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A generalization of the Kronig-Penncy problem is put forward with the potentizl encrgy
Viz) = v, 8(z — ja), v > 0. A periodic multi-layer ... ABABABA. .. is considered:
layers A of thickness a are intercalated belween fayers B of much smaller thickness. In this
superlattice, A and B symbolize, respectively, narrow-gap semiconductor layers and barrier
layers, The conduclion band of the semiconductor A is defined by the dispersion function
E(k) which was derived in the Kane two-band theory. Owing to the non-zero value of the
parameter =y, the clectron cnergies inside the interval corresponding to the conduction band
of the semiconductor A are organized in minibands separated by forbidden gaps. With £(k)
taken in the Kane form, the dispersion law £ = E{k) is non-parabolic if £y (the width of the
forbidden gap of the semiconductor A) is finite. This non-parabolicity affects the positions
and widths of the minibands. If Eg tends to infinity, the original Kronig-Penney problem is
recovered. If 5, decreases, the density of the minibands increases.

PACS: 42.25.Dd, 71.20.Nr, 73.21.Cd

1 Introduction

The Kronig-Penney model [1, 2] belongs to text-book topics of the solid state theory. During the
past decade, this model has become up to date owing to the great progress in fabrication of perfect
semiconductor superlattices. For instance, the delta-doping proved to be a viable method for
production of single-crystalline semiconductor samples with a very precise periodic modulation
of the density of dopants [3-7]. In such a case, we may consider a given dispersion function
E(k) defining the conduction band of the pure semiconductor and add a periodic function V (z:)
generated by the defta-doping with a spacing a. In our paper, we write E(k) instead of E(k),
taking ky = k; = 0. (We omit the subscript z in &z b ={k|ifk; > Oand k= — |k{if k; < 0.)
As long as a is much greater than the semiconductor lattice constant, the conduction band is
split into narrow minibands separated by narrow gaps. Neglecting all interband matrix elements
of ¥{(z), we may rely upon the one-band Schriidinger-Wannier equation [8] for the stationary
envelope wave functions ¥, «(z),

E(—i0/0x)¢n k() + V(@)n,n(z} = En (k)b k(). m
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Here n means the miniband index. We define the function V' (z) as an array of delta-functions,

Viz) =) 8z — ja), @
3

with a constant -y > 0. The original Kronig-Penney problem concerns the approximation where
E(k) is taken as the quadratic function

h2k?
Epur(k) = % s (3)

m = const > 0. Then the dispersion law £ = E(k) of the conduction electrons is parabolic.

The parabolic approximation need not always be satisfactory. In the present paper, we want
to demonstrate that if the miniband index n is sufficiently high, the functions E, (k) can con-
siderably depend on the non-parabolicity of the dispersion law £ = E(k). Non-parabolicity
effects were also studied in some of our previous papers [10-14]. In [10-13], we dealt with the
Schrodinger-Wannier equation in which V (z) was defined as a single delta-function, V (z) =
v8(z). In [14], on the other hand, we have analyzed the resonance tunnelling in the case where
V(z) = 4(6(z — §a) + é(z + ja)]. Moreover, we have also formulated a general theorem in
[14] concerning the Schrodinger-Wannier equation with the function V(z) = Y 7z — ;)
involving arbitrary constants +; and ;. This theorem, being valid for £ > 0, says that if we are
interested in stationary solutions of the Schrédinger-Wannier equation with a quite general func-
tion V(z) composed of delta-functions, we may use a generat transformation directly converting
the result derived at first with E(k) = Epa.(k) to the result concerning any other dispersion
function E(k). (We have only to presume that there is a one-to-one mapping between E(k) and
Epac(k))

Following Fliigge [9], we call the function defined by formula (2) the Dirac comb.

The function E(k) is even, E{(k) = E(—k). We consider the lower boundary of the con-
duction band as the zero energy. Then E(k) > 0, E(0) = dE(k)/dk|k=o = 0. We denote the
effective mass of the conduction electrons as m:

1 &EEE)| 1
ROdR? |, m

>0.

In our calculations, we will confine ourselves to an interval (0, E) of electron energies, assuming
that E lies somewhere in the central part of the conduction band described by the function EX{k).
We require that the equation £ = E(k) has only one root k(&) in the interval (0, E) and that
dE(k)/dk > 0 fork > 0if0 < E(k) < E.

As an illustration, we juxtapose (in Section 3) the original Kronig-Penney result valid for the
quadratic dispersion function (3) with the result obtained with the Kane dispersion function

E, 222\
El(anc(k) = 75‘ [ (1 + n‘iEg ) - 1] . )

(Eg > 0 is the width of the forbidden gap.) The Kane function is particularly important in the
theory of narrow-gap semiconductors [15-19]. Cleasly, Exane(k) — Epae(k) if Eg — oo,
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2 General theory

The Hamilionian H(z) = E(~i0/0z) + v ¥, 8(z — ja) is invariant with respect to any trans-
lation ' = = — ja, 7 = 0,1, ..., so we may write its eigen-functions in the Bloch form

W,k (Z) = un k(Z) exp(ikz), (5)

where 1, 1 (z+a) = un i{z) and ~7/a < k £ 7/a. The wave functions have 1o be continuous
at the positions z; = ja of the deltas, so we write

¢'n.k(m)|:j+0 = ¢n,k(z)iz,~—0 = ¢’n.k($j) (6)

and
Y i (a) = exp(ika)yn +(0). )

The values 31y k(x)/02°|z; 40 and 3ty 1 (x)/0%* |z, ~a (for any chosen value of s =1, 2,
... ) have to satisfy the equalities

Yk (T)/ 02’ z=a 40 = exp(ika)8 i k() /02" |z=4a (8%)
P 1T}/ OT° | 2=a—0 = exp(ika)0° Yn i (x) /02" |z=—0 . 87)

Since we have chosen v > 0, all the eigen-energies E,(k) are positive. Let us take into
account some value £ > 0 and write

¥ k(z) = explicz) + C exp(~ikz)
for 0 € z < a, with & > 0 determined by the equation
E = E(x). )

Because & is equal to one of possible values of E,(k), the parameter s and the coefficient C
depend on n and k. Our main intent is to clarify the structure of the minibands. Therefore, we
may put away the formal question of the normalization of the eigen-functions )y, . (z). In regard
to equations (6) and {7), we can at once write down the equation

1+ C = exp(—ika) [exp(ira) + C exp(—ixa)|. (10)

However, we can also formulate a relation between right-hand and left-hand derivatives of ¢, & ()
at z = 0. For this purpose, we define the group velocity v(k) = i~ '@ B(k)/ 8k and, substituting

— i8/8x for k, the operator v(—id/8z). In [10], we have proved by the Fourier analysis (having

treated the single delta-barrier case, but a generalization allowing the presence of an arbitrary

number of delta-barriers was presented later on in [14]), the equality

— ifi [u(—i8/8z)n k(x)z=10 — v(—10/OT)1hn i (Z)|z=—0] + 2¥1uk(0) = 0.
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From this equality, respecting eqs. (8+) and (8~), we derive the equation
— i {v(x) + C v(—~r) = exp(—ike)[v(r)exp(ira) + C v(~~)exp(—ixa)]}
+29(14+C)=0.
This equation, as v(—k) = — v(k), can be rewritten in the form
—ihu(s)[1 = C — exp(—ika){exp(ira) — C exp(—ika)]] + 2y 1+ C)=0. (1)
Equations (10) and (11) give the equation

sin{ka)
(K}

In particular, if E(k) = Ep. (k), equation (12) is reduced to the well-known Kronig-Penney
equation

cos(ka) = cos(ka) + Ny (12)

cos(ka) = cos(ka) + my smiﬁa) : (12P*7)

The r. h. sides of egs. (12) and (12P*F) are unique functions of the variable k. Using the
dimensionless variable

X =Ka, (13)
we write

Z(r) = Alx k) = cos(x) + by %’% , (14)

Zonels) = Apa(3,) = costo) + mey 20 (140)
The identity

A R) = A () /) a1s)

manifests our theorem formulated in [14].

3 Results for E(k) = Ep.. (k) and for E(k) = Egano(k)

We define the dimensionless parameter

p="7 (16)
e
and the dimensionless function
B(x) = == u(r) . an

fi
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Then equation (12) reads

sin{x)
P(x)
Recall that vpy (&) = fik/m. Thus Spar(x) = x.

Moreover, considering the Kane dispersion function (4), we define the dimensionless non-
parabolicity parameter

cos(ka) = cos(x) + (18)

maz
T =T E;. (19)

In order to typify a realistic value of 17, for conduction electrons in a semiconductor superlattice,
let us consider the parameters for GaAs at 300 K: B = 1.43 eV and m/mg = 0.07 [20]. Then,
with the superlattice constant a = 28 nm, we obtain n; = 1000. For

he 222\ "Y?
U[(ane(’i) = ; (l + THEE ) ) (20)

we obtain the function

ng -1/2
Prane(X) = x (1 + ) : @n
e

Clearly, Danc(X) goes over into Py, (x) if g — co. Ther. h. side of eq. (18),

€00 = Zx/a) = Al x/e) = cos() +.6 S @
in the two cases in question is specified as follows:
CPGI‘(X) - COS(X) + 4 sm(’x) g (zzpur)
042N\ /2 oo,
Cl(nnc(x) - COS(X) + 0 (1 + %) %X_) . (22!(nne)
L4

The functions Cpar () and Cicanc(x) are shown in Fig. 1 for 8 = 10 and for 7 = 20. The shuded
regions in Fig. 1 correspond to the allowed values of y = xa.

According to eq. (18), it is sufficient to take the values of & from the positive half (including
the zero point) of the first Brillouin zone: 0 < &k < w/a. Having in mind the nth shaded
region in Fig. |, we write x = x..(ka), since the roots ¥ = x,, of eq. (18) depend on the
dimensionless variable ka. Clearly, the limes superior of x, is equal 1o Xn(7) = nr for odd
7 and to x»(0) = n7 for even n. If n is odd, the limes inferior of y,., being equal to x2(0),
is to be calculated from the equation ¢(x,.(0}) = 1. On the other hand, if n is even, then the
limes inferior of xy, being equal to x, (), fulfills the equation ¢(xn (7)) = — 1. To avoid any
ambiguity, we postulate the identification of x,,(0) if n is odd (of x,,{7) if n is even) with the
nearest root lying on the left to the value nx.
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Fig. 1. Ilustration of the Kronig-Penney-type calculation of the minibands. The cross-sections of the
horizontal straight lines cos(ka) = const with the cosresponding oscillating curve define the dependences
Kk = Kn(k) (xn = Kna). The dashed vertical straight lines correspond to x = #n, m = 0,1,2, ...
Respectively, the upper part and the lower part of the figure correspond to the values 8 = 10, ng = oo and
8=10,ng =20.

With this definition of the miniband number n, we may consider the roots of the equations
cos(ka) = Cpar(x) and cos(ka) = Ciane(x) as uniquely defined functions of the variable ka;
we denote them, respectively, as Ypar » (k) and XKane »(ka).

In analogy to relation (19), we define the dimensionless energy functions

X2 par
T]pn.r(x) = ? [ (2374}

WKnnc(X) = T;_g [(1 + QXZ/ng)l";z i 1] R (23Kunn)

When replacing X by Xpar n{ka) and Ykane (ka) in the corresponding functions 7pa:(x) and
TKane (X ), We obtzin the dispersion functions

€par n(ka) = Epnr(Xpnr n(kﬂ-)) (241"“')

and
€Kane n(ka) = gl(mle(xl(nne n(ka)) (24Kane)

for the minjbands.
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Fig. 2. The plot (in arbitrary units) of the energy versus wave vector obtained from calculations with
=10, g = 1000. The r. h. part of the figurc exhibits the miniband dispersion functions in the reduced
BZ scheme. The ‘wavelets’ in the higher (in the lower) column show the functions epar » (ka) (the functions
€Kane n(ka)). The L. h. part of the figure exhibits these miniband dispersion functions in the extended BZ
scheme. In the latter, the ‘wavelets’ due to the minibands with even indices arc mirror images (with respect
to vertical axes) of the corresponding ‘wavelets' in the reduced BZ scheme.

These functions are shown in Fig. 2. To exemplify that the value 8 = 10 for 7, = 1000 is
acceplable, let us replace the delta-function pseudopotential yd(z) by a rectangular barrier of
height V4 and width w so that 4 = Vyw. Then, from formulae (16) and (19), we obtain the
relationship

Vo
‘BHE_"%_ (25)
a Ly

When taking, for instance, w = a/20, V4 = Eg/5, we find that 8 = 10 for 7z = 1000. (We have
used another value of 7 in Fig. 1 in order to make this figure more expressive.) The r. h. part of
Fig. 2 manifests the reduced Brillouin zone scheme. In the I. h. part of Fig. 2, we have plotted the
miniband functions within the framework of the extended Brillouin zone scheme as well. In the
extended Brillouin zone scheme, the nth miniband corresponds to the interval (n — 1)7 < ka <
nw. The upper curve (the lower curve) in this interval shows the function epar n(ka — (n — 1)7}
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(the function exaye n(ka — (n — 1)7)) if nis odd and the function epar » (17 — ka) (the function
EKane n (1T — ka}) if n is even. The two columns in . h. part of the figure exhibit the reduced
Brillouin zone scheme: the functions epq; n(ka) and ekune n(ka) are shown in the higher and in
the lower column, respectively (n = 1,2,...).

4 Concluding remarks

The generalization of the Kronig-Penney problem, as we have presented it in this paper, has
resulted from our former derivation [10, 14] of the conditions which had to be posed on the
eigen-functions ¥ (r) of the Schrédinger-Wannier equation with V{(z) = X, 1z = z;).
These conditions were derived under the assumption that £ > 0. Although lhe model of the
Dirac comb is certainly an overidealization if we have in mind actually existing semiconductor
superlattices, our calculations have confirmed, in a simple quantitative way, that the band non-
parabolicity can very noticeably affect not only the positions but also the shapes of the miniband
dispersion functions e, (ke) = {ma?/h%) E, (k).

It is not surprising that the curves £ = E'K.,,,,, #{k} are shifted downwards against the curves
& = EpLur n(k). The shift for k = #/a (in the reduced Brillouin zone scheme) is equal to

Epnr n (W/a) - EKaue ,.(1r,’a) = Epnr(n"r/a) - Ei(unc(n”/a) . (26)
Formula (26) follows from the identity
Eq(m/a) = E(nw/a). an

On account of eq. (27), it is natural to define a function ¢™(n) of the discrete variable n
interpreted as ihe density of minibands:

1

mbpy = & 5 28
9 = 2 BERIOF |y .
For the dispersion laws dealt with in this paper, we have got the functions
nb _ ma® 1
g:-mr( )_ ";_'2— =n (2878
and
mb V 1+ 2"2”’2/175 28Knne
9" (n) = -""'hz — ( )
Clearly, the asymptotic values gifh, . (co) and g (co) are qualitatively different:
Ipar(@2) =0, @97
m ma 1 e Kane
Ianol(00) = - ('T";) . (297°7)
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This difference is, of course, due to the fact that Epa, (k) ~ k2 but Excapo(k) ~ k for k — oco.

Our final remark concerns forbidden gaps between the minibands, Let AE™ be the width
of the allowed nth miniband corresponding to the dispersion law £ = E(k) and let AE™ be
the width of the forbidden gap just touching the nth allowed miniband from below. Then we
introduce the ratio

AE®
empty — n
P = REm T A (30
determining the percentage of forbidden energy values in the interval of the width
AET + AE™ = E(nr/a) — E((n = 1)n/a) . 3n

centred in the value }[E(nw/a) + E{(n — 1)7/a)]. From obvious reasons, we call *mPt(n)
the factor of emptiness of the energy spectrum near the nth miniband. When using the dimen-
sionless functions epuy n(ka) and egane n{ka) (defined in the reduced Brillouin zone scheme,
cf. formulae (24P*7), (24K3n¢)), we can write, respectively, the factor of emptiness f;,‘f;P‘Y( n),
FroPt¥(n) as follows.

For odd n:

empty( ) €par n(o) — Epar n—l(ﬁ)
Pﬂl' €par "(77) = Epar n—1 (0)

'

femply( ) _ €Kane rl(O) — €Knne n—1 (0)
LT €Kane n(ﬂ') — €Kane n—l(o)
For even n:

cmpty( ) Epar ﬂ("r) — Epar ﬂ—l("T)
pnr epm’ n(O) — Epar 11—1(") ’

empty( ) €Kane n(ﬂ') — EKane n—l(’r)

Kune - €Kane n(O) — €Kana 1:—1(7r) '
These functions of the integer variable n are plotied in Fig. 3. Extending formally the energy
interval (0, E} to infinity, we may say that the asymplotic value of f**P% (n) for E(k) = Epqr(k)
is equal to zero,

foa"¥(o0) =0. (320

To calculate the asymptotic value fi;""*(o0), let us assume, for instance, that n is odd. With
n = 2p+ 1 (where p runs over non-negative integer values), when taking p — oo, we obtain the

equation

2 1/2
1 = cos [XKane 2p+l(0)] + ﬂ("_) sin [X](ane 2p+1(0)] [}
{1

from which
.

!

23"
XKane 2p+1(0) = 2p# 4 2 arctan [ﬁ(ﬂ—)
e
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Fig. 3. The illustration of the ‘emptiness’ of the miniband spectra. In each pair of the points for any
value of n, the lower (upper) poini corresponds 1o the case when E(k) = Epuc(k) (when E(k) =
Exunc(k)) with 8 = 10, 5z = 1000. The dashed line corresponds to the asymptotic value fForY (co) =
(2/) arctan [(2/75)"/%].

We could also take even values of n, obtaining the same value fE°PY¥

e (00). In the calculation of
XKane 2p(T), we may employ the equation

o\ /2 )
~ 1 = 05 [XKanc 2p(7)] + B (U—) sin [XKane 2p{(T)] ,
|'3
from which

9\ /2
Xicane 2p(m) = (2p-1)7m + 2 arctan[ﬁ(n—) ] .
B

Asymptotically

i) » B [(2) 5 - 1+ 01/
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Hence, with n = 2p 4 1, we obtain the result

empty
Kane

(00) = lim €Kane 2p+l(0) — €Kanc 2p(0) —
P = ®© €Kane ’.‘p+1(77) — ©Kane 2p(0)

_ ) 1/2
XKane 2p41 (0) XKane -P(O) — 2 arctan I:(E) ] i (32KBIIEJ
XKnne '.7p+l(7r) = XKane 2p(0) k B

a5 XKane 2p(0) = 2pm and XKane 2p+1(7) = (2p + L),

When comparing formulae (32P*%) and (32%*"¢) (or when looking at Figs. 2 and 3), one sees
that the spectrum of the minibands is much ‘emptier’ for E(k) = Exane(k) than for E(k) =
Eor(k). The striking distinction consisting in the non-zero value of fifnbe¥(co) and the zero
value of fomP'¥(oo0) is attributed to the distinction in the asymptotic behaviour (for k — co)
of the corresponding dispersion functions. (Indeed, for k — co, we may deem the dependence

Exune(k) ~ k as qualitatively different from the dependence Epar(k) ~ £2.)
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