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The algebra of multi-species anyons characterized by different statistical parameters v;; =
eie;j®;®;/(2m), 3,j = 1,...,n is redefined by basing on fermions and k;-fermions (k; €
N/{0,1} with ¢ € IN) and its superalgebra is constructed. The so-called fractional super-
symmetry of multi-species anyons is realized on 2d lattice.

PACS: 03.65.Fd , 03.65.-w

1 Introduction

The idea of supersymmetry (SUSY) has stimulated new approaches in many branches of physics.
An evidence example has been found for a dynamical SUSY related even-even and even-odd nu-
clei [1,2]. SUSY is a theoretically attractive possibility for several reasons. It is the unique possi-
bility for non-trivial extension of the known symmetries of space and time [3]. Many Physicists
have developed theories of SUSY, particularly in the context of Grand Unified Theories, which
successfully attempt to combine the strong and electroweak interactions [4].

In SUSY quantum mechanics one is considering a simple realization of SUSY algebra, in-
volving the fermionic and bosonic operators [5], which had to move beyond Lie algebras to
“graded” Lie algebras. Graded Lie algebras are just like Lie algebras except they use anti-
commutation relations and commutations relations.

In view of the fact that the SUSY provided us with an elegant symmetry between fermions
and bosons, it was natural to enquire if there exists a generalization which includes the exotic
statistics. Various kinds of such extensions were realized: paraSUSY (with parafermions), frac-
tional SUSY (using the g-bosons with ¢ a root of unity) and nonlinear SUSY (bosonization of
SUSY quantum mechanics) [6—14]. Another generalization can be treated concerning the case
of anyons. An attempt in this sense is considered, in this work, combining two different kinds of
anyons.

On other hand, during roughly 20 years, anyons have attracted a great attention to understand
the physics of lower dimensions. Wilczek is generally credited to others earlier [15, 16]. He
defined these new particles as being a vortex of the gauge-field which are the intersection of a
plane and tubes of magnetic flux electrically charged [17]. Owing the work [18] of Leinaas and
Merhyeim on identical particles, we all know that anyons have a lot to do with braids. Thus,
the quantum algebras seems to be a good candidates describing their symmetries [19-21]. The
realization of these algebras had been started by Lerda and Sciuto [20] and others.

Now, let us pay close attention to extend the notion of symmetry for these new systems. So,
what about “super”-symmetry (SUSY) of anyons? and what kind of SUSY could exist in 2d
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space? In our present work, we will consider a system of n types of anyons (those we can call
multi-species anyons [21]) characterized by different statistical parameters denoted

Vij = e,-ej<I>,~<I>j/(27r), i,j = ]., ey TV

e; is charge of the i*" particle and ®; is its flux. Each statistical parameter v; describes the
interaction of the i*" anyon and the jt* one and defines the existence of different fractional
statistics.

In this context, this work discuss the construction of the SUSY describing a system of multi-
species anyons. First, we redefine the algebra of anyons by basing on fermions and k;-fermions
[23,24] (k; € N/{0,1} with ¢ € N) in 2d square lattice. Let us denote here that the spatial
coordinates x are restricted to a multiple of a lattice spacing a, i.e. £ = na with n an integer.
By removing the lattice structure the algebraic results don’t change. Second, we generalize the
definition of anyonic algebra by taking into account all kind of anyons. So we construct the
“super”-algebra associated to our system. By introducing supercharges in terms of two different
anyonic operators we realize the SUSY of multi-species anyons system which can be called as
fractional one since the construction is based on the nature of anyons.

This paper is organized as follows: In section 2, we introduce the definition of multi-species
anyonic oscillators and their algebras on 2d square lattice based on fermionic ones. In section
3, we define the k;-fermions and we extend the Lerda-Sciuto definition to construct the multi-
species k;-fermionic anyons and their algebras. in section 4, we construct the anyonic superal-
gebra by considering a system of different species of anyons. In section 5, we use the generators
of anyonic superalgebra to construct the supercharges of multi-species anyons SUSY. In section
6, we discuss the irreducible representations of anyonic algebras and superalgebra. In the last
section, we summarize the main result of the paper.

2 Multi-species anyonic oscillators

Let €2 be a 2d square lattice with spacing a = 1. We give a two-component fermionic spinor
field by

o = sl(w)> , 1
(%) @
and its conjugate hermitian by
St = (s (z), 55 (), )

such that the components of these fields satisfy the following standard anti-commutation relations

{s; (2),5; ()} = 0
{si (@),s;(y)} = 0 3)
{s7 @),s](v)} = 0;0(z,y),

Vi,j € {1,2} and Vz,y € Q. Here, §(z,y) is the conventional lattice -function: §(z,y) = 1 if
x = y and vanishes if z # y.
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The expression of anyonic oscillators are given in terms of fermionic spinors as follows

bias) = eabien)s(a) "
b;(.z':t) = sj(w)eii"iin(mi),
where v;; are called statistical parameters and the elements A;(z4.) are given by
Ai(zs) =Y s (¥)Oxr, (z,y)s7 (1), ©)

yeQ

with ©4r,(z,y) are the so-called angle functions and its definition on 2d square lattice was
recited in the references [12] and [13], where 7, is the curve associated to each site x € 2 and
the signs + and — indicate the two kinds of rotation direction on (2.

The elements A;(z4 ) satisfy the following commutation relations

[Ai(z+), 55 (y)] = —0;;04r, (z,9)s; (y)
[Ai(z+), s](y)] = 0:;0r, (2,y)st (y)
[Ai(z+), Aj(y+)] = 0.

Now, we can show that the anyonic oscillators satisfy the following algebraic relations

(b5 (2), b )laz, =0, s>y
[b7; (22), b (y)a2, =0, z>y

[bfj(mi),bﬁc(yi)],\gcjk =0, >y

5 (x2), bz, = 0. sy

[b7; (), b (z£)] = 1,

[bi;(@£), bl (y£)] = 0, i ©
[b; (2£), by (y£)] = 0, it

[0 (@), by (y+)] = 0, i#j

[b5; (2-), bia (y+)] = 0, Vi, j, k,1

52 ), by ()] = Sux e, )55, )

b (2, b)) = e, )T 7,

where
Ay, = exp (£i(vi;O_r, (,y) — vk Oy, (y, 7))

Tij = exp (i y_ (1350 1, (2,2) — va®qr,(2,2)))
zF#T

[X,V]s = XY + AYX



146 J. Douari

and
T2 > Y2
x+>y+®
T1>Y1,T2 =2T1
T
A T2 < Y2
<y &

T <Y1,T1 = T2
One obtains also
(b3;(2+))* =0, )

which is known as the hard core condition.

Let us remark that if we suppose ¢ = j in the expression of v;; given in section 1, we refind
the algebraic relations of anyons constructed by Lerda and Sciuto in [12]. Also, we would like
to stress that despite the deformation of our above algebraic relations, the anyonic oscillators
don’t have anything to do with the k;-fermions which have deformed algebraic relations (will
be discussed in the next section) for several reasons: (i) the k;-fermions can be defined in any
dimensions whereas the anyons are strictly two-dimensional objects, (ii) the anyons are non-
local contrary to the k;-fermions constitute a mathematical tool, introduced in the context of
quantum algebras, which is used to go beyond the conventional statistics in any dimension and
can take into account some perturbation (deformation) responsible of small deviations from the
Fermi-Dirac and Bose-Einstein usual statistics.

3 Multi-species k;-fermionic anyons on 2d square lattice

In this part of our work, we will construct the k;-fermionic anyons on 2d square lattice {2 from
the k;-fermions.

To define the k;-fermionic anyons, we extend the Lerda-Sciuto definition as

az'_j (:E:I:) eil/ijDi(wj:)fi_ (.’L’) @)
ahas) = fF()e D),

where D;(z4) is give by

Di(z+) = EQ Oty (z,y)Ni(y). 9)

Ni(y) is the number operator of k;-fermions on 2d square lattice defined by f; () and f;" ()
the k;-fermionic annihilation and creation operators respectively as follows

ff@f @) = [Ni@)ly
fi @ff (@) 1+ [Ni(¥)]as,

with 1 the identity, ¢; = e’ (k; € N/{0,1},i € N) and the notion [z], = (¢* — 1)/(q — 1).
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The k;-fermionic operators satisfy the algebraic relations

i @, 7 W] s = 6350(2,9)

[fi (@), f; ()] su VY, y, Vi, j
[ff(ar),f"“(y)] B Ve,y,Vi,j
Ni(@), £ ()] = 6”6@: ) f7 (@)

[Ni(2), £§ ()] = 6:50(x,y) £ (x)

(f7 @)% = (f (@)™ = 0.

147

(10)

By using the previous tools, the operators aiij(:vi) constructed from k;-fermionic oscillators

satisfy the following algebraic relations

[ai_j(xi)aaﬁg(y:i:)]p?;k =0, >y

[a;; (wi),aﬁ(yi)]pm =0, z>y

[afj (1), az ()], =0,  @>y

[afj(@s),afi ()7, =0, z>y

[az; (), agy (y+)] =0, i#k

[aﬁ(wi),a;l(yi)] =0, i#k

[az(mi),akﬁ(yi)] =0, i#k

[aij(x—)vakil(y-‘r)] =0, Vi, j

[a;(xi)aa;(xi)]qi =1,

[az'j(w—)aakil(y-i-)]qz' =0, T,y €1,

lag; (@), afy (94)] oo = ud(@,y)Tay ™, Vi k=1,
lag; (@), afy (Y- 5w = Gud(@, )T, Visgk=1,..

Vi, j, k,l = 1,...,n. In this equation
Piji = @i exp [~i(vi;O-r, (z,y) — virOu4r, (y,2))]
and

ngk =g exp[ (VZ]@ Iz ('T y) - Vzk®+F (ya ))]

We also have the following nilpotency condition

(a5;(z+))* =0,

(1)

12)

which can be interpreted as a hard core condition generalizing the Pauli exclusion principle. In
the particular case k; = 2 (undeformed fermions), we recover the multi-species anyonic algebra

of section 2.
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4 Anyonic Superalgebra

In this section, we will consider n species of k;-fermionic anyons (¢ = 1,2,..n — 1) having
different fractional spin and characterized by different fractional statistical parameters v;;. To
construct the associate algebra the new generators will be defined as direct sum of k;-fermionic
anyons oscillators given by the equations (8). This definition will be in a cyclic order taking into
account all kind of anyons can exist in the combined system. So, the constructed algebra will be
in a “graded” form, and we will call it anyonic superalgebra. We define its generators as follows

A (z£) = az; (z+) ® Qiy1j (z£)® ... ® Ot (ne1),j (z1)
(13)
A;;(:Ui) = aj}-(xi) B a;;l,j(:ci) D...PH a;:(n_l)’j(xi).

In a straightforward calculation, we prove that these operators obey to the following commu-
tation relations

[4;; (mi)aAi;(y:t)]Pﬁr =0, z>y
[AF; (xi)aA?;(yi)]pj;r =0, z>y
[4;; (:vi),AZ;(yi)]Psr =0, x>y
(A (@+), Ajp (y2)]pz =0, r>y

(14)

A5 (2-), A7 (v = 0, Vo,y €0
[AI_J(:U_)’A;!_l(y-F)]Qz = 5,T6(:U,y)F[”l], Vi,j, T,l = ]_’ .}
[A’_J(m"')’A:_l(y*)]Qz = (517-(5(1',y)r[:]11]a Vi,j, Tal =1,..mn.

Let us denote here that Q¥ = 11, k = koky...kn—1. The new operators A;;(z+) and Aj;- (z+)
satisfy the following nilpotency condition

(A5 (L)k = (Af;(z1))* =0, keN* (15)



Multi-species anyons Supersymmetry. . . 149

withk = kg....k,_1,and Vi, j = 1, ..., n, with
exp [Z Z (Vij®—l"m (z,2)

zZFT
Vi Oy, (2,2)) Ni(2)]
Urijn =
expli 3 (Vit(n-1),j0 T, (2.2)
2#£x
Vit (n-1)194T, (2,2)) Ni (2]
Pijr
Pit1,jr
P;, = Piiair
pi:r(n—l),jr (16)
+
Pijr
p;:-l,jr
P+ — p".’_ 9.7
igr = 2,7
+
Pit(n-1),r
qi
gi+1
Qi = qi+2
Qitn—1

The equation (15) generalizes the hard core condition for combined anyonic system. This means
that no more that (k; — 1) particles can live in the same state of anyons constructed from k;-
fermions (i = 0,1, ...,n — 1).

5 Multi-species k;-fermionic anyons supersymmetry

In this section, we still consider a combined system of multi-species k;-fermionic anyons. We
define the supercharges of the SUSY associated to the present system in terms of the generators
of anyonic superalgebra given in section 4 as follows

Cinl@) = Aj(e_) AL (as)
Cin@) = Af(z) A, (o)

ijrs

a7

withi,j,r,s =1,...,nand i # r.
Using the above tools, these new supercharges obey to the following commutation relation

QiCi,(2)C3(y) — QrCy, (W) Cijrs (@) = 8(,9)[BrQilRi(w)] @ — BiQr[Rr(2)]q,] (18)
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with
(X — X)Ni(2)
d.z.>a: z<®
ij
(zgm - Z§E)Ni+1(z)
B, - diy1
(EE_KE)N’*"‘I(”
dz’+n71,j
(19)
Nit1()]q;
Ni(@)]e, = .
[Ni+nfl($)]q1'+n—1

dz] — eib’,’jﬂ"

here N;(z) = aj;- (z+)a;;(z+).
To have an invariant expression under the hermitian conjugate we are doing the following
step by computing the hermitian conjugate of Eq. (18)
Q7 'Ot W)CHE (@) — Q.M O (2)C () =

ijrs ijrs ijrs ijrs

(20)
3(z,y)[B, Q7 Ril@)g-r — 1B QR (@)]g],

where Cﬁjs (z) are the hermitian conjugates of the generalized supercharges Cij;-;s (). We write
Ciims(@) = Ar () A (2-)
(21
i) = Af(a )45,
Let us remark here that these generators satisfy
(Ciit @)k = (Ciim@)* =0, k= koky...kn_1. (22)

Now we introduce a hermitian operator denoted H () as the sum of the equalities (18) and
(20), then we get

H(z) = BrQilRi(2)]q: — BiQ-[X:(2)lo,

+B;1Q;1[Ni($)]Qi—1 - Bi_lQr_l[Nr(x)]Q:l-

(23)

In a straightforward computation we get the following relation

Vi@, = ¢V [Ni(@)la, (24)

3
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then the operator [X;(z)] -1 (Eq. (19)) can be written as

'l—N,' (.’l})
' q};fvi+1(w)
[Ni(2)]g-1 = ' . [Ri(2)] e
- N @ (25)
qi+ni-{n_1 ¢
= AiNi(z)]q; -
Thus the equality (23) will be rewritten as
H(z) = (BrQi+ B 'J)Ri(2)]a:
(26)
_(BiQT + B;ljr)[Ni+l($)]Qi+17
where
qui+1($)
Ji = +1 . 27)
—Nitn-1(z)
i+n—1

To extend these results to 2d continuum space, it is sufficient to summon on all the sites of 2d
lattice

Cih = T G
(28)
H = Y H).
e

In the result (26), we remark that the hermitian operator H(x) looks like a deformed su-
persymmetry Hamiltonian operator describing a peculiar particles constructed from k;-fermions
and defined on 2d space. The deformation, in this case, looks be normal since the basis of our
construction is deformed system (k;-fermionic one) which generalizes the bosonic and fermionic
ones and also the presence of special topological effects of 2d space in which anyons live.

6 Irreducible Representations of anyonic algebras and superalgebra

To construct the representations of anyonic algebras treated above, we will consider a Fock space.
In first of all, let us give a local irreducible representation on a Fock space of k;-fermionic
algebra. We introduce this space of this algebra by the set

Em = {|n,~m),n,~m = 0, 1, ,k, — 1}, (29)

where the notation i, means that this Fock space is introduced in each site z of the lattice (2.
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The action of k;-fermionic operators f; (z) and f;" (z) on Fj, is expressed by the following
equalities

f@ni,) = Ini, +1), £ @)k = 1) =0,

fi @Inig) = [ni, o

(30)

i, 1), [ @[0)=0.

Then, the operator f;"(z) is called a creation k;-fermionic operator on the site = and f;” () anni-
hilation one. These generators also satisfy the following nilpotency condition which is coherent
with the above equalities. So, we have

(fi (@)* = (fif @)* =0, 31

which generalizes the Pauli exclusion principle; i.e. we can not find in one state more than k; — 1
particles of the i** kind.

Owing to the definition of anyonic operator given by Eq. (8) the irreducible representation
space is the same one of k;-fermionic system F;_. Thus, we can prove that the algebraic relations
of Eq. (11) are coherent with the action of anyonic operators az.ij (z+) on the Fock space F;_. We
get

i Y Oir, (z,y)

afi(zs)lni,) = e Ini, +1)

v

—i% Y O4r, (2,y)

a;j(@)|ni,) = [nilge vre s, — 1) 32)
a?;-(wi)lki -1 = 0
a;;(z+)[0) = 0.

According to these relations we see the operators az;- (z+) and a;;(z+) as a creation and annihi-
lation anyonic operators respectively.

Let us now define the Fock-like space of combined anyonic system as a direct sum of Fock
spaces F;_ defined in the equality (29). We write

n—1

F,=@F.. (33)

=0

In this space, the vacuum state and n-particles state are described on each x on the lattice {2, and
denoted, respectively, by

|0): [OF
|0)it1 In)i+1

(10); = (= (34)

|0)itn—1 [n)itn—1
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withindex ¢ = 0,1, ...,n — 1 of components in cyclic order. We remark, owing to equation (32),
that the action of A;;(z,) and A;fj (z4) defined in equations (13) on F, will be given by

Az (z£)(|0)): =0, At (zs) (ki —1))i =0

(35)
with
1) exp %42
X Y Oir,(z,9)]
y#z .
[n]giy, €XP [—1757L
A= X 3 O4r,(z,y)]
B yF£z
[n]Qi+n_1 exp [—z% %
X > O4r, (z,y)]
y#£T
(36)
exp[i ";j x
X Y Our, (z,y)]
y#£T
B = X 3 O4r, (z,y)]
B yF#zT

exp [z”"""zi_lﬂ X

X > O4r, (z,y)]
Yy£T

Then, the relations of Eq. (35) are compatible with the nilpotency condition Eq. (15), and we
can call A;; () annihilation operator and A;;- (z+) creation one.
Now, let us give the representation of the supersymmetry constructed on 2d lattice. The
action of the supercharges C;ths (x) on the associated Fock-like space that we define as
n—1
F= @ (F.®F,) (37)
i,r=20
i#ET

is given by the equalities
Ciira(@)(10))i ® (10)): =0

Ciirs(@)(In))i ® (In))s

Cijrs(@)(In))i @ (In))r D(ln —1)); @ (|n + 1)),

Clln+1))i ® (In = 1))»
(38)

Ch (@) (ki —1))i @ (ki—1)r = 0
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and their hermitian conjugates C;',J:;: (z) act on the Fock like-space
n—1
F'= @ (F.®F,) (39)
r=20
i#£r
as follows
Ciis (2)(|10))r ® (|0))s = 0
Cijrs(@)(In)r @ (In)); = E(n—1),@(n+1));

(40)

Ciirs@)(In)r ® (In));

ijrs

F(ln+1))r ® (In —1));

Ciits@ (ki = 1) @ (ki = 1)); = 0

ijrs
where
[n]q, exp[3 ygz('/ij@m (z,9)
—vrs®_1,(7,9))]
C =
[7)gy1n—n €XP [% y;w(Vanl,j O4r.(z,y)
~Vrin—1,:0-r,(2,9))]
[n]g; exp[—% y;w(’/ij O4r,(2,y)
—vrsO_r, (2,9))]
D=
[M]gin €xP [—5 y;w(mnfl,j@wz (z,y)
~Vrin—1,:0-r,(2,9))]
[n]q. exp (3 y;:z(wj O_r,(z,y)
—VrsO4r, (2,9))]
E =

[n]qr+n—l exp [% E (Vi+nfl,j(")fI‘ac (ma y)
yFe
_Vr+n—1,s@+l‘m (x, y))]



Multi-species anyons Supersymmetry. . . 155

[n]q: exp [—% ; (v3jO4r, (2, y)
yZzT

—vrsO_r, (2,9))]

[M)gisn_s XD [—% 3 (Vign-1,;041,(z,y)
yFz

_Vr—i-n—l,s@—l“z (w7 y))]

Owing to these results the irreducible representations of anyonic algebras were considered
and it was shown that they are related to generalized Pauli exclusion principle. Furthermore,
we could see the supersymmetry of our combined system has deformation properties plus “frac-
tional” properties coming from the basis particles (k;-fermions) and the nature of anyons respec-
tively.

Concluding remarks

To summarize, exotic statistics were introduced in physics as an exotic extension of bosonic and
fermionic statistics, and the both statistics could be unified by SUSY. Recently, the existence of
intimate relation between exotic statistics and SUSY was established by observation of hidden
SUSY structure in purely parabosonic and purely parafermionic systems. So, the SUSY and
exotic statistics can be unified in the form of paraSUSY for parafermions, and also in the form
of so-called fractional SUSY for ¢-bosons where q is a root of unity and nonlinear SUSY for
bosonization of SUSY quantum mechanics. These studies were formulated on four dimensional
space-time.

For lower dimensions, we have discussed in this work what we could call fractional SUSY
in a general case for k;-fermionic anyons. As generalization, our work was for unification of
different exotic statistics on 2d space. These kinds of statistics describe quasi-particles those
we defined as deformed particles constructed from bosons or fermions. To generalize this con-
struction we have considered k;-fermions as basis to built our generalized anyons, those we call
k;-fermionic anyons. From our present construction, it is easy to remark that in the limit cases
k; = 2 we refind the anyonic oscillators defined in the reference [20] by Lerda and Sciuto, and
for k; — oo our anyons go to bosonic anyons.

These results are compatible with the fact that anyonic particles having different fractional
charge and spin can not live peacefully, such that the commutation relations for anyonic operators
show the generalization of exclusion principle and the interchange of two anyons can not be
defined consistently for them. These analysis are very interesting for various fields as condensed
matter in which the experimental advances related to the fractional quantum Hall effect have
proved that quasi-particles discovered appear to exhibit anyonic behavior. Also, the field of
quantum computation which can be constructed from the abstract study of anyonic systems,
such that the braiding and fusion of anyonic excitations in quantum Hall electron liquids and
2D magnets are modeled by modular functors opening a new possibility for the realization of
quantum computers [25,26].

Acknowledgement: The author would like to thank the Abdus Salam ICTP, particularly the



156

J. Douari

associateship Sckeme for its warm hospitality, and the Max-Planck-Institut fiir Physik Komplexer
Systeme for link hospitality during the stage in which one part of this paper was done. The author
would like also to thank Prof. M. Daoud for his suggestions and comments.

(1]

(2]
(3]
(4]
5]
(6]
(7]

(8]

(9]
(10]
(11]
(12]
(13]
(14]

[15]
(16]
[17]
(18]

[19]
[20]
[21]
[22]

(23]

(24]
[25]
(26]

References

F. lachello: Phys. Rev. Lett. 44 (1980) 772; The Interacting Boson-Fermion Model, Cambridge Uni-
versity Press (1991)

A. Metz, et al.: Phys. Rev. Lett. 83 (1999) 1542

J. Wess, B. Zumino: Nucl. Phys. B 70 (1974) 39

Ali H. Chamseddine, R. Arnowitt, Pran Nath: Nucl. Phys. Proc. Suppl. 101 (2001) 145
A. Das, C. Wotzesck: J. Math. Phys. 37 (1996) 61

F. Cooper, A. Khare, U. Sukhtame: Phys. Rept. 251 (1995) 267

J. L. Matheus-Valle, M. A. R.-Monteiro: Mod. Phys. Lett. A7 (1992) 3023;
Phys. Lett. B 300 (1996) 66

J. A. de Azcérraga, J. Macfarlane: J. Math. Phys. 37 (1996) 1115
H. Ahmedov, O. F. Dayi: J. of Phys. A 32 (1999) 6247

H. S. Green: Phys. Rev. 90 (1953) 270

D. V. Volkov: Sov. JETP9 (1959) 1107; 11 (1960) 375

O. W. Greenberg: Phys. Rev. Lett. 13 (1964) 598

S. Majid, M. J. Rodriguez-Plaza: J. Math. Phys. 35 (1994) 3753

C. Quesne, N. Vanteenkiste: Phys. Lett. A 240 (1998) 21; Helv. Phys. Acta 72 (1999) 71; Int. J. Mod.
Phys. A 16 (2001) 2859

A. Lerda, Anyons: Quantum Mechanics of Particles with Fractional Statistics, Berlin, Springer (1992)
F. Wilczek: Fractional Statistics and Anyon Superconductivity, World Scientific, Singapore (1990)

F. Wilczek: Phys. Rev. Lett. 48 (1982) 1144; 49 (1982) 957

J. M. Leinaas, J. Myrheim: Nuovo Cimento B 37 (1977) 1;

J. M. Leinaas: “Symmetry and Structural Proporties of Condensed Matter”, Poznan 1992, World Sci.,
Singapore (1993)

M. Plyushchay: Mod. Phys. Lett. A 12 (1997) 1153; Annals Phys. 245 (1996) 339

A. Lerda, S. Sciuto: Nucl. Phys. B 410 (1993) 577

M. Daoud, J. Douari, Y. Hassouni: acta physica slovaca 49 (1999) 945

S. Mashkevich: Chern-Simons field theory and generalizations of anyons, Contributed paper at the In-
ternational Europhysics Conference on High Energy Physics HEP-97, Jerusalem, Israel, 19-26 August
(1997)

M. Daoud, Y. Hassouni, M. Kibler: Yad. Fiz. 61 (1998) 1935;
M. Daoud, Y. Hassouni, M. Kibler: Proceeding In Symmetries in Science X, Eds. B. Gruber and M.
Ramek; Plenum Press, New York (1998)

J. Douari, Y. Hassouni: acta physica slovaca 51 (2001) 175
M. H. Freedman, A. Kitaev, M. J. Larsen: Topological quantum computation, quant-ph/0101025
B. J. Overbosch, F. A. Bais: Phys. Rev. A 64 (2001) 062107



