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CLASSICAL RELATIVISTIC SYSTEM OF POINTLIKE MASSES
WITH LINEARIZED GRAVITATIONAL INTERACTION
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The Hamiltonian formulation of relativistic system of pointlike particles with gravitational
field is considered within the linearized theory of gravity. Both the Einstein’s theory and the
gauge theory of gravity are explored. The gauge-invariant description in the terms of Dirac’s
observables is obtained. Elimination of physical field variables is performed by means of the
Dirac’s theory of constraints up to the first order in the gravitational constant. The relation
between positional and canonical variables of particles is found.

PACS: 03.50.−z, 04., 11.10.Ef, 11.15.−q

1 Introduction

The gravitational interaction of the pointlike masses is described naturally by the field theory [1].
Sometimes, it is desirable to exclude the field degrees of freedom and to reformulate dynamics of
a gravitationally bounded many-particle system in the terms of particle variables only. Elimina-
tion of the field is based on the substitution of a solution to the field equations into the equations
of motion of particles. The complicated form of Einstein’s equations forces one to use the lin-
earized theory. Such a theory allows us to find the solution of field equations by means of the
Green’s function method and to exclude immediately the field variables in an action integral of
the system [2, 3]. This leads to the Fokker-type action whose nonlocality is an obstacle in the
transition to Hamiltonian picture. Similar problems appear in Hamiltonization of the Wheeler-
Feynman electrodynamics [4]. Another way consists in elimination of the field degrees of free-
dom after the transition to the Hamiltonian description is performed. The gravitational field has
been already reduced in the post-Newtonian approximations [5] within the canonical formalism
of “particle+field” system by Arnowitt, Deser, and Misner [6]. But we note that the direct substi-
tution of the solution in the terms of canonical particle variables into particle equations of motion
and/or the Hamiltonian of the system is not correct from the following point of view. It is known
that the covariant particle positions cannot be canonical after the field reduction [7]. Moreover,
the direct insertion does not guarantee the preserving of commutation relations in the sense of
the Poisson bracket between the components of the energy-momentum and angular momentum

1E-mail address: andy@icmp.lviv.ua

0323-0465/03 c© Institute of Physics, SAS, Bratislava, Slovakia 1



2 A. Nazarenko

which form the canonical realization of the Poincaré group. These facts stimulate appearance of
new approach [8, 9] based on the Dirac’s theory of constraints [10]. The field equations within
this approach are treated as constraints which have to be eliminated. In this paper we will per-
form the reduction of the gravitational field degrees of freedom by using the constraint method.
Also we goal to investigate the linearized gauge theory of gravity by Ning Wu [11]. Such a the-
ory has been built on the base of the gauge principle of fundamental interactions with the aim of
them unification. Among various theories of the gauge gravity [12] this model is renormalizable.

In the present paper we start from the Hamiltonization of the classical relativistic system of
pointlike particles in external gravitational field (Sec. 2). In Sec. 3 we explore the linearized
Einstein’s theory of gravity. First, we construct the Hamiltonian of the free gravitational field.
The next step consists in the construction of Hamiltonian description of the “field+particle” sys-
tem. On this level the field and particle variables are treated on equal rights. Eliminating gauge
degrees of freedom, we reformulate dynamics of our system in the gauge-invariant manner in
the terms of Dirac’s observables (physical variables). Further, we exclude essentially the physi-
cal degrees of freedom of gravitational field in the first-order approximation in the gravitational
constant. It is done by three steps [9]: (i) search of the solution to the field equations; (ii) transi-
tion to the canonical free-field variables; (iii) fixing free field by imposing additional constraints.
These constraints are suppressed by means of the Dirac method. In such a way, we obtain the
Hamiltonian formalism in the particle variables. In Sec. 4 we apply step by step our scheme to
the linearized gauge theory of gravity by Ning Wu. In the present paper we are interested in
comparison of the obtained metrics within the Einstein’s theory and the Wu’s one.

2 Hamiltonian description of the system of particles in gravitational field

Let us consider a system of N pointlike particles which are described by world lines in the
curved space-time2 γa : τa 7→ xµ

a(τa). The N -time covariant formalism cannot be used for
construction of the Hamiltonian picture. In order to define the Poisson bracket of the point-
particle system with the field, we have to use single-time formalism. We introduce the common
evolution parameter t and put τa = t, x0

a(t) = t. Then the coordinates xa(t) = (xi
a(t)) and the

velocities ẋa(t) = (ẋi
a(t)) are dynamical particle variables. The Lagrangian of the system of

pointlike particles in the gravitational field is given by

L(t) = −

N
∑

a=1

ma

√

g00(t,xa) + 2g0i(t,xa)ẋi
a(t) + gik(t,xa)ẋi

a(t)ẋk
a(t). (1)

Let us transit by the standard way [6, 13] from the ten fields gµν to the lapse and shift func-
tions, namely, N , N i, and 3-dimensional metric γik (or γik):

γik ≡ −gik, γik = −gik +
g0ig0k

g00
, γikγkj = δj

i , (2)

2The Greek indices µ, ν, . . . run from 0 to 3; the Latin indices from the middle of alphabet, i, j, k, . . . run from 1 to
3 and both types of indices are subject of the summation convention. The Latin indices from the beginning of alphabet,
a, b, label the particles and run from 1 to N . The sum over such indices is indicated explicitly. The velocity of light c is
equal to unity.
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N i ≡ g0kγki =
g0i

g00
, N ≡

√

g00 − gikN iNk =

√

1

g00
. (3)

Using g0i = −gikNk and introducing ui
a(t) ≡ ẋi

a(t) − N i(t,xa), we have

L(t) = −
N
∑

a=1

ma

√

N2(t,xa) − γik(t,xa)ui
a(t)uk

a(t). (4)

We define the canonical particle momenta as

kai(t) ≡ −
∂L(t)

∂ẋi
a(t)

= −
maγik(t,xa)uk

a(t)
√

N2(t,xa) − γik(t,xa)ui
a(t)uk

a(t)
. (5)

The particle velocity is expressed in the terms of canonical variables as follows

ẋi
a(t) = N i(t,xa) −

N(t,xa)ki
a(t)

√

m2
a + γik(t,xa)kai(t)kak(t)

, ki
a(t) = γik(t,xa)kak(t). (6)

Now we immediately find the canonical Hamiltonian

H = −
N
∑

a=1

kaiẋ
i
a − L =

N
∑

a=1

[

N
√

m2
a + γikkaikak − kaiN

i

]

, (7)

which generates time evolution in the terms of the Poisson bracket

{xi
a(t), kbj(t)} = −δabδ

i
j . (8)

In the case of weak gravitational field the metric can be presented in the form

gµν = ηµν − hµν , gµν = ηµν + hµν , (9)

where ‖ηµν‖ = diag(1,−1,−1,−1) is the metric of flat space-time. In the linear approximation
we have gµλgλν = δµ

ν . Then we obtain the Hamiltonian

H =

N
∑

a=1

√

m2
a + k2

a +
1

2

∫

Jµνhµνd3x. (10)

Here the current Jµν is the free-particle energy-momentum tensor and has the following form

Jµν =

N
∑

a=1

kaµkaν
√

m2
a + k2

a

δ3(x − xa), (11)

ka0 = k0
a =

√

m2
a + k2

a, kai = −ki
a.

Now we have to introduce the Hamiltonian which generates the evolution of the field hµν .
In this paper we will consider two theories which define different Hamiltonians of gravitational
field. Let us start from the general relativity.
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3 General relativity

The exact Lagrangian density for the gravitational field within the Einstein’s theory [14] is

L =
1

16πG

[

−gµν(Γλ
µσΓσ

λν − Γλ
µνΓσ

λσ)
√

−det(gµν) + ∂µωµ

]

, (12)

where the divergent term and the connection read

ωµ =
√

−det(gµν)∂νgλσ(gµνgλσ − gµλgνσ), (13)

Γλ
µν =

1

2
gλσ(∂νgσµ + ∂µgσν − ∂σgµν). (14)

Hereafter we use the notation

∂µ ≡ ∂/∂xµ, ∂0f = ∂f/∂t ≡ ḟ .

3.1 Lagrangian function of the linearized theory. Hamiltonian formalism

The condition of weakness of the gravitational field with the metric (9) results immediately in
the following form of the Lagrangian density

L = −
1

16πG
Γ, Γ = ηµν(Γλ

µσΓσ
λν − Γλ

µνΓσ
λσ). (15)

In a given approximation the connection takes the following form

Γλ
µν =

1

2
ηλσ(∂νhσµ + ∂µhσν − ∂σhµν). (16)

Direct calculations give us

4Γ = −πikπik + πi
iπ

k
k + 2∂ih00(∂ih

k
k − ∂khk

i ) − 2∂ihj
i ∂jh

k
k

+∂jhi
i∂jh

k
k + 2∂jh

i
k∂khj

i + ∂jh
k
i ∂jh

i
k + Ω, (17)

where we have introduced the abbreviations:

πik ≡ ḣik − ∂ih0k − ∂kh0i, (18)

Ω ≡ −2∂0[(h00 − hk
k)∂ih0i] + 2∂i[(h00 − hk

k)ḣ0i] + 4∂i[h0k∂kh0i − h0i∂
kh0k]. (19)

Discarding divergent term Ω, we obtain the final expression for the Lagrangian density:

L =
1

32πG

[

1

2
πikπik −

1

2
πi

iπ
k
k − ∂ih00(∂ih

k
k − ∂khk

i ) + ∂ihj
i ∂jh

k
k

−
1

2
∂jh

i
i∂

jhk
k − ∂jh

i
k∂khj

i +
1

2
∂jh

i
k∂jhk

i

]

. (20)
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The canonical field momenta are

p0µ ≡
∂L

∂ḣ0µ

= 0, (21)

pik ≡
∂L

∂ḣik

=
1

32πG

(

πik − δikπll
)

. (22)

The Poisson bracket relations are

{hµν(t,x), pλσ(t,y)} = Iλσ
µν δ3(x − y), Iλσ

µν =
1

2
(δλ

µδσ
ν + δλ

ν δσ
µ). (23)

The equation (21) determines the primary constraints [15]. Accounting (21), one finds the
canonical Hamiltonian density (see [15])

H = 16πG

(

pikpik −
1

2
pi

ip
k
k

)

+ 2pik∂ih0k +
1

32πG

[

∂ih00(∂ih
k
k − ∂khk

i )

− ∂ihj
i ∂jh

k
k +

1

2
∂jh

i
i∂

jhk
k + ∂jh

i
k∂khj

i −
1

2
∂jh

k
i ∂jhi

k

]

. (24)

Having got the canonical formalism for dynamics of the gravitational field, we can build the
Hamiltonian description of relativistic system of pointlike masses coupled with the field.

3.2 “Field plus particle” system: description in the terms of observables

Using expressions (10) and (24), we arrive to the Hamiltonian of “particle+field” system:

H =

N
∑

a=1

√

m2
a + k2

a +
1

2

∫

J ikhikd3x +

∫
(

Hg +
1

2
h00T

0 + h0iT
i

)

d3x, (25)

here

Hg = 16πG

(

pikpik −
1

2
pi

ip
k
k

)

−
1

64πG
hkl∆(P ikP lj − P klP ij)hij , (26)

T 0 = J00 +
1

16πG
∆P ikhik, T i = J0i − 2∂kpik, (27)

P ik = ηik + ∆−1∂i∂k. (28)

The inverse operator to the Laplacian ∆ ≡ −∂i∂i is defined by the equation

∆−1δ3(x) = −
1

4π|x|
. (29)

The constraints (21) are connected with the gauge invariance of equations of motion. The
requirement of preservation of (21) in time produces the secondary constraints. The total set of
constraints

p0µ ≈ 0, T µ ≈ 0 (30)
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belongs to the first class because {p0µ, T ν} = 0. Hereafter, as usual, the equations of constraints
are written with the use of “weak equality”. It helps to distinguish constraints from evolution
equations of motion.

The field variables canonically conjugated to the momenta p0µ and the functions T µ are un-
physical and arbitrary. They are not fixed by equations of motion. This ambiguity can be reduced
by fixing additional gauge conditions. Another way is the transition to the gauge-invariant de-
scription. Such an approach was initiated by Dirac for the electromagnetic field. Here we apply
the Dirac’s theory to the gauge-invariant reformulation of dynamics of our system.

One can verify that the field variables

Q0 = −8πG∆−1Pikpik, Qi = −
1

2
∆−1[∂khik + P l

i ∂
khlk] (31)

satisfy the following commutation relations in the sense of the Poisson brackets:

{Qµ(t,x), T ν(t,y)} = δν
µδ3(x − y), {Qµ, Qν} = 0. (32)

Then the pairs (h0µ, p0µ) and (Qµ, T µ) constitute the canonical basis of the gauge degrees of
freedom. Now let us concentrate on the search of canonical variables which correspond to the
gauge-invariant degrees of freedom. First, we need to decouple physical and gauge degrees of
freedom by means of the following decomposition [15]:

hik = h⊥

ik + hL
ik, h⊥

ik = P lm
ik hlm, hL

ik = Llm
ik hlm, (33)

pik = pik
⊥ + pik

L , pik
⊥ = P ik

lmplm, pik
L = Lik

lmplm. (34)

Here projectors are given by

P ik
lm =

1

2
(P i

l P k
m + P i

mP k
l − P ikPlm), Lik

lm = I ik
lm − P ik

lm. (35)

Then, employing the relations (27) and (31), we obtain

hL
ik = −8πGPik∆−1(T 0 − J00) + ∂iQk + ∂kQi, (36)

pik
L = −

1

16πG
P ik∆Q0 +

1

2
∂k∆−1(T i − J0i)

+
1

2
∂i∆−1(T k − J0k) +

1

2
∂i∂k∆−2∂l(T

l − J0l). (37)

For the transverse (physical) parts of the field variables we have

{h⊥

ik(t,x), plm
⊥

(t,y)} = P lm
ik δ3(x − y). (38)

The splitting (33)–(34) induces a canonical transformation:

((xi
a, kai), (hik , pik)) 7→ ((yi

a, qai), (h
⊥

ik, pik
⊥

), (Qµ, T µ)). (39)
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The transformation of the particle variables is generated by the functional:

F =

∫

QµJµ0d3x. (40)

Within the framework of the linearized theory we get

yi
a = xi

a + {xi
a, F}, qai = kai + {kai, F}. (41)

Taking into consideration equations (30) and transformation (39), we reduce the Hamiltonian
to the form

H =

N
∑

a=1

√

m2
a + q2

a +
1

2

∫

J ik
(

h⊥

ik − 8πGPik∆−1J00
)

d3x +

∫

H⊥

g d3x

+8πG

∫
(

1

4
J00∆−1J00 + J0i∆−1PikJ0k +

1

4
∂iJ

0i∆−2∂kJ0k

)

d3x. (42)

It does not depend on the gauge variables h0µ and Qµ. Here the current and the physical field
Hamiltonian are

Jµν =

N
∑

a=1

qµ
a qν

a
√

m2
a + q2

a

δ3(x − ya), H⊥

g = 16πGp⊥ikpik
⊥ −

1

64πG
hik
⊥∆h⊥

ik . (43)

Thus, we have done reduction of the gauge degrees of freedom and transition to the descrip-
tion in the terms of Dirac’s observables. At this stage the field and particle variables have equal
rights. Below we shall carry out elimination of the physical degrees of freedom of the gravita-
tional field.

3.3 Elimination of the physical degrees of freedom of the field in the first-order
approximation in the gravitational constant

In this section we aim to reformulate our system in the terms of particle variables only. This
reformulation is especially effective, when the free radiation is not essential. We do it by three
steps. (i) We shall solve the Hamiltonian field equations in the linear approximation in the grav-
itational constant with the help of the Green’s function method. In a given approximation the
advanced, retarded and symmetric solutions coincide. Here we use the symmetric Green’s func-
tion. (ii) By means of suitable transformation we shall get canonical free-field variables which
appear as the solution to homogeneous field equations. (iii) We shall equate the free field to zero.
The constrained variables are excluded from the dynamics with the help of Dirac bracket. Also,
the use of the Dirac bracket allows us to eliminate the field from the Hamiltonian.

The Hamiltonian equations of motion for h⊥

ik and pik
⊥

read

ḣ⊥

ik = 32πGp⊥ik, ṗik
⊥

= −
1

2
P ik

lmJ lm +
1

32πG
∆hik

⊥
. (44)

Let us rewrite these equations in the following form:

ḧ⊥

ik − ∆h⊥

ik = −16πGP lm
ik Jlm, pik

⊥ =
1

32πG
ḣik
⊥ . (45)
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The general solution to equations (45) is presented as

h⊥

ik = φ⊥

ik + ĥ⊥

ik, pik
⊥

= χik
⊥

+ p̂ik
⊥

(46)

Variables φ⊥

ik and χik
⊥

are the general solutions to the corresponding homogeneous equations:

φ̈⊥

ik − ∆φ⊥

ik = 0, χik
⊥

=
1

32πG
φ̇ik
⊥

. (47)

The functions ĥ⊥

ik depend on particle variables and satisfy inhomogeneous field equation with
the pointlike sources. They are determined by

ĥ⊥

ik = P lm
ik ĥlm,

ĥµν = −16πG

N
∑

a=1

∫

Gλσ
µν

[

(t − t′)2 − (x − ya(t′))2
] qaλ(t′)qaσ(t′)
√

m2
a + q2

a(t′)
dt′, (48)

where

Gλσ
µν

[

(x0)2 − x2
]

=
1

2

(

δλ
µδσ

ν + δλ
ν δσ

µ − ηλσηµν

)

G
[

(x0)2 − x2
]

. (49)

In our problem the Green’s function G
[

(x0)2 − x2
]

of the d’Alambertian is symmetric. Using
free-particle equations, when the particle momenta are conserved, an integration yields

ĥµν = −4G

N
∑

a=1

qaµqaν − 1
2
ηµνm2

a
√

[qa(x − ya)]2 + m2
a(x − ya)2

. (50)

Then, as remembering definition (22), one finds that

p̂ik
⊥

= P ik
lmp̂lm, p̂ik =

1

32πG

[

Dtĥik − ∂iĥ0k − ∂kĥ0i + δik(Dtĥ
l
l − 2∂lĥ

l
0)
]

, (51)

here

Dt =

N
∑

a=1

qi
a

√

m2
a + q2

a

∂

∂yi
a

(52)

is the time derivative.
It is easy to check that the obtained solutions in the terms of particle variables satisfy the

equations of constraints

J00 +
1

16πG
∆P ikĥik ≡ 0, J0i − 2∂kp̂ik ≡ 0 (53)

in the linear approximation in the gravitational constant.
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The next step of our procedure of the field reduction consists in the canonical transformation
of the field variables to φ⊥

ik , χik
⊥

in accordance with relations (46). This transformation changes
the particle variables:

yi
a = zi

a +

∫

[

(

φ⊥

lm +
1

2
ĥ⊥

lm

)

∂p̂lm
⊥

∂πai

−

(

χlm
⊥

+
1

2
p̂lm
⊥

)

∂ĥ⊥

lm

∂πai

]

d3x, (54)

qai = πai −

∫

[

(

φ⊥

lm +
1

2
ĥ⊥

lm

)

∂p̂lm
⊥

∂zi
a

−

(

χlm
⊥

+
1

2
p̂lm
⊥

)

∂ĥ⊥

lm

∂zi
a

]

d3x. (55)

In the terms of new variables nonvanishing Poisson brackets are

{zi
a(t), πbj(t)} = −δabδ

i
j , {φ⊥

ik(t,x), χlm
⊥ (t,x)} = P lm

ik δ3(x − y). (56)

In order to finish our procedure, it remains to put φ⊥

ik ≈ 0, χik
⊥

≈ 0. These constraints reflect
the absence of the free gravitational radiation.

In the dynamics we reduce the fixed field by means of Dirac bracket which is constructed as
follows. Since φL

ik ≡ 0 and χik
L ≡ 0 for the free field, we can restore canonical variables φik and

χik, so that φ⊥

ik = P lm
ik φlm, χik

⊥
= P ik

lmχlm. Then the Dirac bracket

{F, G}∗ = {F, G} −

∫

{F, φik(t,x)}I ik
lm{χlm(t,x), G}d3x, (57)

coincides with the particle Poisson bracket. Discarding the free field in the Hamiltonian, we get

H =
N
∑

a=1

√

m2
a + π

2
a +

1

4

∫

J ik
(

ĥ⊥

ik − 16πGPik∆−1J00
)

d3x

+8πG

∫
(

1

4
J00∆−1J00 + J0i∆−1PikJ0k +

1

4
∂iJ

0i∆−2∂kJ0k

)

d3x. (58)

We see that the field cancelation leads to compensation of half of the interaction term by the field
part of Hamiltonian.

Here the current depending on new particle variables is

Jµν =
N
∑

a=1

πµ
a πν

a
√

m2
a + π

2
a

δ3(x − za). (59)

The fields ĥik and p̂ik in the terms of new particle variables have the same form defined by
expressions (50), (51).

If we add the following expression

−
1

4
Dt

∫

[

16πGJ00∆−1Pik p̂ik + J0i∆−1
(

∂kĥik + P l
i ∂

kĥlk

)]

d3x (60)

to the Hamiltonian, we finally find

H =
N
∑

a=1

√

m2
a + π

2
a +

1

4

∫

Jµν ĥµνd3x. (61)
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After exclusion of the free radiation the metric up to the first order in G becomes as follows

gµν = ηµν − 4G
N
∑

a=1

πaµπaν − 1
2
ηµνm2

a
√

[πa(x − za)]2 + m2
a(x − za)2

, (62)

where πa0 =
√

m2
a + π

2
a.

The combination of the equations (41) and (54) yields the relation between the covariant
particle positions and the canonical variables:

xi
a = zi

a +
1

2

∫

(

ĥlm

∂p̂lm

∂πai

− p̂lm ∂ĥlm

∂πai

)

d3x. (63)

The Dirac brackets between particle positions,

{xi
a, xj

b}
∗ =

∫

(

∂ĥlm

∂πbj

∂p̂lm

∂πai

−
∂p̂lm

∂πbj

∂ĥlm

∂πai

)

d3x 6≡ 0, (64)

show that xi
a cannot be the canonical variable. It is in accordance with no-interaction theorem [7].

Poincaré invariance of the particle system with gravitational interaction causes existence of
the ten conserved quantities which in the terms of canonical variables constitute the canonical
realization of the Poincaré group. The Poincaré generators depending on particle variables result
from the generators of “particle+field” system by means of field reduction. For four-momentum
and angular momentum we find the expressions:

P 0 =

N
∑

a=1

√

m2
a + π

2
a +

1

4

∫

Jµν ĥµνd3x,

P i =
N
∑

a=1

πi
a, M ik =

N
∑

a=1

(zi
aπk

a − zk
aπi

a),

Mk0 =

N
∑

a=1

zk
a

√

m2
a + π

2
a +

1

4

∫

xkJµν ĥµνd3x − tP k. (65)

Self-action singular terms are excluded with the help of procedure based on Riesz potential [16].
It is easy to check that the generators satisfy the commutation relations of the Poincaré group in
the first-order approximation:

{P µ, P ν}∗ = 0, {P µ, Mνλ}∗ = ηµνP λ − ηµλP ν ,

{Mµν , Mλσ}∗ = −ηµλMνσ + ηνλMµσ − ηνσMµλ + ηµσMνλ. (66)

It turns out that

{xi
a, Mk0}∗ = xk

a{x
i
a, H}∗ − δikt, (67)

i.e. the particle position satisfies world line condition.
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4 Gauge theory of gravity

Now let us explore an alternative theory of gravity. In this section we apply the developed
procedures of reduction to the gauge theory of gravity by Ning Wu [11].

Within the Wu’s theory the gravitation is treated as physical interaction in flat space-time
with the Minkowski metric ‖ηµν‖. The author of Ref. [11] replaces the equivalence principle
of general relativity by the gauge principle of fundamental interactions. Then the gravitational
interaction are completely determined by a local gravitational gauge invariance. Description and
properties of the used gauge group can be found in original papers [11]. Here we are concentrated
on examination of the results of such a theory which looks interesting in the context of the
unification of fundamental interactions.

In Ref. [11] the gravitational field is described by the gauge potential C µ̄
ν . Indices µ, ν are

ordinary Lorentz indices. On the other hand, the group (barred) indices µ̄, ν̄ running from 0 to 3
move by the Riemanian metric

gµ̄ν̄ = ηλσGµ̄
λGν̄

σ , Gµ̄
ν = δµ̄

ν − C µ̄
ν . (68)

This metric characterizes the curved space-time in which the particles move. In the case of weak
gravitational field the expression (68) takes the form

gµ̄ν̄ = ηµ̄ν̄ − ηµ̄λC ν̄
λ − ην̄λC µ̄

λ , gµ̄ν̄ = ηµ̄ν̄ + ηµ̄λCλ
ν̄ + ην̄λCλ

µ̄ . (69)

In a given approximation the Lagrangian density of such a theory is written as

L =
1

16πG
ηµρηνσηµ̄ν̄F µ̄

µνF ν̄
ρσ , (70)

where F λ̄
µν = ∂µC λ̄

ν − ∂νC λ̄
µ is the field strength; ∂µ = δν̄

µ∂ν̄ .
From (70) the canonical momenta follow:

E0
µ̄ ≡

∂L

∂Ċ µ̄
0

= 0, (71)

Ei
µ̄ ≡

∂L

∂Ċ µ̄
i

=
1

4πG
ηµ̄ν̄ηijF ν̄

0j . (72)

The field Poisson brackets are

{C µ̄
λ (t,x), Eσ

ν̄ } = δµ̄
ν̄ δσ

λδ3(x − y). (73)

Taking into account the constraints (71), we obtain a density of the canonical Hamiltonian:

H = −
1

16πG
ηµ̄ν̄ηijηklF µ̄

ikF ν̄
jl + 2πGηµ̄ν̄ηijE

i
µ̄Ej

ν̄ + Ei
µ̄∂iC

µ̄
0 . (74)

Now we can construct the Hamiltonian of the “field+particle” system. One finds

H =
N
∑

a=1

√

m2
a + k2

a +

∫

J i
µ̄C µ̄

i d3x +

∫

Hgd
3x +

∫

C µ̄
0 T 0

µ̄d3x. (75)
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Here we have introduced the notations

Hg = −
1

16πG
ηµ̄ν̄ηijηklF µ̄

ikF ν̄
jl + 2πGηµ̄ν̄ηijE

i
µ̄Ej

ν̄ , T 0
µ̄ = J0

µ̄ − ∂iE
i
µ̄, (76)

Jµ
ν̄ =

N
∑

a=1

kµ
akaν

√

m2
a + k2

a

δ3(x − xa). (77)

The set of the first class constraints of the theory is

E0
µ̄ ≈ 0, T 0

µ̄ ≈ 0. (78)

Let us isolate physical and gauge degrees of freedom by means of decomposition:

Ei
µ̄ =

⊥

Ei
µ̄ +

L

Ei
µ̄,

⊥

Ei
µ̄= P i

kEk
µ̄,

L

Ei
µ̄= ∂i∆−1(T 0

µ̄ − J0
µ̄). (79)

Vector
⊥

Ei
µ̄, whose components are subject of relation ∂i

⊥

Ei
µ̄≡ 0, can be expressed in the

terms of independent variables as follows (see [17])

⊥

Ei
µ̄= Πi

αeα
µ̄ , eα

µ̄ = Eα
µ̄ , α = 1, 2. (80)

Here we use the projector

Πi
α ≡ δi

α − δi
3

∂α

∂3

, α = 1, 2. (81)

The inverse operator to derivative ∂3 is defined so that

1

∂3

δ3(x) ≡

(

∂

∂x3

)−1

δ3(x) =
1

2
δ(x1)δ(x2)sign(x3). (82)

In order to decouple the gauge and gauge-invariant variables, we perform the canonical trans-
formation

((xi
a, kai), (C

µ̄
i , Ei

µ̄)) 7→ ((yi
a, qai), (c

µ̄
α, bα

µ̄), (Qµ̄
0 , T 0

µ̄)) (83)

determined by the generating functional

F = −

∫

C µ̄
i

[

Πi
αeα

µ̄ + ∂i∆−1(T 0
µ̄ − J0

µ̄)
]

d3x. (84)

With the help of (84) we derive the conjugated variables

Qµ̄
0 = −

δF

δT 0
µ̄

= −∆−1∂iC µ̄
i , cµ̄

α = −
δF

δeα
µ̄

= Πi
αC µ̄

i . (85)

In a given approximation we have

yi
a = xi

a + {xi
a, F}, qai = kai + {kai, F}. (86)
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From equations (85) we obtain

C µ̄
i =

⊥

C µ̄
i +∂iQ

µ̄
0 ,

⊥

C µ̄
i = P α

i cµ̄
α. (87)

Therefore the transverse parts of the potential and the corresponding momenta are parameter-
ized by means of the canonical variables (cµ̄

α, eα
µ̄) which are not noncovariant. Hereafter it is

convenient to describe the field by the functions
⊥

C µ̄
i ,

⊥

Ei
µ̄ which give us

{
⊥

C µ̄
i (t,x),

⊥

Ek
ν̄ (t,y)} = δµ̄

ν̄ P k
i δ3(x − y). (88)

Accounting constraints, we see that the Hamiltonian depends on observables only:

H =

N
∑

a=1

√

m2
a + q2

a +

∫

J i
µ̄

⊥

C µ̄
i d3x +

∫

H⊥

g d3x + 2πG

∫

ηµνJ0
µ∆−1J0

ν d3x. (89)

Here

H⊥

g = −
1

8πG
ηµ̄ν̄ηij

⊥

C µ̄
i ∆

⊥

C ν̄
j +2πGηµ̄ν̄ηij

⊥

Ei
µ̄

⊥

Ej
ν̄ . (90)

is the physical Hamiltonian of the gravitational field.
The Hamiltonian (89) generates evolution of the field variables:

⊥

Ċ µ̄
i = 4πGηµ̄ν̄ηij

⊥

Ej
ν̄ ,

⊥

Ėi
µ̄= −P i

kJk
µ̄ +

1

4πG
ηµ̄ν̄ηij∆

⊥

C ν̄
j . (91)

Let us rewrite equations (91) in the following form

⊥

C̈ µ̄
i −∆

⊥

C µ̄
i = −4πGP k

i J µ̄
k ,

⊥

Ei
µ̄=

1

4πG
ηµ̄ν̄ηij

⊥

Ċ ν̄
j . (92)

They are ordinary inhomogeneous differential equations which can be solved by means of the
Green’s function method. The general solution to the field equations is presented by

⊥

C µ̄
i =

⊥

φµ̄
i +

⊥

X µ̄
i ,

⊥

Ei
µ̄=

⊥

χi
µ̄ +

⊥

Y i
µ̄ . (93)

The fields
⊥

φµ̄
i = P α

i φµ̄
α,

⊥

χi
µ̄= Πi

αχα
µ̄ satisfy homogeneous equations. On the other hand, the fields

⊥

X µ̄
i ,

⊥

Y i
µ̄ depend on particle variables. They are written as follows

⊥

X µ̄
i = P k

i X µ̄
k , X µ̄

ν = −G

N
∑

a=1

qµ
a qaν

√

[qa(x − ya)]2 + m2
a(x − ya)2

, (94)

⊥

Y i
µ̄= P i

kY i
µ̄, Y i

µ̄ =
1

4πG
ηµ̄ν̄ηij(DtX

ν̄
j − ∂jX

ν̄
0 ). (95)
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Now we intend to perform the canonical transformation to the new field variables
⊥

φµ̄
i ,

⊥

χi
µ̄

(mean φµ̄
α and χα

µ̄) in accordance with relations (93). This transformation leads to the new particle
variables:

yi
a = zi

a +

∫







(

⊥

φµ̄
l +

1

2

⊥

X µ̄
l

)

∂
⊥

Y l
µ̄

∂πai

−

(

⊥

χl
µ̄ +

1

2

⊥

Y l
µ̄

)

∂
⊥

X µ̄
l

∂πai






d3x, (96)

qai = πai −

∫







(

⊥

φµ̄
l +

1

2

⊥

X µ̄
l

)

∂
⊥

Y l
µ̄

∂zi
a

−

(

⊥

χl
µ̄ +

1

2

⊥

Y l
µ̄

)

∂
⊥

X µ̄
l

∂zi
a






d3x. (97)

We reduce field degrees of freedom by the constraints φµ̄
α ≈ 0, χα

µ̄ ≈ 0. After that the
Hamiltonian formalism is formed by the Dirac bracket, which is equal to the particle Poisson
bracket, and the Hamiltonian:

H =

N
∑

a=1

√

m2
a + π

2
a +

1

2

∫

J i
µ̄

⊥

X µ̄
i d3x + 2πG

∫

ηµνJ0
µ∆−1J0

ν d3x. (98)

Adding the expression

−
1

2
Dt

∫

J0
µ∆−1∂lXµ

l d3x (99)

to the Hamiltonian that is equivalent to canonical transformation gives us

H =

N
∑

a=1

√

m2
a + π

2
a +

1

2

∫

Jµ
ν Xν

µd3x. (100)

Then we find the final form of the metric:

gµ̄ν̄ = ηµ̄ν̄ + 2G
N
∑

a=1

πµ
a πν

a
√

[πa(x − za)]2 + m2
a(x − za)2

. (101)

The covariant particle positions and the canonical variables are connected by means of the
following relations:

xi
a = zi

a +
1

2

∫

(

Xµ
l

∂Y l
µ

∂πai

− Y l
µ

∂Xµ
l

∂πai

)

d3x. (102)

Then Poisson brackets between particle positions,

{xi
a, xk

b}
∗ =

∫

(

∂Xµ
l

∂πbk

∂Y l
µ

∂πai

−
∂Y l

µ

∂πbk

∂Xµ
l

∂πai

)

d3x 6≡ 0, (103)

show that xi
a cannot be canonical.

Similarly to (65), the Poincaré generators can be written down on the base of (65) by means
of replacement of the corresponding density of interaction term.
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5 Conclusions

The gauge-invariant Hamiltonian formulation of the Einstein’s and Wu’s linearized theories of
gravity, when the particle and field variables are treated on equal rights, is obtained. In order
to find the description in the terms of particle variables only, we have effectively eliminated the
field degrees of freedom with the help of the Dirac’s theory of constraints. The used procedure
of the field reduction was elaborated in our previous paper [9]. Here we have limited ourselves
by the first-order approximation in the gravitational constant.

The field elimination permits us to get the relation between covariant particle positions and
canonical variables for gravitationally bounded system of particles. Moreover, such an approach
ensures the Poincaré invariance of the theory: the ten canonical Poincaré generators in the terms
of particles variables satisfy commutation relations of the Poincaré group in a given approxima-
tion.

Discarding gravitational field, we have obtained expression for metric tensor depending on
the canonical particle variables for the Einstein’s and Wu’s theories of gravity (see (62) and
(101)). The metric (62) in the general relativity is in agreement with the result of classical
work [16] in the terms of configuration variables. On the other hand, the Wu’s gravitational field
hW

µν and the Einstein’s field hE
µν are related as follows

2hW
µν = hE

µν −
1

2
ηµνhE , hE ≡ ηµνhE

µν .

Such a difference cannot be eliminated by means of canonical transformation. Thus, in the
first-order approximation in the gravitational constant with the explicit accounting of relativistic
kinematics the general relativity and the Wu’s theory of gravity are not physically equivalent.
However, the Wu’s metric leads to the Newtonian potential. Also hW

µν and hE
µν give us similar

expressions in the massless case.
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