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A local pseudopotential has been proposed in this paper. This potential is used to calcu-
late total energy, phonon dispersion curves (q-space and r-space), phonon density of states,
Mode Grüneisen parameters, dynamic elastic constants, bulk modulus, maximum phonon
frequency, mean phonon frequency, fundamental frequency (second moment of phonon fre-
quency) and propagation velocities of elastic waves of rhodium and iridium. The contribution
of d-like electron is taken into account by introducing repulsive short-range Born-Mayer term.
A unique technique is suggested for the determination of the potential parameter which is in-
dependent of any fitting procedure and a new criterion for the selection of the exchange and
correlation effects is also searched out by considering the minimization of total energy. A
good agreement between theoretical investigations and experimental findings has confirmed
our formulation.

PACS: 71.15Dx, 63.20. � e, 62.20.Dc

1 Introduction

During the last four decades a great interest has been shown to study the metallic properties of
simple metals, but this technique has not been applied extensively to transition metals, partic-
ularly there have been few attempts for Rh and Ir during last two decades [1–17]. Rhodium
and Iridium possesses unusual mechanical properties, which are characterized by brittle failure
of single crystal at high pressure and at normal temperature [7]. Wills and Harrison [8] have
calculated the elastic constants, bulk modulus and Grüneisen parameters of all transition metals
using the Ashcroft’s [8] empty core model potential in which the potential parameter is fitted
with the experimental values of the bulk modulus at the equilibrium volume. Their theoretical
results are found to deviate by 25%–55%. Cleri and Rosato [9] have used empirical many-body
potential and calculated thermodynamic and structural properties of several transition metals.
Their empirical potential is consist of four adjustable parameters, which they have fitted with the
experimental values of the elastic constants. The theoretical investigations of Cleri and Rosato
[9] have discrepancy of about 0–43% from the experimental findings. Soderlind et al. [10] have
calculated the elastic constants using the local density approximation (LDA) with Full Potential
Muffin Tin Orbital method, where input parameters are crystal structure and nuclear charge only.
The variation observed in the theoretical investigation of Soderlind et al. is 0–43% from the
experimental results. Wojciechowski [11] have calculated the bulk properties of Rh and Ir with
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the novel idea of metallic valance and their results are excellent. Cagin et al. [12] have calculated
the thermal and elastic properties of these metals using the molecular dynamics (MD) simulation
with Sutton-Chen [12] potential, which bears four adjustable parameters to be evaluated by fit-
ting with the experimental values of elastic constants. The method adopted by Cagin et al. [12] is
very sophisticated but it is also having the variation of about 15–28% from the observed values.
Greenberg et al. [13] found that the contribution of three-body interactions to the lattice proper-
ties is very small for Ir. The Lattice dynamics, thermodynamics and equation of states of about
ten transition elements including Rh and Ir have been studied by Antonov et al. [14] using their
own model potential, which is having single parameter and evaluated by zero pressure condition.
On the same way and with the same potential with little modification Ivanov et al. [7] have stud-
ied phonon spectra, inter atomic interaction and lattice defects of Rh and Ir. Recently, Singh [15]
has theoretically investigated the phonon dispersion, phase stability and elastic constants of Rh
and Ir by transition metal model potential (TMMP). They have used the effective value of TMPP.
The result of Singh [15] has the variation up to 30% and it may be because they have taken the
effective value of the pair potential through the Gaussian fitting. Recently Eicher et al. [16] have
experimentally investigated phonon spectra of Rh in detail and have also reported the theoretical
results using ab initio local density approximation (LDF). Their LDF calculations have been per-
formed using ultrasoft pseudopotential and plane-wave basis norm-conserving pseudopotential
with mixed bases set which include also all-electron calculations at a few high-symmetry points.
This is most sophisticated and time consuming method. This method reproduces the phonon
spectra excellently but having variation 0–12% in the calculation of the elastic constants. They
were also successful in explaining Kohn anomalies in Rh [7]. Heid et al. [17] have reported the
experimental results of phonon dispersion of Ir along major symmetry directions.

From the above study we have seen that even with the experimental input many [8–10,12,15]
theories failed to reproduce the results of the metallic properties of transition metals. Even the
most sophisticated methods [12,16] could not avoid reasonable deviation from the experimental
findings. Moreover, it is also seen that the same set of potential and its parameter did not explain
all the properties of metallic system with the same accuracy. Keeping all these things in mind we
have proposed a simple form of pseudopotential having unique way of determining of its parame-
ter. We have also put forward a meaningful criterion for the selection of exchange and correlation
effects. This is free from any fitting procedure and independent of any experimental observation.
Using this potential, in the present paper, we have calculated the total energy, phonon dispersion
curves (q-space and r-space analysis), phonon density of states, Mode Grüneisen parameters,
dynamic elastic constants, bulk modulus, maximum phonon frequency, mean phonon frequency,
fundamental frequency (second moment of phonon frequency) and propagation velocities of elas-
tic waves of Rh and Ir.

2 A Model Potential

In every pseudopotential formalism either local or nonlocal approach has been used for the cal-
culation of metallic properties [18–22]. A nonlocal pseudopotential is complicated to tackle so
most of the people preferred to work on logically acceptable local pseudopotential. In the present
article we have proposed a local form of pseudopotential, which includes in a simple parametric
way all the features dictated by the physics of the situation. Particularly it is seen that in noble,
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transition and actinide metals, below the Fermi energy level there are filled d- and f-bands which
tend to push up the energy of a given state. Hence, effect called “hybridization” would require
a repulsive term in the model potential. Hence, in r-space, inside the core radius, the model
potential is combination of repulsive and attractive interactions (i.e. varying cancellation within
the core). Beyond the core radius, the model potential is Coulombic in nature. In real space the
potential (in Ryd.) has the following form�������
	��������� �  ������������� �� � � �!�#" �%$&� �	������ " �%'&� � (1)

In the wave number space (q-space) the potential takes the form as (in Ryd.)
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where � is the valency,
2#3

the volume per ion, q the wave vector and e the base of natural
logarithm. It is evident that the potential contains only one parameter

� � . In addition, the potential
is continuous at

�_	`� � and its strength goes on decreasing as
�badc

within the core. Which
is essential requirement of pseudopotential formalism. It is also found that screened form factor���+*��

does not show any predominating oscillatory behavior at large value of
*
, which is also an

important feature in characterizing the form factor.

3 Determination of potential parameter

In the literature survey [18–29] we found that the practical usefulness of a unique method
of determination of pseudopotential parameter has not been pointed out anywhere. People
[18,25,26,28] have used values of ionic radii (core radii) Wigner-Seitz radii as the parameter
of the potential. Many authors [8–10,12,23,24,26,29] have used different experimental input to
determine the potential parameter viz., liquid metal resistivity, elastic constants, band gap at def-
inite point in the Brillouin zone, phonon frequencies at some symmetry points in the Brillouin
zone etc. Out of these the experimental input for band gap is not appropriate as Hamiltonian ma-
trix is truncated after a few reciprocal lattice vectors. While in the phonon frequencies, it spans
almost in entire range of

���+*��
and at the same time energy calculation also requires

���+*��
for

large number of values of
*
. Many people [7,14] used zero pressure condition, which is equally

important otherwise the properties will be determined at some non-zero volume strain. That is
why the parameter of the potential should be determined in such a way that it captures almost
entire range of

*
. Earlier, Heine and Wearie [30] have proposed a relation for the determination

of the potential parameter, which depends on e�f (atomic radius) and Z (valence). They have
considered the constant value of

* 3Ag 0h�i and it is equal to 0.8 within the elements having Z=1 to
Z=8 which is highly undesirable. It is also well known that the wave vector

* 3
where the form
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factor becomes zero first time plays vital role and its correct determination is extremely impor-
tant [31,32]. Previously Jani and Patel [32] from our group had also proposed a quantum number
dependency to determine the parameter of the potential. Cohen and Heine [33] has narrated the
importance of quantum number ‘ j ’ in the pseudopotential calculations from the repulsive cen-
trifugal barrier j � j E �D� g � �

which occurs in the radial part of Schrödinger equation. If we attend
all these features in the determination of potential parameter it is evident that parameter should
posses �lk (atomic number), e f (Wigner-Seitz radius) and j � j E �A�

dependency. Hence on the
line of earlier work, we put efforts to search out a possible expression for the identification of
the parameter. This is accomplished by making the parameter j , e f , and �mk dependent in the
following simple way� � 	 j � j E �D� enf�lk "

(3)

where j , e f and Z k are orbital angular momentum quantum number (last ‘ j ’ value of the filled
shell for the respective element), atomic radius and atomic number, respectively. It may be noted
that there are chances for redefining such relation in due course of time. This is an attempt to
indicate the dependency of the

� � on certain aspect of the periodic table so that the behavior of
the pseudopotential could be judged through out the periodic table. The above relation is used
to evaluate the

* 3
values for several elements. It is found from Tab. 1 that our

* 3
values are very

close to experimental findings and highly satisfactory. We feel here that as within the core there
is varying cancellation and potential is j -dependent; it takes non-local character of the potential
up to certain extent. This criterion leads the values of

� � 	o�0p  9rq�9 (a.u.) and
� � 	o�0pJ�Tc�9 - (a.u.)

for rhodium and iridium, respectively.

4 Selection of screening function from total energy calculation

There have been number of dielectric functions [18,34–42] tried to obtain the screened form fac-
tor of pseudopotential but there is no unique way of selecting proper screening function. It is
well known that Taylor [34] screening function is best justified at high densities while Vashishta
and Singwi [36] screening function at low densities. Ichimaru and Utsumi [37] screening func-
tion reproduces accurately the Monte Carlo results as well as those of microscopic calculations.
It also satisfies self-consistency conditions in the compressibility sum rule and short-range cor-
relations. A notable feature in this function is its involvement of the logarithmic singularity at*s	 0h�i and the accompanying peak at

*�	5��p t09 h@i . The Sarkar et at [38] screening function is
also derived in the same fashion as that of the Ichimaru and Utsumi [37] and it is latest one.

The total energy of a crystal in the framework of second order perturbation treatment based
on pseudopotential is given by [14]u�v<wLvm	xuzy E u 3 E u|{ E u � EC}#~ � "

(4)

where
u y 	�� � � g � f ,

�
is Madelung constant having the value 1.79175 for fcc structure.u 3 	 � �  p  ����~ � c�p t��T�� ~ �Qc�pJ�0� P E c�p c0Y��[�IH��<� ~ � � (5)
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Fig. 1. Energy Volume relation for Rhodium.

 

 
 

Fig. 2. Energy Volume relation for Iridium.

is the energy of a free electron gas, which is the sum of the kinetic, exchange and correlation
energies.u|{z	��JFJ��L� 3 � -�/1� �2 3 *�� E � �_(|�<*�� �

(6)

is the average energy of the electron-ion interaction. With our model potential it becomesu|{z	 -@� � �� h MiY / � �m�����[� E �D���C�T����"
(7)

where
� � is the parameter of the potential.u � 	 2 3�T� /b��� * �
� ��(|�+*�� � � ��� �<*��� � E � � � �<*��B�C�>� � �!���B�<*�� �+� (8)

The prime on the summation sign excludes the
*s	�c

term. Summation over 32 nearest neighbors
in reciprocal space is taken to achieve proper convergence in fcc phase. The function ��� �+*��

is
the Hartree static dielectric function and

�B�<*��
incorporates the exchange and correlation effects.

The d-like contribution is added by [14]

} ~ � 	�c�p P�� �G� �>���K�L�z� ( e ��"
(9)

which is known as the Born-Mayer potential and is valid for interaction of overlapping wave
functions in atomic limit.
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 Fig. 3. Phonon dispersion curves for Rhodium.

 

 
 

Fig. 4. Phonon dispersion curves for Iridium.

We have calculated the total energy of Rh and Ir using different screening functions, which is
shown in Tab. 2 (at observed volume) and also the energy-volume relations which are shown in
Figs. 1 and 2. For both the metals Taylor [34] screening function gives the lowest energy. Then
the particular combination of screening function and

� � evaluated from equation (3) is used for
the further calculation.

5 Phonon Dispersion curves (q-space and r-space)

The dynamical matrix from which phonon energies and polarization vectors are calculated may
be obtained either by summing real-space force constants or by performing a sum in reciprocal
space. It is known that the real space sum converges faster than the more common reciprocal
space sum and is more justifiable for the calculation of thermal properties and integral properties
of the electron-phonon interactions. We have used both the methods i.e. reciprocal space sum
method as well as real space sum method for calculating the phonon dispersion relation of Rh
and Ir using our model potential.

Computations of the phonon frequencies along the three principal symmetry directions of
the reciprocal lattice namely the

�<c�"Gc�"G�0�
,

�<c�"L��"G�0�
and

�<�
,
�
,
�0�

directions have been carried
out. In addition, we have also included the

����"L��"�c��
and

���s�C��"L��"G�0�
directions in the present

investigations. The secular determinant in q-space has been solved for 50 nearest neighbors [43]
while in r-space it has been solved for 32 nearest neighbors [44,45].

The calculated phonon dispersion curves in q-space and r-space are compared with the ex-
perimental results of Eichler et al. [16] for Rh and Heid et al. [17] for Ir which are shown in
Figs. 3 and 4 respectively. The discrepancies between theoretical findings and experimental re-
sults near Brillouin Zone (BZ) boundary in percentage are expressed in Tab. 3. The calculated
values of phonon frequencies at (

�
,
�
,
�0�

T branches near BZ boundary overestimate the experi-
mental phonon frequencies at the maximum by 20% (r-space) and 26% (q-space) for Rh and that
of 24% (r-space) and 28% (q-space) for Ir. The calculation of Singh [15] shows the discrepancies
of 30% and 34% along the longitudinal branches at (

�
, 0, 0) BZ boundary, while for (

�
,
�
,
�0�

T
mode near the BZ boundary the discrepancies are found as much as 22% and 19% for Rh and Ir
respectively. Moreover he has not reported the phonon dispersion curves in the high symmetry
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 Fig. 5. Density of States (DOS) for Rhodium.  

 
 Fig. 6. Density of States (DOS) for Iridium.

direction viz.
���0"G��"Gc@�

,
��������"G��"L�0�

. The deviation found in the calculation of phonon frequencies
of Rh and Ir by Antonov et al. [14] is at (

�
, 0, 0) BZ boundary for transverse mode it is 17% and

6% and for longitudinal mode it is 5% and 19% while for (
�
,
�
,
�0�

T mode near the BZ boundary
it is 49% and 33%. The results of Ivanov et al. [7] about phonon dispersion curves are deviated
by 5% more than the deviation reported by Singh [15] for both Rh and Ir except (

�
,
�
,
�0�

T mode
near the BZ boundary.

Nevertheless previous model investigations [7,14,15] predicted even more overestimated val-
ues of the phonon frequencies at the BZ boundary. These discrepancies in the phonon frequencies
could have been reduced by an adjustment of the model parameter but we preferred to leave it as
such because the aim of the present work is to use an interatomic potential independent of any
fitting through experimental frequencies.

6 Phonon Density of States (DOS)

The density of states i.e. frequency distribution curves are generated using a standard technique
[46]. Our results of DOS show good agreement with experimental findings and are shown in
figures 5 and 6 respectively for Rh and Ir.

7 Mode Grüneisen Parameters

The mode Grüneisen parameter � (q, j) describes the change in the frequency   (q, j) of the
phonon of wave vector q and the branch index ¡ with volume

2
and is defined by

� �+*r" ¡ �l	��£¢ � �JH   �<*r" ¡ �¤�¢ � �IH 2 � (10)

Figs. 7 and 8 display the mode Grüneisen parameters as calculated presently in the high
symmetry directions. To the best of our knowledge, the mode Grüneisen parameters of Rh and
Ir have not been measured. The experimental data, based on tunneling spectroscopy, indicates
that the Grüneisen parameter is necessarily mode dependent and that the transverse modes are
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1

 
   

Fig. 7. Mode Grüneisen parameters for Rhodium.  

 
   Fig. 8. Mode Grüneisen parameters for Iridium.

Metal
� � (a.u.)

* 3 g 0h i Present Work
* 3 g �h i Other values [18]

Li 1.8812 0.92 0.67, 0.77, 1.13, 1.26
Na 2.0530 1.02 0.866, 0.89, 0.96, 0.97, 0.98, 0.99
K 2.7322 0.94 0.93, 0.94
Rb 2.7017 1.02 0.78, 0.82, 0.94, 1.0
Cs 2.9375 1.02 0.79, 1.07
Cu 1.2128 1.22 1.36, 0.62
Ag 1.3931 1.20 1.52, 0.60
Au 1.3130 1.27 1.52,0.60
Mg 1.6694 0.84 0.75, 0.78, 0.83, 0.90
Zn 1.2962 0.94 0.78, 0.83, 0.85, 0.87, 0.95
Hg 1.4516 0.97 0.67, 0.88, 0.92, 0.93, 1.19
Al 1.4335 0.77 0.73, 0.75, 0.76
Ga 1.3875 0.84 0.876, 0.916, 0.899, 0.944
In 1.5684 0.81 0.75, 0.83, 0.88, 0.90, 0.931, 0.956
Sn 1.5708 0.75 0.77, 0.83, 0.846
Pb 1.5606 0.78 0.64, 0.84, 0.88, 0.92
Si 1.3615 0.78 0.785, 0.884
Ge 1.2410 0.89 0.86, 0.883, 0.85, 0.847
Rh 1.2474 0.82 -
Ir 1.1048 0.86 -

Tab. 1. The potential parameter r ¥ (a.u.) and wave vector q ¦ /2k §

more sensitive to the compression than the longitudinal one. The presently investigated values
of mode Grüneisen parameter are comparable to those obtained by Antonov et al. [14].
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Metal
Energy (Ryd.)

Hubbard- Vashishta- Ichimaru-
Hartree Taylor Sham Singwi Utsumi Sarkar et al

[18] [34] [35] [36] [37] [38]
Rh -1.3009 -1.3024 -1.3012 -1.3016 -1.3018 -1.3014
Ir -1.3719 -1.3766 -1.3732 -1.3745 -1.3762 -1.3740

Tab. 2. Lowest energies for Rh and Ir using different screening functions at observed volume.

At BZ boundary
Rh Ir

r-space q-space Expt. [16] r-space q-space Expt. [17]
(1,

�
, 0)L 7.25(2) 7.21(1.5) 7.1 6.16(2) 5.95(0.8) 6.0

(
�
,
�
,
�0�

L 7.35(0.6) 7.33(0.9) 7.4 6.27(2.7) 6.04(0.9) 6.1
(
�����

,
�
,
�0�

L 7.1(4) 7.1(4) 6.8 6.00(1.6) 6.0(1.6) 5.9
(1,

�
, 0)T 4.83(12) 4.65(15) 5.5 4.05(7) 3.89(11) 4.4

(
�
,
�
,
�0�

T 3.19(20) 2.95(26) 4.0 2.66(24) 2.49(28) 3.5
(
�����

,
�
,
�0�

T 4.83(10) 4.65(4) 5.4 4.1(8) 4.0(11) 4.5

Tab. 3. The values of the phonon frequencies at the BZ boundary in q-space and r-space. (The value in the
parenthesis gives the deviation from experimental value in percentage.)

8 Dynamical elastic constants and propagation velocities of elastic waves

The presently obtained values of the dynamical elastic constants C
{�{

, C
{ � , C VGV and bulk modulus

are given in the Tabs. 4 and 5. The calculated results of C
{�{

, C
{ � , C V�V and bulk modulus deviate

by 0%, 11.16%, 8%, 10%, for Rh and 3%, 13.9%, 20%, 4% for Ir from the experimental findings,
respectively. The theoretical investigations reported by others [4,5,8,9,15] are varying from 0–
54% for Rh and 3–49% for Ir. The propagation velocities of the elastic waves displayed in Ttab. 6
for Rh and Ir show excellent agreement with the experimental results.

9 The calculation ¨z©|ª�«:¬@�¨s®�¬@ ¨s¯�®T°�±D¯ and fundamental frequency  ¨�¯�®
The quantities  �²m³L´ , µ� ·¶ , µ¸  � ¶ {G¹ � represents the main numerical characteristics of the density
of the phonon states. The presently calculated value of  m²m³G´ , µ� ·¶ , µ�  � ¶ {L¹ � are compared with
the experimental [14] as well as other such theoretical findings [14] and are shown in Tab. 7.
Our results shows good agreement with the experimental finding in general and also shows the
superiority over the reported values of Antonov et al. [14] particularly for Ir. In the same table
we have displayed the value of second moment i.e. fundamental frequency by adopting a way of
Hartmann and Milbrodt [43]. To the best of our knowledge so far no one has reported the value
of second moment for Rh and Ir.
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Present Work
Expt. Others
[15] [15] [8] [15] [5] [4] [9] [16]

C º º 4.16 (0) 4.16 2.88 (30) 3.14 (25) 3.27 (21) 5.55 (33) 3.97 (5) 3.92 (6) 4.022 (3)
C º+» 2.19 (11.16) 1.97 2.12 (8) 2.49 (26) 2.21 (12) 3.04 (54) 1.70 (13) 2.37 (20) 1.964 (1)
C ¼ ¼ 1.99 (8) 1.84 1.84 (0) 1.28 (30) 1.05 (43) 2.09 (13) 1.96 (6) 1.99 (8) 1.622 (12)

C º+» /C ¼ ¼ 1.10 1.07 1.15 1.95 2.11 1.46 0.87 1.19 1.029
B 2.84 (10) 2.70 2.38 (12) 1.22 (55) 2.55 (5) 3.88 (43) 2.46 (9) 2.89 (6) 2.65 (2)

Tab. 4. Dynamical elastic constants and Bulk modulus of Rhodium. (The value in the parenthesis gives the
deviation from experimental value in percentage.)

Present Work
Expt. Others
[15] [15] [8] [15] [5] [4] [9] [17]

C º º 6.020 (3) 5.82 4.20 (28) 4.17 (28) 4.13 (29) 6.31 (8) 6.20 (6) 5.54 (5) 6.67 (15)
C º+» 2.074 (13.9) 2.41 3.02 (25) 3.24 (34) 2.76 (15) 3.12 (29) 2.65 (9) 3.45 (43) 2.82 (17)
C ¼ ¼ 2.086 (20) 2.62 2.55 (3) 1.75 (33) 1.32 (49) 2.47 (5) 2.66 (1.5) 2.61 (0) 2.55 (3)

C º+» /C ¼ ¼ 0.994 0.919 1.18 1.86 2.09 1.27 1.00 1.32 1.11
B 3.389 (4) 3.55 3.42 (4) 1.80 (49) 3.23 (9) 4.19 (18) 3.83 (7) 4.15 (17) 4.11 (16)

Tab. 5. Dynamical elastic constants and Bulk modulus of Iridium. (The value in the parenthesis gives the
deviation from experimental value in percentage.)

10 Conclusions

In order to interpret the results of complex structure of transition metals, rare earth metals, ac-
tinides and noble metals it is desirable to have simple method of general applicability, which
can reproduce the results of most of physical properties very close to the experimental findings.
The minimum energy criterion to select the screening function generates the interactions for the
system in equilibrium while the j , e f , and �lk dependency of the parameter sense the non local
character of the system which is essential for non simple, transition, alkaline earth, actinides etc.,
elements.

The results so obtained are also comparable to those obtained from the most sophisticated
methods, which are intricate and require lengthy calculations with large computer time. The
approach we suggest is simpler and less time consuming. Thus, the method can readily be used
for the relative ease and accuracy.

Further, the earlier applications of model potentials were limited to fitting with experimental
phonon frequencies at some symmetry points in the Brillouin zone. Moreover, the earlier reports
do not identify a proper criterion about the choice of a screening function used.

In the light of the above facts, the successful application of present study confirms the for-
malism of the pseudopotential developed in the present work. From the success of our results we
believe that it would be interesting to analyze all the model potentials reported so far on the line
of the above criterion for the selection of screening function, which leads to the best result.

Acknowledgement: The author is thankful to Prof. A. R. Jani for his valuable guidance and
suggestions.
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Rhodium Iridium
Present Work Expt. ½ Present Work Expt. ½

v ¾ (100) 1.827 1.827 1.633 1.606
v ¿ (100) 1.264 1.215 0.961 1.077
v ¾ (110) 2.036 1.984 1.649 1.728

v ¿+º (110) 1.264 1.215 0.961 1.077
v ¿¸» (110) 0.889 0.937 0.935 0.869
v ¾ (111) 2.101 2.034 1.654 1.766
v ¿ (111) 1.029 1.038 0.944 0.944

Tab. 6. Propagation velocities [in 10 À cm/sec] of elastic waves of rhodium and iridium. ( ½ estimated from
the experimental data of elastic constants.)

Elements Á[Â�Ã¤Ä ÅJÁBÆPresent
Others [14] Expt. [14]

Present
Others [14] Expt. [14]q-space r-space q-space r-space

Rh 48.31 48.21 47.76 47.93 28.11 28.90 30.20 29.29
Ir 43.77 44.24 47.51 43.38 29.90 30.22 30.24 30.78

Elements ÅJÁ » Æ º+ÇL» ÅJÁ » ÆPresent
Others [14] Expt. [14] Present Others Expt.q-space r-space

Rh 27.64 28.04 28.22 28.13 8.16 - -
Ir 27.95 28.29 29.87 28.26 5.65 - -

Tab. 7. Comparison of maximum phonon frequency ÁKÂ�Ã¤Ä (THZ) mean phonon frequency ÅJÁBÆ (THZ), mean
phonon frequency ÅJÁ » Æ º+ÇG» (THZ) and Second moment (fundamental frequency) in (10 » À rad/sec).
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