (63)
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Relations (60) and (62) determine the density of states of the minority spin and the majority spin
electrons, respectively. Relations (61) and (63) determine the minimum energy in the minority
spin and the majority spin bands, respectively.
Now we will proceed in the determination of the

p �+*,��- After some calculations we can obtain
the following relationsp �+*,��- � C ¯C �

ü H Òü H o .�� �+*,��- 4 � 1� �9*:��- � .�� �+*,��- 4 � 1 (64)

where

� �+*,��- � "�� �� » ÜZÝ�Þ�� o
� �� » ÜZÝ�Þ�� o 6 � � j��������� �� ¼ ÜZÝ�Þ�� Ò 1

� �9*:��- � � �� » ÜZÝ�Þ�� o � � � j�� ������ �� ¼ ÜZÝ�Þ�� Ò
� �� » ÜZÝ�Þ�� o 6 � � j�� ������ �� ¼ ÜZÝ�Þ�� Ò 1 (65)

where A � ´ ¼� � . ü �H 6 ü �` 6 ü �= 4 , . C ¯ � C � � C 4 .
We note that

p �9*:��- 6 � �+*,��- � T
is valid. In the real interface layer we have to consider the

interface roughness. This can be done by using the method described in [33].

4 Conclusion

Considering the interaction energy between
k

and ¨ electrons in the % k transition metals the re-
lation for the average interaction energy

µ � at the given temperature and magnetic field was
derived. It was shown that the energy

µ � is angular and spin-dependent. For the perfect inter-
face layer the transition cofficients

p �+*,��- and the reflection one
� �+*,��- were calculated. These

coefficients are angular and spin dependent.
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