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In the present communication, we study the influence of phase damping in the presence of
Stark shift for the multi-quanta JCM, using a master equation describing phase damping under
the Markovian approximation. An analytic solution of the master equation for the multi-
quant two-mode JCM Hamiltonian with the phase damping in the presence of Stark shift is
obtained. We use this solution to investigate the influence of phase damping and Stark shift
on nonclassical properties of the system, for the resonant and the off-resonant cases. We
compare the behaviour of the system in the case of having a coherent superposition state and
a statistical mixture of coherent states as an initial field. Our results show that the Stark shift
plays an important role in the evolution of the population inversion in the JCM.

PACS: 42.50.Ct, 42.50.Dv

1 Intoduction

The motion of the centre-of-mass (CM) of ultracold trapped ions has to be dealt with quantum
mechanically [1]. Laser irradiation is used to monitor the ion’s internal and external degrees [2–
6]. Models have been constructed to describe a two-level ion undergoing quantized vibrational
motion within a harmonic trapping potential and interacting with a classical light field [2,3,7,8].
It has been pointed out that the dynamics of a trapped ion can be described by a Hamiltonian
similar to a Jaynes-Cummings Model [9] or its generalizations under certain regimes [4,5,10–
12]. An equivalent Hamiltonian also describes a two mode micromaser as realized at the ENS in
Paris [13].

Without damping, it is exactly solvable under the rotating-wave approximation. Nevertheless
damping is always be present in any experimental realization of the model, the solution in the
presence of damping is interest and importance from a practical point of view. It was found
that the collapses and revivals of the atomic inversion oscillations predicted by the JCM are in
agreement with the experiments done with Rydberg atoms in a microwave cavity [14–16].
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In these experiments, damping of the cavity mode is not negligbly small. Thus, for a detailed
comparison with experiments, the effects of damping must be taken into account.

In the past few years, a number of authors have treated the JCM with damping by the use of
analytic approximations [17–19] and numerical calculations [20–23]. In particular, Agarwal and
Puri [24] presented an analytic solution for the initial state when the light field is a vacuum state.
Daeubler et al. [25] found an analytic expression for the atomic inversion and the intensity of the
field in the JCM with damping when the reservoir is at zero temperature. However, the damping
treated in all the above studies is modelled by coupling to an external reservoir including energy
dissipation. As is well known, in a dissipative quantum system, the system loses energy by
creating a bath quantum. In this kind of damping the interaction Hamiltonian between bath and
system does not commute with the system Hamiltonian. In general this leads to a thermalization
of the system with a certain time constant. In addition it has be shown that such damping has a
severe effect on quantum coherences of the system involving macroscopic superposition states
[26–28], which damp out on a much faster time scale depending on their classical separation.

There are, however, other kinds of environmental coupling to the system, which do not in-
volve energy exchange. In this so called phase damping [29] the interaction Hamiltonian com-
mutes with that of the system and in the dynamics only the phase of the system state is changed
in the interaction. Similar to standard energy damping the off diagonal elements of the density
matrix in energy basis decay at a given rate. This phase damping can well describe some unac-
counted decay of coherences in a single mode micromaser [30]. Recently, it has also been shown
that phase damping seriously reduces the fidelity of the received qubit in quantum computers
due to the decoherence induced by phase damping [31]. However, it is not clear whether the fast
decay of macroscopic coherences is also present in this case.

It is worthwhile mentioning that the master equation obtained in this article can describe the
phase damping not only in the JCM but also in other quantum systems. In particular, this kind
of phase damping may play an important role in the decoherence problem [31] in quantum com-
puters, and in the study of transport phenomena in mesoscopic system, since elastic scatterings
play a key role in mesoscopic system [32]. Indeed, if we reinterpret the annihilation and creation
operators â and â† of the center-of-mass (CM) phonons in ion trap quantum computers [33],
then it is possible to apply the formalism developed in this article directly to investigation of the
intrinsic decoherence [34] in ion trap quantum computers.

The phase damping in the JCM with one quantized field mode has been studied [35]. There
has been considerable interest in the properties of the so-called superposition states of light (SS)
involving superpositions of coherent states with strongly differing amplitude [36–41]. One par-
ticularly interesting case is the superposition of two coherent states of fixed amplitude but oppo-
site phase [37–41]. Due to the quantum interference, the properties of such a superposition are
very different from the properties of the constituent states (coherent states), as well as from the
incoherent superposition or statistical mixture (SM) of coherent states.

In this model, when the two atomic levels are coupled with comparable strength to the in-
termediate relay level, the Stark shift becomes significant and can not be ignored [42–45]. The
authors [43–45] studied the influence of the Stark shift term on the atomic inversion and dipole
squeezing in the two-photon processes. They found that the dynamic Stark shift plays an impor-
tant role in atomic inversion, but the influence of the Stark shift on the atomic inversion does not
show if the two-levels are coupled equally strongly with the relay level under the condition of a
strong initial field, and they also showed that the dipole squeezing shows a weak phase depen-
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dence in the absence of the Stark shift, but a strong phase dependence when it is present. Ashraf
and Zubairy [46] included this power-dependent effect in their study of the equal-frequency two-
photon micromaser. Gou [47] discussed how to eliminate the Stark shift through the use of a
correlated two-mode field state in unequal-frequency absorption. Nasreen and Razmi [45,48]
discussed the effect of the dynamic Stark shift on atomic emission and cavity field spectra in
the two-photon JCM and have shown that the Stark shift leads to asymmetric vacuum field Rabi
splitting.

The purpose of this work is to study the phase damping for the multi-quanta two-mode JCM
in the presence of Stark shift with a detuning parameter in either a superposition state (SS) or a
mixture state (SM). We will introduce a master equation to describe phase damping, and obtain
an analytic solution of the master equation for an effective two-mode Hamiltonian. We show that
phase damping suppresses nonclassical effects of the cavity field in the JCM, also it is shown
that the Stark shift leads to increasing of the values of the atomic revivals of the population
inversion in SM and SS when the two levels of the particle are equally strongly coupled with
the intermediate relay level, while it leads to decreasing of the values of the atomic revivals of
the population inversion when the two levels have unequal Stark shift. This paper is organized
as follows: In section 2, we present the master equation to describe the phase damping of a
quantum system under the Markovian approximation. In section 3, we obtain an exact solution
of the multi-quanta Jaynes-Cummings model with phase damping in the presence of Stark shift
and give the explicit expression of this solution in the two-dimensional basis of the particle.
Section 4 is devoted to an investigation of the influence of the phase damping and Stark shift on
nonclassical properties of the field in the JCM either in the resonant or the off-resonant cases.
Finally, some concluding remarks are provided while calculations are relegated to an appendix.

2 Master equation describing phase damping

We consider a system described by the Hamiltonian H and interacting with the heat-bath envi-
ronment (the reservoir) which consists of an infinite set of harmonic oscillators. we assume that
the system interacting with the environment can be described by the total Hamiltonian

ĤT = Ĥ +
∑
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2mi
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miω
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∑
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|C2
i |

2miω2
i

, (1)

where the second term is the Hamiltonian of the reservoir, the third represents the interaction be-
tween the system and the reservoir with the coupling constant h̄Ci, and the last is the renormal-
ization term [49]. Obviously, the system Hamiltonian Ĥ commutes with the interaction Hamilto-
nian in (1). Hence the damping described by the Hamiltonian (1) is a kind of phase damping. The
coupling between the system and the reservoir which we adopt here is also of importance in the
back-action-evading and quantum-nondemolition schemes [50], and in the study of decoherence
of the quantum system [51–53].

From Louisell’s approach [54], under the Markovian approximation we can obtain the follow-
ing master equation describing the phase damping in the interaction picture (see Appendix A):

ˆ̇S(t) = −γ′[Ĥ, [Ĥ, Ŝ(t0)]] + ∆ω[Ĥ, Ŝ(t0)]Ĥ − ∆ωĤ [Ĥ, Ŝ(t0)], (2)
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where Ŝ(t) is the reduced density operator of the system in the interaction picture, γ ′ and ∆ω
are constants which depends on the temperature and the spectral density of the reservoir, and are
given by

γ′ =
kT

h̄
lim
ω→0

J(ω)|C(ω)|2
ω

, (3)

∆ω = ih̄

∫ ∞

0

dω
J(ω)|C(ω)|2

2m(ω)ω2
, (4)

where J(w) is the spectral density of the reservoir. In the derivation of the master equation (2),
we have neglected the Lamb shift term.

It is easy to convert the master equation in the interaction picture (2) to that in the Schrödinger
picture with this form:

d

dt
ρ̂(t) =

1

ih̄
[Ĥ, ρ̂(t)] − γ′[Ĥ, [Ĥ, ρ̂(t)]] − ∆ω(Ĥ [Ĥ, ρ̂(t)] − [Ĥ, ρ̂(t)]Ĥ), (5)

which can be expressed as the following compact form:

d

dt
ρ̂(t) =

1

ih̄
[Ĥ, ρ̂(t)] − γ[Ĥ, [Ĥ, ρ̂(t)]], (6)

where we have let γ = γ ′ + ∆ω. This is the desired master equation for the reduced density
operator of the system in the Schrödinger picture under the Markovian approximation. This
equation has been solved for the resonant multi-photon JCM [35]. In what follows we shall
consider the exact solution of this equation for the two-mode JCM in the presence of Stark shift
with a detuning parameter in either a superposition state (SS) or a mixture state (SM).

Obviously, the master equation (6) has the same form as the Milburn’s equation [55] under
the diffusion approximation, but they come from completely different physical mechanisms. The
former originates from the phase damping, while the latter is form the uncontinuous unitary
evolution.

3 Analytic Solution for the nondegenerate bimodal multiquanta JCM with phase
damping

In this section, we shall consider a Hamiltonian model that consists of two modes interacting with
a three-level particle (atom or trapped ion) via Raman transition. We consider the nondegenerate
case in which pairs of photons with two different frequencies are created or annihilated. The
quantized radiation field is considered in the rotating wave approximation frame taking into
account the effect of Stark shift. The atomic levels have identical parities such that each dipole is
coupled with different modes of the field and to the set of intermediate states. If we assume that
the intermediate states do not admit dipole transitions between themselves and the interaction
field modes are far off-resonance from those intermediate states, then the particle can be seen as
an effective two-level system by means of adiabatic elimination of the intermediate state [56,57].
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The Hamiltonian for the system, in the rotating wave approximation, is written as:

Ĥ =
ω◦

2
σ̂z +

2
∑

j=1

ωj â
†
j âj + â†

1â1β1 | g >< g | +â†
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2
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k2

2
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1

2
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2
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+ β1n̂1 | g >< g | +β2n̂2 | e >< e | +λ(â†k1

1 âk2

2 σ̂− + âk1
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2 σ̂+), (h̄ = 1) (7)

where the detuning parameter ∆ = ω◦−k1ω1+k2ω2, âj (â†
j) and n̂j = â†

j âj are the annihilation
(creation) and number operators for the j-th mode, λ is the particle-field coupling constant, ω1

and ω2 are the field frequencies for the two modes, ω◦ is the transition frequency of the particle
(atom or trapped ion), σ̂z is the population inversion operator, and σ̂± are the ‘spin flip’ operators
which satisfy the relation [σ̂+, σ̂−] = σ̂z and [σ̂z , σ̂±] = ±2σ̂±.

Now, we look for the exact solution for the density operator ρ̂(t) of the master equation (6)
taking into account the Hamiltonian (7).

For convenience, we introduce three auxiliary superoperators [58–62] Ĵ , Ŝ and L̂ defined by

exp(Ĵτ)ρ̂(t) =
∞
∑

k=0

(2τγ)k

k!
Ĥkρ̂(t)Ĥk (8)

exp(Ŝτ)ρ̂(t) = exp(−iĤτ)ρ̂(t) exp(iĤτ) (9)

exp(L̂τ)ρ̂(t) = exp[−γτĤ2]ρ̂(t) exp[−γτĤ2] , (10)

where the Hamiltonian Ĥ is given by (7).
It is straightforward to obtain the formal solution of the master equation (6) as follows:

ρ̂(t) = exp(Ĵ t) exp(Ŝt) exp(L̂t)ρ̂(0) , (11)

where ρ̂(0) is the density operator of the initial particle-field system.
We assume that the initial two modes of the field inside the cavity are in a superposition states

and the particle in its excited state | e >, so that:

ρ̂(0) =
1

A
[| α1, α2 >< α1, α2 | +r2 | −α1,−α2 >< −α1,−α2 |

+ r(| α1, α2 >< −α1,−α2 | + | −α1,−α2 >< α1, α2 |)]⊗ | e >< e |, (12)

where A = [1 + r2 + 2r exp(−2(α2
1 + α2

2))], with αj (j = 1, 2) are real. The parameter r
can assume the values −1, 0 and 1, which corresponds to an odd coherent state, a coherent state
and an even coherent state respectively. As we know, because the interference term in (12) have
a rapid decay to a SM when we include dissipation, so we want to see how different would be
the behaviour of the system if the input states are statistical mixture of the states | α1, α2 > and
| −α1,−α2 >, i.e.,

ρ̂(0) =
1

2
[| α1, α2 >< α1, α2 | + | −α1,−α2 >< −α1,−α2 |]⊗ | e >< e |, (13)
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with | α1, α2 >=| α1 > ⊗ | α2 > defined by

| α1, α2 >=

∞
∑

n1,n2=0

Qn1
Qn2

| n1, n2 >=

∞
∑

n1,n2=0

Qn1
Qn2

| n1 > ⊗ | n2 > , (14)

where Qnj
= e−α2

j/2 α
nj

j√
nj !

, (j = 1, 2).

In a two-dimensional basis for the particle the Hamiltonian (7) can be expressed as a sum of
(Ĥ◦), which is diagonal in this basis and (ĤI), which is not. It is easy to prove that (Ĥ◦) and
(ĤI) commute, i.e.

[Ĥ◦, ĤI ] = 0. (15)

Thus the representation now takes the form

Ĥ◦ =

[

Ŵ (n̂1 + k1, n̂2) + δ̂+(n̂1 + k1, n̂2) 0

0 Ŵ (n̂1, n̂2 + k2) + δ̂+(n̂1, n̂2 + k2)

]

(16)
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[

[ ∆
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]
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with

Ŵ (n1, n2 +k2) = ω1n̂1 +ω2(n̂2 +k2) , δ̂±(n1, n2 +k2) =
1

2
[β2(n̂2 +k2)±β1n̂1] . (18)

Similarly, the square of the Hamiltonian (7) can also be expressed as a sum of two matrices in
the form

Ĥ2 = Â + B̂ [Â, B̂] = 0 , (19)

where Â is diagonal in the form

Â =

[

Θ̂2(n1 + k1, n2) 0

0 Θ̂2(n1, n2 + k2)

]

(20)

and B̂ is given by

B̂ = 2λ

[
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†k1
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]

(21)

with

η̂(n1, n2 + k2) = [
∆

2λ
+

1

λ
δ̂−(n1, n2 + k2)],

ζ̂(n1, n2 + k2) = [Ŵ (n1, n2 + k2) + δ̂+(n1, n2 + k2)] (22)

µ̂2(n1, n2 + k2) = η̂2(n1, n2 + k2) + ν̂2(n1, n2 + k2) (23)
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ν̂2(n1, n2 + k2) = â†k1

1 âk1

1 âk2

2 â†k2

2 =
n̂1!

(n̂1 − k1)!

(n̂2 + k2)!
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(24)

and

Θ̂2(n1, n2 + k2) = ζ̂2(n1, n2 + k2) + λ2µ̂2(n1, n2 + k2). (25)

For convenience, we introduce the auxiliary operator ρ̂2(t) defined by

ρ̂2(t) = exp(Ŝt) exp(L̂t)ρ̂(0)

= exp(−iĤI t) exp(−γtB̂)ρ̂1(t) exp(−γtB̂) exp(iĤI t). (26)

The auxiliary operator ρ̂1(t) for the initial condition (13) defined by:

ρ̂1(t) =

[

| Ψ̂+(t) >< Ψ̂+(t) | + | Ψ̂−(t) >< Ψ̂−(t) | 0

0 0

]

, (27)

where

| Ψ̂±(t) >=
1√
2

exp

[

−γtΘ̂2(n1 + k1, n2)

]

exp[−iζ̂(n1 + k1, n2)t] | ±α1,±α2 > . (28)

While for the initial (12) the operator ρ̂1(t) defined by:

ρ̂1(t) =

[

[| Ψ̂+(t) > +r | Ψ̂−(t) >][< Ψ̂+(t) | +r < Ψ̂−(t) |] 0

0 0

]

(29)

with
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1√
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[

−γtΘ̂2(n1 + k1, n2)

]

exp[−iζ̂(n1 + k1, n2)t] | ±α1,±α2 > . (30)

The powers of the operator B̂ can be written as

B̂2k =
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2k 0
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2k
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1 âk2

2
[2λζ̂2µ̂2]2k+1
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 (32)

then we can write the operator exp[−γtB̂] in the form

exp[−γtB̂] =





X̂1(t) − η̂1
Ŷ1(t)
µ̂1

−âk1

1 âk2

2
Ŷ2(t)
µ̂2

− Ŷ2(t)
µ̂2

â†k1

1 â†k2

2 X̂2(t) + η̂2
Ŷ2(t)
µ̂2



 , (33)

where

X̂2(t) = cosh[2λtγζ̂2µ̂2], Ŷ2(t) = sinh[2λtγζ̂2µ̂2]. (34)
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Similarly, we can write the operator exp[−iĤIt] in the two-dimensional basis for the particle as

exp[−iĤIt] =





Ĉ1(t) − iη̂1
Ŝ1(t)
µ̂1

−iâk1

1 âk2

2
Ŝ2(t)
µ̂2

i Ŝ2(t)
µ̂2

â†k1

1 â†k2

2 Ĉ2(t) + iη̂2
Ŝ2(t)

µ̂2



 (35)

with

Ĉ2(t) = cos[λtµ̂(n1, n2 + k2)] and Ŝ2(t) = sin[λtµ̂(n1, n2 + k2)]. (36)

Then,

exp[−iĤIt] exp

(

−γtB̂

)

=





R̂1(t) − η1
V̂1(t)
µ̂1

−âk1

1 âk2

2
V̂2(t)
µ̂2

− V̂2(t)
µ̂2

â†k1

1 â†k2

2 R̂2(t) + η2
V̂2(t)
µ̂2



 , (37)

where

R̂2(t) = Ĉ2(t)X̂2(t) + iŜ2(t)Ŷ2(t), V̂2(t) = Ĉ2(t)Ŷ2(t) + iŜ2(t)X̂2(t). (38)

Note that in the above equations (32–38), we have used the subscript 1 instead of (n1 + k1, n2)
and 2 instead of (n1, n2 + k2).

Now, we can obtain an explicit expression for the operator ρ̂2(t) for the two initial (13) and
(12) as follows:

Substituting (27) and (37) into (26), we obtain an explicit expression for the operator ρ̂2(t)
for the initial (13) as follows:

ρ̂2(t) =

[

Ψ̂+
11(t) + Ψ̂−

11(t) Ψ̂+
12(t) + Ψ̂−

12(t)

Ψ̂+
21(t) + Ψ̂−

21(t) Ψ̂+
22(t) + Ψ̂−

22(t)

]

, (39)

where we have used the following symbol

Ψ̂±
ij(t) =| Ψ̂±

i (t) >< Ψ̂±
j (t) | (i, j = 1, 2) (40)

with

| Ψ̂±
1 (t) >=

[

R̂(n1 + k1, n2, t) −
∆

2λ

V̂ (n1 + k1, n2, t)

µ̂(n1 + k1, n2 + k,t)

]

| Ψ̂±(t) > (41)

| Ψ̂±
2 (t) >= −â†k1

1 â†k2

2

V̂ (n1 + k1, n2, t)

µ̂(n1 + k1, n2 + k,t)
] | Ψ̂±(t) >, (42)

where | Ψ̂±(t) > is given by (28). Also by Substituting (29) and (37) into (26), we obtain an
explicit expression for the operator ρ̂2(t) as follows:

ρ̂2(t) =

[

Ψ̂11(t) Ψ̂12(t)

Ψ̂21(t) Ψ̂22(t)

]

, (43)
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where we have used the following symbol

Ψ̂ij(t) =| Ψ̂i(t) >< Ψ̂j(t) | (i, j = 1, 2) (44)

with

| Ψ̂1(t) >=

[

R̂(n1 + k1, n2, t) − η̂1
V̂ (n1 + k1, n2, t)

µ̂(n1 + k1, n2)

]

[| Ψ̂+(t) > +r | Ψ̂−(t) >] (45)

| Ψ̂2(t) >= −â†k1

1 âk2

2

V̂ (n1 + k1, n2, t)

µ̂(n1 + k1, n2)
][| Ψ̂+(t) > +r | Ψ̂−(t) >], (46)

where | Ψ̂±(t) > is given by (30). By using the definition of the superoperator Ĵ , it is straight-
forward to obtain the action of the operator exp(Ĵ t) on the density operator ρ̂2(t) as follows
[58–62]:

ρ̂(t) =

∞
∑

k=0

(2γt)k

k!
Ĥkρ̂2(t)Ĥ

k =

[

ρ̂11(t) ρ̂12(t)
ρ̂21(t) ρ̂22(t)

]

, (47)

with

ρ̂ij(t) =

∞
∑

k=0

(2γτ)k

k!
M̂

(k)
ij (t), (48)

where the Hamiltonian Ĥ is given by (7) and the operator ρ̂2 is given by (39) and (43) for SM
and SS, respectively. Making use of this solution, we can evaluate mean values of operators of
interest. In what follows, we will use it to study the influence of the phase damping on dynamics
of the particle (atom or trapped ion) and the cavity field in the JCM.

4 Influence of the phase damping on nonclassical properties of the system

In this section, we investigate the influence of the phase damping on nonclassical properties of
the particle and the field in the multiquanta two-mode JCM in the presence of Stark shift with a
detuning parameter in either a superposition state (SS) or a mixture state (SM).

4.1 Population inversion

It is well known that in the JCM the quantum coherences which are built up during the interaction
between the field and the particle significantly affect the dynamics of the particle [11,63–66]. The
existence of the quantum coherences is the reason why one can observe collapses and revivals
of the population inversion of the particle. Now we evaluate the population inversion in the
multiquanta JCM. The population inversion is defined as the expectation value of the operator
σ̂z, i.e.

< σ̂z(t) >= Tr[ρ̂(t)σ̂z ]. (49)
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Fig. 1. Population inversion < σz(t) > as a
function of scaled time λt of the particle initially
prepared in the excited state and the field initially
prepared in a statistical mixture of coherent states
| α1, α2 > and | −α1,−α2 > (n̄1 = n̄2 = 25) for
various values of the parameter γ: (a) γ = 10−6 ,
(b) γ = 5 × 10−5 and (c) γ = 10−4.

Fig. 2. The same as in Fig. 1 but with the field ini-
tially prepared in a superposition state (even coher-
ent state).

By using equation (47), we can express equation (49) in the following form:

< σ̂z(t) >=

=

∞
∑

n1,n2,k=0

(2γt)k

k!

{

< n1, n2 | M̂
(k)
11 (t) | n1, n2 > − < n1, n2 | M̂

(k)
22 (t) | n1, n2 >

}

. (50)

If the field is initially prepared in a SM of states | α1, α2 > and | −α1,−α2 > (13), the
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Fig. 3. The same as in Fig. 1 but in the presence of
Stark shift β1/λ = β2/λ = 1.0.

Fig. 4. The same as in Fig. 2 but in the presence of
Stark shift β1/λ = β2/λ = 1.0.

population inversion will be:

WM (t) =

∞
∑

n1,n2=0

| Qn1
|2| Qn2

|2
µ2(n1 + k1, n2)

{

η2(n1 + k1, n2) + ν2(n1 + k1, n2)

× exp

[

−4λ2γtµ2(n1 + k1, n2)

]

cos 2λtµ(n1 + k1, n2)

}

. (51)

As we expected, the population inversion is the same as if the input field was a coherent state.
However, if the field is initially prepared in a superposition of coherent states SS (12), the popu-
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Fig. 5. The same as in Fig. 1 but with the presence
of Stark shift β1/λ = 0.5, β2/λ = 1.0.

Fig. 6. The same as in Fig. 2 but with the presence
of Stark shift β1/λ = 0.5, β2/λ = 1.0.

lation inversion will be:

WS(t) =

∞
∑

n1,n2=0

| Qn1
|2| Qn2

|2
µ2(n1 + k1, n2)

[1 + r(−1)n1+n2 ]2

[1 + r2 + 2r exp(−2(α2
1 + α2

2))]

{

η2(n1 + k1, n2)

+ν2(n1 + k1, n2) exp

[

−4λ2γtµ2(n1 + k1, n2)

]

cos 2λtµ(n1 + k1, n2)

}

. (52)

Now, we discuss the general behaviour of the population inversion for the multi-quanta JCM,
when the particle (atom or trapped ion) initially starts in the excited state and the field initially in
a mixture state SM or a superposition of coherent states SS (even coherent state (r = 1)).

The numerical result are shown in Figs. (1–6), for various values of the parameter γ, and
different values of the Stark shift parameter and fixed initial mean numbers of quanta n̄1 and n̄2

for two quanta (k1 = k2 = 1).
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In Fig. 1 and 2, we plot the the population inversion (in the absence of Stark shift (β1/λ =
β2/λ = 0)) for three values of the parameter γ with the fixed initial mean numbers of quanta n̄1

and n̄2 in the case of the exact resonance, i.e., the detuning parameter ∆
2λ = 0, when the field

initially in a mixture state SM and in a superposition of coherent states SS (even coherent state
(r = 1)), respectively. We see that for a superposition of coherent states SS (even coherent state
(r = 1)) (see Fig. 2), the revival time will be approximately half of the revival time for the SM.
This an effect due to the interference between the two coherent states in the superposition, and
can be understood looking at the photon number distribution of the initial fields.

In Figs. (3, 4) and (5, 6), we plotted the population inversion in the presence of Stark shift
(β1/λ = β2/λ = 1.0) and (β1/λ = 0.5, β2/λ = 1.0), respectively.

In the case described in Figs. (3, 4), the Stark shift parameter is (β1/λ = β2/λ = 1.0), which
corresponds to the case in which the two levels of the particle are equally strongly coupled with
the intermediate relay level. From these figures, we see the Stark shift leads to increasing of the
values of the atomic revivals of the population inversion (see Figs. 3, 4).

In Figs. (5, 6), we show the cases in which the two levels have unequal Stark shift (β1/λ =
0.5, β2/λ = 1.0). We see the Stark shift leads to decreasing of the values of the atomic revivals
of the population inversion (see Figs. 5, 6).

Also, these figures show that with the increasing of the parameter γ, i.e., with a more rapid
suppression of quantum coherence we can observe rapid deterioration of revivals of the popu-
lation inversion. Which means that the dacay of quantum coherence is due to the very specific
time evolution described by the master equation (6), i.e., due to the phase damping.

Obviously, when phase damping vanishes (without damping (γ = 0)), the population in-
version reduces to the well known expression for the population inversion in the off-resonant
non-degenerate multi-photon JCM governed by the von Neumann equation.

4.2 Oscillations of the number distribution

It is known that oscillations of the number distribution of the quanta in the JCM is a kind of the
nonclassical effects of the cavity field. To see the influence of phase damping on this kind of
nonclassical effects, we discuss statistics in the field modes. The reduced density operator of the
cavity field can be obtained by taking the trace of the total density operator ρ̂(t) over the atomic
states, that is ,ρ̂F = TrAρ̂(t). Then the probability distribution function for finding nj quanta in
the j-th mode is calculated from the formula

P (n1, n2 + k2; t) =

=

∞
∑

n1,n2,k=0

(2γt)k

k!

{

< n1, n2 | M̂
(k)
11 (t) | n1, n2 > + < n1, n2 | M̂

(k)
22 (t) | n1, n2 >

}

. (53)
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If the field is initially prepared in a SM of states (13), we find that

PM (n1, n2 + k2, t) =< n1, n2 | ρ̂F (t) | n1, n2 >

=
1

2
| Qn1

|2| Qn2
|2

{

1 +
η2(n1 + k1, n2)

µ2(n1 + k1, n2)

+
ν2(n1 + k1, n2)

µ2(n1 + k1, n2)
exp

[

−4λ2γtµ2(n1 + k1, n2)

]

× cos 2λtµ(n1 + k1, n2)

}

+
1

2
| Qn1−k1

|2| Qn2−k2
|2

{

1 − η2(n1, n2 + k2)

µ2(n1, n2 + k2)

−ν2(n1, n2 + k2)

µ2(n1, n2 + k2)
exp

[

−4λ2γtµ2(n1, n2 + k2)

]

cos 2λtµ(n1, n2 + k2)

}

. (54)

If the field is initially prepared in a superposition of coherent states (12), we find:

PS(n1, n2 + k2; t) =
1

2
| Qn1

|2| Qn2
|2 [1 + r(−1)n1+n2 ]2

[1 + r2 + 2r exp(−2(α2
1 + α2

2))]

×
{

1 +
η(n1 + k1, n2)

2

µ2(n1 + k1, n2)
+

ν2(n1 + k1, n2)

µ2(n1 + k1, n2)

× exp

[

−4λ2γtµ2(n1 + k1, n2)

]

cos 2λtµ(n1 + k1, n2)

}

+
1

2
| Qn1−k1

|2| Qn2+k2
|2 [1 + r(−1)n1−k1+n2−k2 ]2

[1 + r2 + 2r exp(−2(α2
1 + α2

2))]

×
{

1 − (η2)
2

µ2(n1, n2 + k2)
− ν2(n1, n2 + k2)

µ2(n1, n2 + k2)

× exp

[

−4λ2γtµ2(n1, n2 + k2)

]

cos 2λtµ(n1, n2 + k2)

}

, (55)

where | Qn1
|2 and | Qn2

|2 are the initial values for the distribution function given by equation
(16). We can use the time-dependent number distribution that is obtained in equation (54) to
evaluate some quantities relevant to the field statistics. For example, the mean number of quanta
in the i-th mode are found to be for the two cases:

< ni(t) >M = n̄i +
ki

2

∞
∑

n1,n2=0

| Qn1
|2| Qn2

|2 ν2(n1 + k1, n2)

µ2(n1 + k1, n2)

×
(

1− exp

[

−4λ2γtµ2(n1 + k1, n2)

]

cos 2λtµ(n1 + k1, n2)

)

(56)
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and

< ni(t) >S = n̄i +
ki

2

∞
∑

n1,n2=0

| Qn1
|2| Qn2

|2 [1 + r(−1)n1+n2 ]2

[1 + r2 + 2r exp(−2(α2
1 + α2

2))]

×
{

ν2(n1 + k1, n2)

µ2(n1 + k1, n2)

(

1 − exp

[

−4λ2γtµ2(n1 + k1, n2)

]

× cos 2λtµ(n1 + k1, n2)

)}

. (57)

From the above expressions, we see that the phase damping term in the master equation (6)
leads to the appearance of the decay factors exp[−4λ2γtµ2(n1 + k1, n2)] in (54–57), which are
responsible for the weakening of the oscillatory behaviour of the mean number of quanta in the
field, where it weakened with the increase of the phase damping parameter γ.

Obviously, when the phase damping vanishes, i.e, γ = 0, eqs. (54–57) reduce to the usual
expressions of the oscillations of the number distribution and the intensity of the cavity field
governed by the Schrödinger dynamics.

4.3 Conclusion

In this paper we have studied the phase damping for two-mode JCM in the presence of Stark shift,
by introducing a master equation (6) describing phase damping under the Markovian approxi-
mation. We have considered an effective Hamiltonian (7) describing the interaction between a
two-level particle (atom or trapped ion) and a two-mode field through multiquanta. An analytic
solution for the master equation for the multiquanta model with detuning has been obtained. The
density operator is then used to study the influence of the phase damping and Stark shift on non-
classical properties in the JCM, such as population inversion and photon number statistics. It is
shown that phase damping suppresses nonclassical effects of the cavity field in the JCM, also
we see the Stark shift leads to increasing of the values of the atomic revivals of the population
inversion in SM and SS when the two levels of the particle are equally strongly coupled with the
intermediate relay level, while it leads to decreasing of the values of the atomic revivals of the
population inversion when the two levels have unequal Stark shift.

Appendix A

In this appendix, we present the derivation of the master equation (2) in the interaction picture.
For convenience, we rewrite the total Hamiltonian (1) in the form

ĤT = Ĥ + ĤR + V̂ , (A.1)

where

ĤR =
∑

i

h̄ωib̂
†
i b̂i, V̂ = Ĥ

3
∑

i=1

F̂i, (A.2)

with

F̂1 = h̄
∑

i

Cib̂i, F̂2 = h̄
∑

i

Cib̂
†
i , F̂3 = h̄2Ĥ

∑

i

|C2
i |

2miω2
i

, (A.3)
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where b̂i and b̂†i are the boson annihilation and creation operators for the reservoir.
The total density operator for the system and the reservoir satisfies the Liouville-von Neuman

equation in the interaction picture [54],

dχ̂

dt
= − i

h̄
[V̂ (t), χ̂], (A.4)

which can be expressed as the following equivalent integral equation:

χ̂(t) = χ̂(0)+
1

ih̄

∫ t

t0

[V̂ (t′), χ̂(0)]dt′+

(

1

ih̄

)2 ∫ t

t0

dt′
∫ t′

t0

dt′′[V̂ (t′), [V̂ (t′′), χ̂(t′′)]]. (A.5)

Tracing both sides of the above equation over the reservoir, we obtain the change in the reduced
density operator s = TRRχ̂ for the system

Ŝ(t) − Ŝ(t0) =
1

ih̄

∫ t

t0

dt′TrR[Ĥ
∑

i

F̂i(t
′), Ŝ(t0)f̂(t0)]

+ (
1

ih̄
)2

∫ t

t0

dt′
∫ t′

t0

dt′′TrR[V̂ (t′), [V̂ (t′′), χ̂(t′′)]], (A.6)

where we assumed that the system and reservoir are uncoupled, and χ̂(0) can be factorized as
χ̂(0) = Ŝ(t0)f̂(0) at the initial time.

We assume that the reservoir is initially in thermal equilibrium at a temperature T . Then it is
straightforward to see that

< F̂1 >R=< F̂2 >R= 0, < F̂3 >R= ∆ωĤ, (A.7)

where

∆ω = ih̄

∫ ∞

0

dω
Ĵ(ω)|Ĉ(ω)|2

ω
, (A.8)

where Ĵ(ω) is the spectral density of the reservoir.
The total density operator [54,55] can be expressed as

χ̂(t) = Ŝ(t)f̂(t) + χ̂c(t), (A.9)

where χ̂c(t) represents the correlation between the system and the reservoir described by the
density operator f̂(t) at time t. The reservoir assumption allows as to take f̂(t) = f̂(0). Then
(A.6) becomes

Ŝ(t) − Ŝ(t0) = −(t − t0)∆ω(Ĥ [Ĥ, Ŝ(t0)] − [Ĥ, Ŝ(t0)]Ĥ) + (
1

ih̄
)2

∫ t

t0

dt′
∫ t′

t0

dt′′

(

TrR[V̂ (t′), [V̂ (t′′), Ŝ(t′′)f̂(0)]] + TrR[V̂ (t′), [V̂ (t′′), χ̂c(t
′′)]]

)

, (A.10)
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where the second term is a higher-order than the first one and can be neglected for the weak
damping case [67]. After dropping the second term in (A.10), differentiating both sides of (A.10)
with respect to time, we have the equation

ˆ̇S(t) = −∆ω(Ĥ[Ĥ, Ŝ(t0)] − [Ĥ, Ŝ(t0)]Ĥ)

+

(

1

ih̄

)2 ∫ t

t0

dt′TrR[V̂ (t), [V̂ (t′), Ŝ(t′)f̂(0)]], (A.11)

where the t′ integration is over the correlation function of the reservoir, which are characterized
by a time which is short but finite.

Substituting the interaction term V̂ =
∑

i ĤF̂i with a change of variable t′ = t − τ into
(A.11), neglecting the terms with the order of h̄4, under the Markovian approximation Ŝ(t′) =
Ŝ(t), we can rewrite (A.11) as

ˆ̇S(t) = −∆ω(Ĥ[Ĥ, Ŝ(t0)] − [Ĥ, Ŝ(t0)]Ĥ) − [Ĥ, [Ĥ, Ŝ(t0)]]

2
∑

i,j=1

∫ ∞

0

dτŴij (τ)

− [Ĥ, Ŝ(t0)]Ĥ

2
∑

i,j=1

∫ ∞

0

dτ [Ŵij (τ) − Ŵ ′
ij(τ)], (A.12)

where the correlation function of the reservoir are defined by

Ŵij(τ) = TrRFi(t)Fj(t − τ)f(0) =< Fi(t)Fj(t − τ) >R, (A.13)

Ŵ ′
ij(τ) = TrRFi(t − τ)Fj(t)f(0) =< Fi(t − τ)Fj (t) >R, (A.14)

where all operators are in the interaction picture. In derivation of (A.12), we used Wi3(τ) =
W3i(τ) = W ′

i3(τ) = W ′
3i(τ) = 0 for i = 1 and 2. The correlation functions needed in (A.12)

were calculated in Ref. [54].
It is not difficult to see that under the higher-temperature approximation, in which the tem-

perature is assumed high enough to so that the Markovion approximation is valid, (A.12) reduces
to

Ṡ(t) = −γ′[Ĥ, [Ĥ, [Ŝ(t0)]] + ∆ω[Ĥ, Ŝ(t0)]Ĥ − ∆ωĤ [Ĥ, Ŝ(t0)] , (A.15)

which is the master equation in the interaction picture, where we have neglected the Lamb shift
term, and γ′ is a constant which depends on the temperature and the spectral density of the
reservoir, which given by (3).
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