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OPTIMAL FUNCTIONS FOR PEAK SEARCH METHODS
BASED ON SPECTRUM CONVOLUTION
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Any peak scarch method for high resolution gamma-ray spectroscopy based on convoluted
spectra is faced with the choice of the convelution functions. We derive the optimal con-
velution functions for extraction of the mast important parameters of a peak — the area of
the peak, its position and the width. It is shown that such functions strongly depend on the
signal-to-background ratio. For small peaks on high background the functions arc well ap-
proximated by derivatives of the peak shape itself. For peaks on low background the optimal
convolution functions arc very simple, approaching in the limit of vanishing background the
linear or quadratic shape.

PACS: 29.30.Kv, 29.85.+c

1 Introduction

In a recent work [1] we described an efficient peak search method for high-resolution gamma-ray
spectra based on spectrum convolution. We showed that the convoluted spectrum, being free of
background component, may be used not only to determing the peak region but also 1o deduce (he
most vital parameters of the peak itself. Such a method makes it possible in the case of Gaussian
shaped peaks to obtain simple analytical expressions for the uncertainties of the peak parameters,
which is very important in later stages of the peak scarch algorithm, dealing with doublet peaks.
The assumption of a specific (Gaussian) peak shape is not critical. A strong support for this
statement comes from the IAEA 1998 intercomparison study [2], which demonstrated that the
peak shape model dependency, although cxpected prior to the study, was not found in practice.
All the programs tested there reported on average the same peak areas, within 1%, independently
of different peak shape models they used. Our experience with the analyses where absolute arcas
are important [3] supports the above conclusion.

The usc of the convolution method 10 locate the peaks is a well established approach and is
utilised in many of the available codes. It started with Mariscoui [4, 5], who used a smoothed
second derivative of the spectrum to suppress the background and enhance the peaks. The so
called correlation technique emerged later [6], using the second derivative of the Gaussian as the
convolution function, called also the correlator. Robertson et al. (7] gave an optimal function,
which minimised a specially defined peak area-to-noise ratio. These and alternative {unctions
were carefully analysed by Hnatowicz [8).
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We suggest here an approach to the peak search algorithms in which the optimal convolution
functions are used to extract the peak arca, position and width from the convoluled spectrum
alone. This is a novelty, since the usc of the convolution method has so far been fimited to peak
position determination [9]. The approach keeps the statistical errors down to the optimal level
for all the reievant quantities. The resulting method is a form of the Wiener filter applied to the
spectrum in order Lo recover the desired parameters from it.

In what follows we first derive the optimal convolution functions for the peak area, position
and width for an arbitrary shape of a peak or the underlying background. We then examine the
obtained functions by assuming the peak shape 1o be a Gaussian one in order to show the charac-
\eristic features of the optitmal correlators for high or low backgrounds. We compare the function
with functions intuitively chosen in previous works [4-8] and suggest their modifications for
detection of small peak on high background or strong peaks on low background.

2 The convolution method

“The method in guestion for determining the peak parameters from the measured spectrum p(z)
is based on the transformation
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The interval of the integration is finite, {y = 8,y + $]- A proper choice of the function f(x — ¥)
is the key to the successful implementation ol the method. We assume that an ideal spectrum
without statistical fluctuations, which we denote by po(), exhibits a line z on a background
(x)

po(z) = Az(z, a,0) +(x). 2)
Here, z(z, 2, o) represents the shape of the total absorption peak with the unknown width o and
the unknown amplitude A proportional to the intensity of the line. We later assume that the shape
is a Gaussian one given by

2(z, 0,0} exp (- (L‘L)) . @)
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Here, a represents the peak paosition and & the standard deviation. For the moment we do not

need to assume any specific shape for the peak.
The function f(z — y) is chosen so as to filier out the background fi(x). This is achicved by

the requirement
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We next assume that I{y) reaches its maximum value at y = a. Since the background is
filtered out by the transformation (1), the area of the peak can be deduced from I(a)as

P =al(a), 5)
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ﬁhcn:;la has to be calcu]alcq knowing the detailed shapes of the functions f(z —y) and z(z, a, o'}
]. The shape of the function f(:x — y) can be obtained from a restrictive rcqt;ircmcnl lh‘at'lhc

statistical uncertainty of the peak position i
g, the width o or the area P be minima is <
to find such optimal functions. s ouresk

3 Optimal peak area correlator

In order to find this optimal functi i
nction we treat tl ) as a s H
quantity he experimental spectrum p(z) as a stochastic

p(z) = po(z) + w(=), (6)

where w(z) represents the statistical fluctuation of the number of counts in the channel & and
can be treated as a random variable with a zero mean h

{w(z)) =0
and variance
(’IUE(I)) = 1)0(55) .

In addition we assume that there is no correlation between the fluctuations in different channels
of the measured {original) spectrum, so that .

(w(z)w(z')} =0
for all & # a;f. The brackets {) denote the ensemble average of a quantity.
The relative uncertainty Up of the arca P is defined as
Up = = PP)
P 7

wherc by Fy we denote the arca obtained using the ideal spectrum pp () with a known i)

Using Eq.\. (5) and (!) and ldklng Hivs prop 5
into account the properties of the T m {unc! £ Wi
£ e rando: tion H)( ), [+

Up(f) = f““:rgpﬂ(z)fe(a: - a)dz
. (Y pol) f(w — a)dz)? N

We now _stlzurch‘ for the function f(x — a) which minimises the functional Up and is subject t
lhc‘co'ndltlon given by Eq. (4). The solwtion is obtained employing the standard techni . 5 (;
vanallonal‘calculus [10]. We study the functional Up by setting f(z — a) = f (x - a)(]:eb'o
where the function fo(r—a) is the solution of the problem and () a smalt vnria?ioﬁ obcyinésic):
!Joundm')f conditions e{a — 8) = e{a+ ) = 0. The condition g(f) = [° L ﬁ(u‘.)f(zZ—rL)dr =0
is taken into account by modifying the functional Up(f) into U.’,,(f;_;i Ag(f), with A being
the Lflgrzlnge’ mulupllcr._Thc solution fu(x — a) follows from the necessary cm;dilion that lht
functional U},{ f) be stationary regarding any function () and we obtain

po(z) — Mi(x)
po(z) ’ &)

folz—a)=c
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Fig. 1. The form of the function fo(x — a) for a Gaussian line shape witho =1 and a constant background
is shown in the interval [-5, 5). The curves are presented for different ratios of g/ A, ranging from 100
down to 1/100 (solid lincs). The approximation to these functions, used in [1], is shown in open circles,

The parameter A is then tuned to satisfy ¢(fo) = 0. The constant ¢ is arbitrary, we chose it to
be positive so the fo(0) = 1. In Fig. 1 the form of fo{zr — a) is presented for a Gaussian peak,
given by Egs. (2) and (3) and a constant background 7i{x) = no. The function is intuitively an
appealing one. It has negative almost constant sections in the region where only the background
is present and a positive resonance which filters out the peak. The dependence on the peak-to-
background ratio no/A is weak for ng/A > 1. For the peaks with almost no background the
function tends to be constant over the peak region, which is an expected result. Namely, the peak
area is in the absence of the background simply the sum of the count in the region of the peak.
For the relative uncertainty [/p of the peak arca we obtain in this case the well known result
Up= l/ﬁ

It is interesting to notc that the optimal function folz — ) is rather weakly dependent on the
shape of the background. A constant background, which we assumed in the previous example,
is only an approximaticn. On the low-encrgy side of real peaks the background is in fact higher
due 1o poor charge collection and almost forward Compton scattering of the photons within the
source. We write, as suggested in [11], the background as a sum of a constant and a low encrgy
component in the form

fi(x) = ng(l + 6(1 = F(r,a))). (1

The function
Flz,a) = \/_12__T / exp (—(z — a)*/2)ds
T J=co

is the cumulative normal distribution and b is the amplitude of the low energy background com-
ponent. For the ratio ng/A = 1 and & = 0.25 the spectrum po is shown in Fig. 2. Fig. 3 shows
the function fo(x— ) lor three different values of b and the peak-to-background ratio np/A=1
We may observe a weak dependence on the parameter b even if we assume a much exaggerated
value of b = 1. This suggests that the convolution method with the function f(x — y), designed
for the constant background, eliminates also the background found in actual gamma spectra.
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Eg. 2. Part of a spectrum with a background en- Fig. 3, The form of the functions Jo(z — a) fora

-l.nCEd at the low energy part of the peak. The am-  non-constant background with different amplit d"'

p]nlu-dc of the low cnergy c‘omponcm ish=0.25, the of the low cncrgy components: & = 0 (;oli[:illzjn:)h

peak-to-background ralio is 1. b = 0.25 (dotted line) and b = 1 (dushed linc). Tl\c‘
peak-to-background ratio is 1.

4 Optimal peak position corrclator

We next try 1o find the function f(x ~ ») minimising the uncertainty in the position of the peak.

This can be achieved by applyi i
h ying the convolution of the spectrum S ing d
zero of the convolution function I (y) ’ o) and searching for e

y+a
Ity) = f P =) =0, an

Th? sg]ulinn Yo 9(' this equation for an idcal spectrum po(r) is equal 10 a. Duc (o statistical
variation w() of the spectrum resulting in p(x) = po(x) + w(x), as assumed in the case of ll; 3
opu.n}ul peak area correlator, the actual solution y,,, varies around a. The uncertaint 0;'lhc i :
position can be obtained by cxamining the fluctuation da of the actual solution 'l/y 'lroun(l;(?l

(!uc 10 the presence of fluctuation w(x). We put y,,, = yo + da and in Eq. (11) w,: ;x and Jln.
function (& — g,,) in powers of da and retain only the linear term l panc e

Fle—ym) = flz ~ o)+ —-—af(da ~ Ym) da.

:’”l (|2)
For the expression {(ym — y0)*) one then obtains
akBy o2 e V2
{(ym — y0)2) = f“_B SE A (13)

a+f ot~ B
(43 o) (22820
In scarching for the function fo(:x — ), which minimises the above stated condition, we use the

same procedure as in the case of the optimal peak : ion functi
al peak arca correlation fu i i i
— nction and find a simple

fl)(m_y)y=n =Cm——. (]4)
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Fig. 4. The shapes of the optimal functions fu(z — ) which minimise the statistical varialiop qf the deduced
peak position for the peak-to-background ratios ng/A ranging from 10 1o 1/100. In the limit nfA = 0
the curve reduces to a linear function.

It is casy to observe that this optimal function is in the .]infil .of large rali(? /A snmp‘ly the
derivative on = of the optimal peak arca corrclator. In this limit ll.lc dcnomlpnlqr po(z) in Eq.
(14) is a constant and therefore the function fo(z ~ a) coincudcs with the dcnvan_ve of_pu(.:n? up
to an multiplicative constant. This can be obscrvcd. in Fig. 4, wherc several c?pl'lmal lfmf'l;c-mt
Jolx — y)|y=a for different peak to background ratios are presented. In.lhc.ln‘nn (}f vanis 11;\5
background, the function is a linear onc with the zero vnlut.: atz = a. With suuh a um‘:)uon du.
median of the peak is found, which is evidently the best estimate of the peak position [12] under

such circumstances.

5 Optimal pcak width corrclator

What we learn from the considerations above is that the shape of the functions should be cllosc t0
the shape of the peak we are analysing. The width of the functions should Pe lhercforc.: adjusted
to the width of the peak considered. The knowledge of the width is, additionally, an important
quantity [or precise determination of the peak width systematics Wh.lCh can be used to search for
aks i ater stages spectrum evaluation routines,
the merged peaks in the later stages of the spe . . - '
To find the width of the peak by the convolution method we search for the zero of the convo-
lution function I(y = a, ). Tc condition is therefore I(y = a,a) = 0, or
y+B8 x—y

Iy =a,0)= / p(z)f(

ag
y=B
from which we obtain the estimate o, for the width o, In !hc case of an. ideal spcclru‘m the
estimate coincides with the actual width of the peak. To oblain the unccrfn}my of lhc.csumme,
we follow the procedure used to determine the uneertainty of the peak position and arrive at

oty wlaP) (252 da =

(8 pol)( L)

Ydr =0, (i3)

((Um - 0)2) =
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Fig. 5. ‘The shapes of the optimal functions Ja(x = y) which minimised the statistical variation of the peak
width for the peak-to-background ratios 7g/A ranging from 1010 1/100. In the limil 119 /A4 — 0 the curve
reduces 1o a quadratic function,

The search for the function with the minimal uncertainty yields the result

152 = (g (55 %m@) ) fmte -3, a7

where ) is chosen to fulfill Eq. (15).
Several shapes of the function fo((x - a)/o) are shown in Fig. 5 for different signal-to-

background ratios. In the limit of vanishing background the correlator reduces to a stmple
quadratic function.

6 Discussion

Although the obtained functions are relatively simple and intuitive, they are analytically not
convenient enough to be used in an actual peak search routine. As shown in [1], for practical use
an approximation to the functions f has 1o be applied. For the peak position search the limiting
function for the high background-to-peak ratio should be used, being simply the derivative of the
peak shape function. In this siep of the peak search procedure only a coarse approximation to the
unknown widths of the optimal peak area convolution function is required. In the sccond step, the
optimal function extracting the peak area is well represented by the convolution of the derivative
of the peak with itself. The same function can be used to extract the peak width by searching for
the maximum of the convoluted spectrum close to the peak position. For Gaussian shaped peaks
such approximations allow the use of symbolic computalion to achieve simple expressions for
the uncertainties of the parameters obtained.

For peaks on low backgrounds the Gaussian shaped functions should perhaps be modified (o
better resemble the optimal ones. This may be important for efficient detection of small peaks
on small background. In practice, however, this ability seems to of limited importance.

To conclude, we present optimal convolution functions in order to help choose the proper
functions for an efficient approach to the peak search problem for complex spectra from high
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resolution Ge spectrometers. The method is based on a linear qunsformalion of th s-pclclrum
which eliminates the background and allows for analytical expressions of the uncertaintics of all
of the peak parameters to be deduced when used with the Gauss‘lan model of the peaks. The
method is then casy to implement and appears to be robust and reliable [1].
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EFFECT OF INJECTION OF C-BAND AMPLIFIED SPONTANEOUS EMISSION
ON TWO-STAGE L-BAND ERBIUM-DOPED FIBER AMPLIFIER
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An eflect of injection of conventional-band amplified sponianeous emission (C-band ASE)
on a two-stage long wavelength band erbium-doped fiber amplifier (L-band EDTFA) is demon-
strated. Il uses two circulators and a broadband fiber Bragg grating (FBG) (0 route unused
C-band backward ASE from the sccond siage back to the input end of the first stage of the
amplifier. “The amplifier gain is clamped at 15.5 dB and the saturation power increases from
—13 dBm to —8 dBm with injection of the C-band ASE. The gain level can be controlled to
be in the range from 15.5 o 16.8 dB by varying the variable optical atienuator (VOA) loss
from 0 to 20 dB without much variation in noise figure. These results show that the injection
of C-band ASE can be used to clamp the 1.-band gain in a two-stage L-band EDFA, which
has higher gain compared 1o a single stage.

PACS: 42.60.Da, 42.81.—i, 42.81.Wg, 42 81.Uv

1 Introduction

Wavelength-division-muliplexing (WDM) techniques can very efficiently utilize the low loss
transmission bandwidth of single mode fiber (SMF) to increase (he transmission capacities of
fiber systems. However, the transmission capacities of current 1.5 um WDM systems are limited
by the gain bandwidth of erbium-doped fiber amplifiers (EDFAs), which operaie in the conven-
tional wavelength band at 1529-1560nm (C-band). Thercfore the L-band (1568-1600nm) is
offered in addition to the conventional band (C-band) EDFA. Integration of L-band in parallel
with C-band allows a gain bandwidth of about 70 nm 10 be achicved [1].

The excited erbium-doped fiber (EDF) will emit amplified spontancous emission (ASE) in
both forward and backward dircctions. The large amount of backward ASE at the input end of
the EDFA syslem is tolally unavoidable because ASE generation is quasi-random in direction,
To date, there are many research efforts to enhance the amplification characteristics of the L-band
EDFA by utilizing this unused C-band backward ASE [2-4]. In this letter, we demonstrate that
the unused C-band backward ASE can be used 10 clamp a gain in the two-stage L-band EDFA.

Gain clamping is very important for maintaining gain as the signal is added and dropped from
the channels traveling through the L-band EDF,
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