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RELATIVISTIC MEAN-FIELD DESCRIPTION OF Sn ISOTOPES
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Recently proposed BCS approach with a discretized continuum (by enclosing the nucleus
in a spherical box) for the calculation of pairing energy for the drip-line nuclei within the
framework of relativistic mean-field (RMF) theory is applied to the description of the ground
state properties of Sn isotopes. The TMA parameter set is used for the effective mean-field
Lagrangian with the nonlinear terms for the sigma and omega mesons. The results for the two
neutron separation energies, and proton and neutron rms radii are shown to be in excellent
agreement with the available experimental data and with the recent calculations using the
relativistic Hartree-Bogoliubov (RHB) theory. Also, the calculated neutron single particle
pairing gaps are found to be in agreement with the RHB and other mean-field calculations.

PACS: 21.60.Jz, 27.90.+b, 21.10.Dr, 21.10Tg

1 Introduction

The physics of exotic nuclei far from the line of β-stability constitutes one of the exciting areas
of the current nuclear structure studies. As the main characteristics [1] for these nuclei, it is
found that the neutron drip-line moves much farther away from the valley of β-stability, and
the neutron separation energy for the last neutron is very small (Sn < 1 MeV) leading to a
loosely bound system. Due to this weak binding and large spatial dimension of the outermost
nucleons, the role of continuum states and their coupling to the bound states becomes exceedingly
important, especially for the pairing energy contribution to the total binding energy of the system.
Theoretical investigations for the ground state properties of such neutron rich nuclei have been
carried out earlier within the frameworks of Hartree-Fock (HF) + BCS + resonant continuum [2],
the Hartree-Fock-Bogoliubov (HFB) [3], and the RHB [4] theories. Also, a detailed comparative
study of the HFB approach with those of the HFB based on box boundary conditions, and the
HF + BCS + Resonant continuum approach mentioned above has been carried out in the context
of drip line nuclei with an application to the neutron rich Ni isotopes by Grasso et al. [5].

Recently we have proposed [6] a fast BCS approach to incorporate the important contribution
of single particle states to the calculation of pairing energies within the framework of relativistic
mean-field (RMF) theory. In this approach the continuum is replaced by discretized positive
energy states generated by enclosing the nucleus in a finite box [7]. The size of the box is chosen
to be sufficiently large to enclose the nucleus and the proton and neutron density distributions
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such as to provide convergence of the calculated results. From the outset it is mentioned that
this procedure at best is expected to incorporate some of the main features of the continuum,
especially near the Fermi surface in an approximate way. Thus the contribution to the pairing
energy for a single particle sates j is obtained by solving self consistently the state dependent
gap equation for the gap energy ∆j . In our calculations we have employed a δ-function form of
the pairing interaction for the sake of simplicity. It is found [6] that the resonant states which
are not far away from the Fermi energy play important role and indeed contribute appreciably
to the pairing energy. The pairing energy itself is known to be crucial for the description of
loosely bound neutron rich systems. Indeed from the self consistent solution of the gap equation
one observes that apart from the resonant states and a few of the single particle states near the
Fermi surface, all other states in the continuum away from the Fermi level acquire only vary
small values for the gap energy ∆j . The validity of our present approach has been demonstrated
earlier [6] by its application to the ground state properties of the entire chain of Ni isotopes.

In continuation to the above mentioned studies, we have further applied our RMF approach
to investigate the ground state properties of the Sn isotopes. The results for the two neutron
separation energies and the rms proton and neutron radii for the entire chain of the Sn isotopes
presented here are shown to be in excellent agreement with the available experimental data and
with other mean-field calculations, especially that of the RHB approach [4]. Further it is shown
that the calculated neutron single particle pairing gaps for the occupied states, and the neutron
density profiles from our RMF calculations have values similar to those obtained in the RHB
calculations [4] using the NL3 effective mean-field Lagrangian whereby the pairing correlations
are described by the pairing part of the finite range Gogny interaction. Our conclusions in fact
are very much in line with the recent results of Grasso et al. [5] wherein it has been shown that
the BCS approach provides a good approximation to the more complete Bogoliubov calcula-
tions even near the drip lines. Extending this result of ref. [5] to the relativistic approach, it
is reasonable to infer that the RMF + BCS results are likely to be close to those of the RHB
calculations [4].

2 Theoretical Formulation and Model

Our RMF calculations have been carried out using the model Lagrangian density [8–13] with
nonlinear terms both for the σ and ω mesons, and is given by [13]

L = Ψ̄[ıγµ∂µ −M ]Ψ
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where the field tensors, H,G and F for the vector fields are defined through

Hµν = ∂µων − ∂νωµ
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The symbols M , mσ, mω, and mρ, are the mass of nucleon, and that of the σ, ω, and ρ mesons,
respectively. Similarly, gσ, gω, gρ and e2/4π = 1/137 are the coupling constants for the differ-
ent mesons, and the photon, respectively. For the σ meson in the Lagrangian density (1), the
nonlinear potential is assumed to have the form [12]
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where g2 and g3 are the self coupling constants. The self coupling term for the ω meson intro-
duced in ref. [13] has a quartic form and is given by

V (ω) =
1

4
c3(ωµω

µ)2 . (3)

Introduction of such a nonlinear coupling term has been shown to yield a vector potential having
main features similar to that of the vector potential obtained [14] in a relativistic Brueckner-
Hartree-Fock (RBHF) description. In the present treatment we restrict our studies to the case of
spherical mean fields. In this case the wave function for the nucleon can be written as [15]

ψα =
1

r
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)

, (4)

where the normalization condition is given by
∫

dr {|Gα|2 + |Fα|2} = 1 . (5)

Here Gα and Fα denote the radial wave functions for the upper and lower components, respec-
tively, and the symbol Yjαlαmα has been used for the spinor spherical harmonics. With this wave
function, the final expressions for the various densities are simplified and can be written in a
compact form [8]. Similarly, one obtains simple coupled equations for the nuclear radial wave
functions Fα and Gα amenable easily to numerical evaluations [8].

The set of parameters appearing in the effective Lagrangian (1) have been obtained in an
extensive study [13] which provides a reasonably good description for the ground state of nuclei
and that of the nuclear matter properties. This set, termed as TMA [13], has an A-dependence
and covers the light as well as medium heavy nuclei from 16O to 208Pb. The parameter val-
ues are as given below. The mass of nucleon, and that of sigma, omega and rho mesons are,
respectively, M = 938.9 MeV, mσ = 519.151 MeV, mω = 781.950 MeV, mρ = 768.100
MeV. The effective strengths of the coupling between various mesons and nucleons have val-
ues gσ = 10.055 + 3.050/A0.4, gω = 12.842 + 4.644/A0.4, gρ = 3.800 + 4.644/A0.4. The
nonlinear coupling strengths of the sigma meson are given by g2 = −0.328 − 27.879/A0.4

fm−1, and g3 = 38.862 − 184.191/A0.4, whereas the self coupling of the omega field has the
strength c3 = 151.590−378.004/A0.4. As mentioned above, we have used the δ-function force,
V = −V0 δ(r) for the calculation of pairing energy within the BCS approach. The value of the
interaction strength V0 = 350 MeV·fm3 was determined in ref. [6] by obtaining a best fit to the
binding energy of Ni isotopes. We use the same vale of V0 = 350 MeV·fm3, for our present
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studies of Sn isotopes as well. Apart from its simplicity, the applicability and justification of us-
ing such a δ-function form of interaction has been recently discussed in ref. [3,7] whereby it has
been shown in the context of HFB calculations that the use of a delta force in a finite space sim-
ulates the effect of finite range interaction in a phenomenological manner (see also [16] and [17]
for more details).

The BCS solution [18, 19] for the gap parameter ∆j for a given state has the form

∆j1 = −1
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where εj2 are the single particle energies, and λ is the Fermi energy; whereas the particle number
condition is given by 2

∑
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where IR is the radial integral having the form
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From the form of eqs. (7) and (8) it is clearly seen that the contribution to the pairing gap is
significant only from those positive energy states which have sizable overlap with the bound
single particle states near the Fermi surface. The resonant states having the characteristic of
being confined within the range of the mean field potential, similar to the bound states, thus have
maximum contributions.

As mentioned above, the coupled field equations obtained from the Lagrangian density in (1)
are finally reduced [8] to a set of simple radial equations which are solved self consistently along
with the equations for the state dependent pairing gap ∆j and the total particle number N for a
given nucleus. In what follows we discuss the details of our calculations and results for 150Sn
nucleus which is treated as a representative case of our studies for the entire chain of isotopes. In
our calculations the spacing in the grid for the r-space is taken to be 0.1 fm, and the maximum
radial distance Rmax is chosen to be several times that of the nuclear radius such as to yield
convergence for the calculated ground state properties of the nucleus under consideration. In the
present studies of Sn isotopes, for example, a value of Rmax = 30 fm is found to be sufficient
for the convergence of the results. Similar studies have been carried out to check the stability of
results with respect to the number of states available for the description of the positive energy
states.

3 Results and Discussion

In order to describe the contribution of various single particle states to the pairing energy, we plot
in Fig. 1 the calculated pairing gap energies of the neutron single particle states near the Fermi
surface for the nucleus 150Sn. The figure also shows the resonant 1i13/2 state at 0.35 MeV.
There are many non-resonant states in the positive energy side of the figure, but these are not
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Fig. 1. The pairing gap energy ∆j for the neutron single particle states near the Fermi surface for the
nucleus 150

Sn. The resonant 1i13/2 state at 0.35 MeV is seen to have large pairing gap similar to the bound
single particle states.

shown here. The formation of resonant states can be simply understood in terms of transmission
of waves passing through an attractive potential well augmented with a centrifugal potential
barrier. The effective total potential has an appreciable barrier for the trapping of waves to form
a resonant state. Such a metastable state remains mainly confined to the region of the potential
well and the wave function exhibits characteristics similar to that of a bound state. This is clearly
seen in Fig. 2 which shows the radial wave functions of some of the neutron single particle states
lying close to the Fermi surface, the neutron Fermi energy being λn = −1.59 MeV. These
include the bound 2f5/2 and 1h9/2, and the continuum single particle states, 1i13/2, 4s1/2 and
1i11/2 . The wave function for the 1i13/2 state is clearly seen to be confined within a radial range
of about 10 fm and has only a decaying component outside this region, characterizing a resonant
state. In contrast the main part of the wave function for non-resonant state 1i11/2 is seen to be
spread over mostly outside the potential region. This state thus has a negligible overlap with
the bound states near the Fermi surface leading to almost zero value for the pairing gap ∆1i11/2

.
Such non-resonant states thus do not contribute to the total pairing energy for the system. The
next important states are the loosely bound states. A representative example of such a state is
the 2f5/2 state at −0.90 MeV. From Fig. 2 it is seen that this state has a sizable part of the wave
function within the region of the potential well and thus provides rather significant contribution
to the pairing energy.

In view of the fact that the RHB calculations [4] are considered to represent the most reliable
treatment presently available for the weakly bound system, a comparison of our RMF neutron
single particle pairing gap energy ∆j with those obtained in the RHB calculations [4] is expected
to shed light on the validity of our calculations for the treatment of drip-line nuclei. It is found
that our ∆j values for the occupied states ranging between 1 MeV to 1.9 MeV are similar to
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Fig. 2. Radial wave function of a few representative neutron single particle states with energy close to the
Fermi surface for the nucleus 150

Sn. The solid line shows the resonant 1i13/2 state at energy 0.35 MeV
which is confined within the potential region similar to the bound 1h9/2 state at −2.11 MeV shown by
dashed line.

the results of HFB and RHB calculations [3, 4]. The RHB calculations [4] with the Gogny
force for the pairing correlations yield values which lie between about 1.5 MeV to 2.7 MeV,
whereas the HFB results [3] range from about 0.5 MeV to 1.75 MeV for the SKP (Skyrme-pairing
force) interaction and from 1.25 MeV to 1.50 MeV for the SKPδ (Skyrme-pairing force, with a
surface peaked delta interaction for pairing) interaction. The total average neutron pairing energy
for the Sn isotopes follows the inverse parabolic shape with vanishing values at the neutron
number N = 50, 82 and 126. This agreement of our RMF results with those of RHB and
HFB calculations for the pairing correlations characteristic is very gratifying and provides strong
support to our BCS approach for the weakly bound systems.

It is emphasized that the position and the gap energy of a resonant state, like that of 1i13/2,
do not change with the increase in the value of Rmax used for the RMF calculations after a
Rmax for the convergent solution has been fixed. In contrast it is usually not true for the non-
resonant continuum states. However, this change in position and occupation probabilities of the
continuum states does not effect the final results of total binding energy, average pairing gap
energy and the values of various rms radii.

Another important aspect of the neutron rich nuclei is the formation of defused neutron skin
[1]. For the nucleus 150Sn this characteristic feature is demonstrably seen in Fig. 3 wherein we
plot the density distribution of protons for the nucleus 172Sn by hatched lines and that of the
neutrons for three different isotopes 118,150,172Sn by solid lines. The tail of the neutron density
in the 150,172Sn isotopes extends far beyond the mean field potential and has appreciable value up
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to about 15 fm. The proton densities are almost similar for different isotopes and we have shown
only the results for the nucleus 172Sn. The sharp fall off of the proton density distribution within
a smaller distance as compared to that of neutron density is expected since the number of protons
is small and the binding energy is large. Further it is found that our RMF results for the density
distributions are in good agreement with the RHB calculations [4] (as can be seen from Fig. 4
of [4]). A study of the neutron density profile reveals information about nature of the surface
thickness and diffuseness parameter. The surface thickness t is defined as the required change in
radius to reduce ρ(r)/ρ0 from 0.9 to 0.1 where ρ0 is the maximum value of the neutron density.
The diffuseness parameter α is determined by fitting the neutron density profiles to the Fermi
distribution. It is found that with additional number of neutrons the surface thickness increases
uniformly from about 1.75 fm in 100Sn to about 3.4 fm in 176Sn. Similar increase of about 90%
is found for the diffuseness parameter α.

In Fig. 4 we plot the results of two neutron separation energy for the entire chain of Sn
isotopes covering the proton and neutron drip-lines. The figure also shows the RHB calculations
of ref. [4], along with the experimental data available [20] for the 98−136Sn isotopes for the
purpose of comparison. It is to be noted that in the figure the experimental data shown by solid
circles have been distinguished by the extrapolated data shown by open squares. It is gratifying
to note that our RMF results are in excellent agreement with the data. The strong variations in
the experimental separation energy near the neutron magic numbers N = 50, and 82 are well
accounted for by our calculations. The overall agreement with the RHB calculations [4] is also
readily seen.

Another interesting result is the prediction of the two neutron drip-line. In our calculations
it is found to occur at A = 176 (N = 126) which is in accord with that of the HFB and RHB
calculations [3, 4]. Similarly our calculations show that the proton drip-line occurs at A = 96
(N = 46). For this purpose calculations for the fixed value of N = 46 were carried out for the
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50−136

Sn isotopes depicted by solid circles. Open squares represent the extrapolated experimental data in
ref. [20]. The results of RHB theory [4] have been shown by open triangles.

neighboring nuclei with atomic number Z = 46, 48, 50, 52. The results show that 96Sn is the
most bound system (B.E. = 765.9103 MeV). The nucleus 98Te is unbound with its last two proton
in the continuum. The nucleus 94Cd is found to be bound with B.E. = 764.6087 MeV. Similarly
the nucleus 92Pd has a binding energy of 761.7119 MeV. Thus the two proton separation energy
between 96Sn and 94Cd is about 1.3 MeV. From this we conclude that the two proton drip line is
represented by the isotope 96Sn with N = 46.

The stability of such extremely neutron rich nuclei can be understood by studying the detailed
single particle spectra and the variation of the Fermi energy with the addition of neutrons. Indeed
it is found that the 1i13/2 state plays a crucial role in the sense that up to the neutron number
N = 112, it adds to the binding through its contribution to the pairing energy by being a resonant
state. Beyond the neutron number N = 112 this state becomes a bound one and contributes to
the stability of neutron rich nucleus by accommodating more neutrons until it is completely
filled at N = 126. Further addition of two neutrons fills the 4s1/2 level having energy 250 keV,
which lies in the continuum. The total binding energy of the isotope 178Sn is less than that of
176Sn by about 497 keV and thus the nucleus corresponding to N = 126 is suggested to be the
heaviest stable isotope. It is found that the RMF theory yields a weaker spin orbit interaction
with the addition of neutrons. Consequently the energy splitting between the spin-orbit partners,
for example, 1h11/2 and 1h9/2 states, is gradually reduced from 8.2 MeV in 100Sn to 5.9 MeV
in 150Sn, and gets further reduced to 5.1 MeV in 172Sn as more and more neutrons are added to
the system. This finding is in accord with the RHB results of Lalazissis et al. [4]. Further, we
observe that this change in the nature of the spin-orbit interaction for very rich neutron isotopes
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results in a negligible energy splitting of other high lying high angular momentum states. For
example the 1i11/2 and 1i13/2 spin-orbit partners usually have energy splitting of several MeV
and this results in the neutron and proton magic numbers. In contrast for extremely neutron rich
nuclei, for example in the case of 150,172Sn nuclei this splitting is only about 2 to 4 MeV for
these two states. We looked for additional high lying resonant states apart from the i13/2 state.
Another resonant state, in particular a resonant j15/2 state within a few MeV (larger than the
average gap energy) above the 1i13/2 state was not found. Such states if found far away from
the Fermi level, as such do not contribute significantly. From the figure it is observed that the
change in separation energy is almost gradual for all the isotopes except at the magic numbers
50, 82 and 126. Between N = 84 to N = 124 it is almost constant with small variation and gets
abruptly reduced to a small value of 0.29 MeV for N = 126 which corresponds to the nucleus
176Sn. Very neutron rich isotopes having small separation energies of the order of a few MeV
(≈ 2–4 MeV) represent loosely bound system.

In contrast to the binding energy, the experimental data on the proton and neutron root mean
square (rms) radii are available only for a few of the Sn isotopes [21,22]. The measured values for
the proton rms radii [21] of 112−124Sn and that for the neutron rms radii [22] of 116,124Sn isotopes
are found to be in excellent agreement with our calculations as seen from Fig. 5. Our results once
again are seen to compare well with that of the RHB calculations reported in ref. [4]. The RMF
calculations predict a uniform increase of rms radii with the neutron numberN . However, it does
not follow exactly the N1/3 systematics for the entire chain of isotopes, especially for the drip-
line nuclei. At the same time the calculations do not show any abrupt increase in the neutron rms
radius as well. The neutron skin rn − rp increases from−0.08 fm for 100Sn to 0.33 fm for 132Sn,
and then further to 0.78 fm for 176Sn isotope. For the neutron rich isotopes near the drip line the
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variation in neutron rms radius can be understood in terms of the occupancy of levels viz., the
1i13/2 and 4s1/2 close to the Fermi surface. In contrast to the bound 1i13/2 state, the 4s1/2 state
being in the continuum does not have appreciable localization inside the nucleus. Therefore, the
contribution to the neutron rms radius from the 4s1/2 state is expected to be more than that from
the 1i13/2 state assuming that both have the same occupancy. For A > 156 the occupancy of the
bound 1i13/2 state increases steadily as we add more neutrons. On the other hand the 4s1/2 state
continues to be in the continuum just above the Fermi level and its very small occupancy does
not change appreciably. This is the reason that we do not see pronounced rapid increase in the
neutron rms radius and there is no obvious indication for the formation of neutron halo [23, 24]
as we reach the neutron drip line.

4 Conclusions

To summaries, we have applied the BCS approach using a discretized continuum within the
framework of relativistic mean-field theory to study the ground state properties of Sn isotopes up
to the drip-lines. The TMA set parameter has been used for the effective mean-field Lagrangian
which contains a nonlinear term for the ω meson in addition to the usual nonlinear terms for
the σ meson. For the pairing calculation we have employed the δ-function interaction. Out of
many positive energy states, the resonant states are found to play important role, especially for
the neutron rich nuclei with small two neutron separation energy. The resonant states are found
to have gap energy ∆j as large as those of the bound states. This has been demonstrated by our
calculations for the 150Sn isotope in detail. Our calculated results for the two neutron separation
energy, rms neutron and proton radii and the pairing gap energies compare well with the known
experimental data and with other state of the art calculations like that of the RHB [4]. This
conclusion is in accord with the recent illuminating study of Grasso et al. [5] whereby the BCS
approach is shown to be a good approximation to the more complete Bogoliubov treatment even
for nuclei close to the drip lines. Finally, Our calculations show that the two neutron drip line
nucleus for the Sn isotopes is 176Sn, whereas the two proton drip line is represented by 96Sn.
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