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SELF-ORGANIZATION OF THE CRITICAL STATE IN PHYSICAL SYSTEMS
DESCRIBED BY DIFFERENTIAL EQUATIONS1
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A general form of the system of differential equations simulating the self-organized criticality
is presented. Three physically important cases of this system are studied in detail. It is shown
that the critical states of the systems under consideration are really self-organized.

PACS: 64.60.Lx 74.50.+r

1 Introduction

The concept of self-organized criticality (SOC) proposed by P. Bak et al. [1] was proved to be
useful for the explanation of the behaviour of the giant dissipative dynamical systems. According
to the main principles of this concept, such systems naturally evolve into a critical state that
is self-reproduced in further dynamics. This critical state is an ensemble of metastable states.
During the evolution process the critical system migrates from one metastable state to another
by means of so-called “avalanches”. Such a critical state is called a self-organized one, and the
mathematical criterion of self-organization is the power-law distribution of avalanche sizes.

The mathematical model for such type of behaviour was also introduced in [1] and it was
referred to as a “sand pile model”. This model is described by a cellular automaton that is the
system with discrete phase space.

The self-organized behaviour detecting itself as a power-law distribution of the system char-
acteristics is observed for a wide range of dynamical systems and phenomena. Nevertheless the
sand pile model and its modifications still remain the main objects for the theoretical study of
self-organization [1, 2]. Therefore, the problem of finding a useful physical system with self-
organization, available for experimental investigations of SOC, remains very actual. However
this problem is a difficult one, since the majority of physical systems is described by differential
equations in contrast with the classical models of SOC that are formulated in terms of cellular
automaton.

For the first time the realization of self-organized critical state in physical system described
by differential equations was demonstrated in [3–5]. These papers were devoted to study of
critical state in a granular superconductor.
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In the present work we consider two important cases of the system of differential equations
for the granular superconductors. First of them describes the physical system with asymmetrical
potential, so-called “ratchet”. The second one is related to the extensively investigated “mul-
tilayer” system with varying shapes of interlayer boundaries. We show that these systems are
self-organized. Using these results we formulate general mathematical requirements for differ-
ential equations to describe the self-organized system.

2 Self-organization of the critical state in multijunction SQUID

It is known [1] that the self-organized system consists of a large number of the interacting thresh-
old elements. The simplest physical example of such an element is single-junction SQUID de-
scribed as the hollow superconducting cylinder with Josephson junction inserted in [6]. Dynam-
ics of a SQUID is characterized by the gauge-invariant phase difference ϕ that is proportional to
the internal magnetic flux Φ:

ϕ =
2π

φ0
Φ, (1)

where φ0 is a magnetic flux quantum.
System under consideration is described by the following differential equation [6]:

V sin ϕ + τ
∂ϕ

∂t
= −ϕ + 2πFext , (2)

where Fext = Φext/φ0 describes the external perturbations, τ = 4πlS/ρ, ρ is the resistivity
of the junction, V = 8πlSjc/φ0 is the main SQUID parameter, where jc is the critical current
density, l is junction size, and S is the area of the SQUID ring.

The properties of SQUID strongly depend on SQUID parameter V . When the parameter V is
large (V � 1), the energy of the system has a large number of metastable states [6]. In this case
the SQUID demonstrates a threshold behaviour [6] and we can approximate the phase difference
by the step-wise function [3]

ϕ ≈ 2πp + π/2, (3)

where p is a integer number. It means that the internal magnetic flux Φ can change only by
integer number of magnetic flux quanta and the SQUID has a discrete phase space (1). Thus the
single-junction SQUID with V � 1 can serve as an element of self-organizing system.

The simplest system of interacting single-junction SQUIDs is one-dimensional multijunction
SQUID. It is described as two superconducting layers that are infinite in y dimension and are
connected by Josephson junctions of size l [6]. These junctions are situated along x axis and the
distance between two neighbour junctions is a random value bi. Following to [5], we assume that
the system is perturbed by means of current injection. The density of injected current is j1

i for
i-th contact. System under consideration is described by the generalization of Maxwell equations
for discrete lattice [6].
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V Ψ(ϕi) + τ
dϕi

dt
= Ji(ϕi+1 − ϕi) + Ji−1(ϕi−1 − ϕi) + 2πFi , i 6= 1, N (4)

V Ψ(ϕ1) + τ
dϕ1

dt
= J1(ϕi+1 − ϕi) + 2πF1 ,

V Ψ(ϕN ) + τ
dϕN

dt
= JN−1(ϕN−1 − ϕN ) + 2πFN ,

V =
16π2alλLjc

φ0
, τ =

8πalλL

ρ
, Ji =

a

bi
, Fi =

8πλLal

φ0
j1
i ,

where a =< bi >, Ψ(ϕi) = sinϕi, and N is a number of junction.
In the present paper we consider the perturbation method proposed in [2] for one-dimensional

sand pile model. For our system, this method is equivalent to increase of magnetic field in a
randomly chosen cell by δ = 1/2 [5], that leads to induction of positive current into the junction
situated on the right side of chosen cell and the same but negative current is injected into the
junction situated on the left side of the chosen cell:

Fi → Fi − 1/2 Fi+1 → Fi+1 + 1/2 . (5)

We study our multijunction SQUID and other systems described below by computer simula-
tions with N = 129, V = 40, τ = 1 and Ji = 1 for all i using the Euler integration scheme with
δt = 0.01. Starting from the stable state (all ϕi = 0) we perturb the system according to rules
(5), this perturbation launches the dynamical process (avalanche), during this process Fi are not
changed for any i. When the avalanche stops and the system reaches the metastable state (all
∂ϕi/∂t < 10−7), we perturb the system again and so on.

Finally, SQUID under consideration comes into the critical state that is an ensemble of
metastable states. The distribution of the “currents” zst

i = V/2π sin ϕi and the “magnetic field
profile” hi = 1

2π (ϕi+1 − ϕi) for one of the metastable state are shown in Fig. 1a, b. Comparing
our system with the sand pile model we see that the “magnetic field” plays the role of pile height
and “current” is an analog of pile slope.

To verify whether the arising critical state is self-organized one, we define the quantity which
is analog of the avalanche size. This is the integral of the voltage over the avalanche time [3]. We
take into account only “positive” part of system that is similar to the classical sand pile Fig. 1b.

uk =
φ0

2πM

M
∑

i=1

(ϕi(tek)) − ϕi(tbk)), (6)

where k is the avalanche number, M = 64, tbk, and tek are the starting and ending moments of
the k-th avalanche, respectively.

From Fig. 2a we see that the probability density of voltage ρ(u) demonstrates the power-law
behaviour. Hence the critical state of our system is the self-organized.

3 Self-organization of the critical state in asymmetrical system

Prescinding from the physical meaning of differential equations for SQUID (4) we can consider
them as equations describing the system with symmetrical periodical potential. However we
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Fig. 1. The profile of a) dimensionless “currents” b) “magnetic field” for the one of metastable states of
one-dimensional multijunction SQUID. The profile of z

st

i c) for asymmetric system, d) for “multilayer”
system.

often deal with situation when the system potential is periodical but an asymmetrical one. The
most popular example of such a system is the extensively investigated system with “ratchet”
potential [7]. The main feature of “ratchets” is presence of nonzero flux in the system under the
action of the zero-mean noise.

To construct such a system we replace the symmetrical function Ψ(ϕ) = sinϕ in (4) by
asymmetric one that is usually used for description of ratchets Ψ(ϕ) = (cosϕ + 1/8 cos2ϕ). In
this case the variable ϕ is not a “phase” but, for example, a spatial variable.

Then the equation for single element of the system (2) has the following form:

τ
∂ϕ

∂t
= −ϕ + 2πF − V (cosϕ +

1

8
cos 2ϕ) = −

∂U

∂ϕ
. (7)

For V � 1 such element also demonstrates the threshold behaviour and its energy U has a
large number of metastable states.

We study a system of N interacting elements (7) using the regime described above with
perturbation rules (5).

Every change of Fi leads to avalanche process and after the transition time the system
reaches the critical state that is an ensemble of metastable states. We see that the structure
of these metastable states (Fig. 1c, where zst

i is an analog of the “current” and calculated as
zst

i = (V/2π)Ψ(ϕi)) differs from that observed earlier (Fig. 1a). The asymmetrical profile is
conditioned by the asymmetry of function Ψ(ϕ).
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Fig. 2. Probability density of a) voltage for multijunction SQUID, b) the quantity (6) for asymmetric system,
c) quantity (6) for “multilayer” system. The fitting line has a slope α = −1.73.

For the every avalanche we consider the quantity that is analog of voltage and calculated
from eq. (6) with M = 57. The value for M is chosen so that only “positive” subsystem is
taken into account. The probability density for quantity (6) is shown on the Fig. 2b. From this
figure we see that it demonstrates the power-law behaviour then the system under consideration
is self-organized.

4 Self-organization of the critical state in the “multilayer” system

Considering the variable ϕ as a spatial one we can interpret the periodic part of the potential
Ψ(ϕ) as a potential of multilayer system. All examples of Ψ(ϕ) discussed earlier allow us to
vary only the period of the function. However one often encounters the systems with varying
shapes of interlayer boundaries such as domain systems. To describe such objects we need the
“two-scale” function, for example, the Jacobi function

Ψ(ϕ) = sn

(

2K(m)ϕ

π
, m

)

, K(m) =

∫ π/2

0

dϕ
√

1 − m sin2(ϕ)
, (8)

where K(m) is the complete elliptic integral of the first kind. The parameter m is responsible
for the shape of layers.

Replacing sinϕ in (2) by sn( 2K(m)ϕ
π ) we have the following equation:

τ
∂ϕ

∂t
= −ϕ + 2πF − V sn(

2K(m)ϕ

π
) = −

∂U

∂ϕ
. (9)

For V � 1 this also demonstrates the threshold behaviour and its energy U corresponds to
large number of metastable states.
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We consider the system consisting of N elements described by eq. (4) with Ψ(ϕ) = sn( 2K(m)ϕ
2π ),

and m = 0.99 using the regime mentioned above and perturbation rules (5). After the transition
process, the system reaches the critical state consisting of the large number of the metastable
states. The structure of these states is equivalent to that observed in SQUID (see Fig. 1d where
zst

i = (V/2π)Ψ(ϕi)).
For the every avalanche in the critical state we calculate the quantity (6). The probability

density for this quantity is presented in Fig. 2c. It is seen that it demonstrates the power-low
behaviour. It means that the critical state of our system is self-organized.

5 Conclusions

In our recent papers on study of critical state in granular superconductors [3–5] we demonstrated
that the self-organized criticality can arise in the physical system described by differential equa-
tions. In the present paper we used these results to study in detail two important modifications
of the system of differential equations (4). The first one describes the system with asymmetri-
cal potential, for example, the ratchet system. The second modification includes the two-scale
periodic function describing the potential of multilayer system. We have shown that the critical
states in these systems are self-organized.

Taking into account these results we conclude that the system of differential equations simu-
lating the physical system with SOC can be written in form (4), where ϕ is a dynamical variable,
Ψ(ϕ) = Ψ(ϕ + 2π) is periodical limited function, and F describes the external perturbations.
Coefficients Ji characterize the interactions between the elements. The main requirement for the
system to be self-organized is the large value of the parameter V (V � 1).

Obtained result gives the opportunity to find real physical systems where the self-organized
critical state can be observed.
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