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EXAMPLE OF A RENORMALIZATION GROUP SOLUTION FOR POINCARÉ
TRANSFORMATION IN THE FOCK SPACE1
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The whole set of correctly commuting renormalized Poincaré generators is presented up to
the terms of second order in the coupling constant in the case of gφ3 theory. It is explained
how Poincaré group elements are obtained by the exponentiation of generators in perturba-
tion theory. A dynamical Lorentz transformation of one-particle eigenstate of the effective
Hamiltonian is shown as an example.
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1 Introduction

Every quantum field theory of interest leads to divergences caused by direct coupling of particle
states with small and large invariant masses because of interaction terms present in the genera-
tors of Poincaré algebra. One could try to regularize the generators, but this introduces a new
artificial parameter to the theory and violates commutation relations in the Poincaré algebra. The
similarity renormalization group procedure for particles [1,2] provides a method for constructing
a well defined Hamiltonian whose eigenstates are independent of regularization. The procedure
can be extended to all other generators of Poincaré group [3, 4]. This presentation is showing it
in practice using the simplest possible interaction, gφ3.

2 Effective Poincaré algebra

Canonical expressions for ten generators of the Poincaré group P µ and Mµν [5] have to be
regularized to make theory finite. Every dynamical generator A∞ in the gφ3 theory has the form

A∞ =

∫

[p]v(0)
∞ (p)a†

pap + g

∫

[p1p2p3]δ(p1 + p2 − p3) r∆ v(1)
∞ a

†
1a

†
2a3 + H.c. , (1)

where [p] is the measure in momentum space, r∆ is regularization function introduced to make
these operators finite and v’s are given functions of momenta or differential operators acting in

1Presented at 5th Int. Conf. Renormalization Group 2002, Tatranská Štrba (Slovakia), March 2002
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the momentum space. Creation and annihilation operators are sometimes labeled by 1, 2, . . .

instead of p1, p2, . . . in this article in order to simplify the notation.
The regularization violates Poincaré algebra commutation relations and therefore the bare

regularized generators cannot be accepted.
With the help of similarity transformation the annihilation and creation operators correspond-

ing to the scale λ = ∞, i.e. the annihilation and creation operators in any bare generators A∞,
are expressed in terms of effective ones, corresponding to the scale λ =∞.

a
†
λ = U

†
λa†

∞Uλ . (2)

Here, Uλ is unitary transformation which is a solution of the renormalization group equation [1].
Up to the second order in g this gives

a†
∞p = [1 + g2h(λ, ∆)]a†

λp (3)

+ g

∫

[p1p2]
[

δ(p1 + p2 − p) z1λ a
†
λ1a

†
λ2 + δ(p2 − p1 − p) z2λ a

†
λ2aλ1

]

+ g2

∫

[p1p2p3]
[

δ(p1 + p2 + p3 − p) z3λ a
†
λ1a

†
λ2a

†
λ3

+ δ(p1 + p2 − p3 − p) z4λ a
†
λ1a

†
λ2aλ3 +δ(p3 − p1 − p2 − p) z5λ a

†
λ3aλ1aλ2

]

,

where h is a specified function and z’s are functions of momenta of particles.
Inserting the expression for a†

∞p from eq. (3) into eq. (1) and keeping terms up to the second
order in g, one can find the form of needed counterterms in the generators. The counterterms are
found from the condition that the matrix elements of effective generators Aλ between states with
small invariant masses are independent of ∆ in the ∆ → ∞ limit. Thus the effective generators
Aλ are finite.

Aλ =

∫

[p][v
(0)
λ (p) + g2cλ(p)]a†

λpaλp (4)

+ g

∫

[p1p2p3]δ(p1 + p2 − p3)fλ v
(1)
λ a

†
λ1a

†
λ2aλ3

+ g2

∫

[p1p2p3p4]δ(p1 + p2 + p3 − p4)fλ v
(2)
1λ a

†
λ1a

†
λ2a

†
λ3aλ4

+ g2

∫

[p1p2p3p4]δ(p1 + p2 − p3 − p4)fλ v
(2)
2λ a

†
λ1a

†
λ2aλ3aλ4 + H.c. .

Here, v’s are functions of momenta of particles. The effective dynamical generators get the
similarity form factors fλ which limit possible momenta transfer in the vertex. The function fλ

may be chosen for example as

fλ = exp

(

−
(M2

ann −M2
cre)

2

λ4

)

, (5)

where M2
ann and M2

cre are the squares of invariant masses of annihilated and created particles.
The kinetic term in eq. (4) is corrected by second order term g2cλ(p) coming from the loop
integration. It represents a correction to the mass of a particle. The first order terms are changed
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only by the presence of similarity form factor fλ, i.e. v
(1)
λ = v

(1)
∞ . All second order terms are

new, produced by similarity transformation and they have similar form factors.
After similarity transformation all kinematical generators preserve their form, only creation

and annihilation operators therein correspond now to the scale λ, i.e. a†
∞p and a∞p are replaced

by a
†
λp and aλp, respectively.

The presence of the similarity form factor fλ in the effective dynamical generators allows
us to remove regularization functions r∆ from the expression for Aλ. It can be checked by
an explicit calculation that effective generators P

µ
λ and M

µν
λ satisfy all required commutation

relations in the Poincaré algebra.

3 Dynamical transformation of a physical state

Any Poincaré transformation is obtained by exponentiation of generators of Poincaré algebra.

|Ψα(~p)〉 = L(α)|Ψ(~p)〉 , (6)

where

L(α) = e−iαAλ . (7)

In the case of a free theory this yields to

|Ψα(~p)〉 = |Ψ(~pα)〉 , (8)

where pα = Λ(pα ← p) p. Here, Λ(pα ← p) is the Lorentz transformation corresponding to
L(α) and p = (~p, E), pα = (~pα, Eα) and p2 = p2

α = m2.
When the interaction is present, the explicit calculation of the exponent in eq. (7) has to deal

with divergences of the local quantum field theory. Therefore, the calculation of L(α) is possible
only with a correctly defined operator Aλ such as the generators of the renormalized Poincaré
algebra are.

Now, L(α) is calculated similarly to the S-matrix in the old fashioned perturbation theory.
One can write

Aλ = Aλ0 + AλI , (9)

where Aλ0 = Aλ(g = 0) and introduce W (α) such that

L(α) = W (α)L0(α) , (10)

where L0(α) = exp(−iαAλ0). Here, W (α) satisfies the differential equation

d

dα
W (α) = −iW (α)AλI (α) , (11)

where AλI(α) = L0(α)AλIL0(α)−1, which may be integrated term by term in a power series
in g. One obtains

W (α) = 1 + gW1(α) + g2W2(α) + · · · , (12)
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where

W1(α) = −i

∫ α

0

dβAλ1(β) , (13)

W2(α) = (−i)2
∫ α

0

dβ

∫ β

0

dβ′Aλ1(β
′)Aλ1(β) − i

∫ α

0

dβAλ2(β) . (14)

In this way the transformation may be found order by order.
In the example discussed in reference [3], a rotation around x axis is analyzed, because in the

light front formulation of dynamics the rotation is dynamical [6]. In the equal time formulation
the boosts are dynamical.

The check that effective algebra has to pass is: does it properly transform physical states?
First we define a state which will be transformed. The eigenstate equation for one-particle

state

Hλ|Ψλ(~p)〉 = Ephys|Ψλ(~p)〉 (15)

is solved in perturbation theory up to second order in g. Note that eigenvalue Ephys is indepen-
dent of λ though both Hλ and |Ψλ(~p)〉 are dependent on. The mass of the physical particle is
connected to the bare mass by

m2
phys. = m2 + g2δm2 . (16)

The term g2δm2 is the one loop correction to the bare mass and it comes from a solution to the
renormalization group equation. We introduce pphys = (~p, Ephys) for which p2

phys = m2
phys in

contrast to p2 = m2. Up to the second order in g, the one particle eigenstate is

|Ψ(~p)〉 = N [|Ψ0(~p)〉 +g|Ψ1(~p)〉+ g2|Ψ2(~p)〉+ · · ·
]

, (17)

where N is a normalization factor and |Ψ0(~p)〉 = a
†
λp|0〉. The states |Ψ1(~p)〉 and |Ψ2(~p)〉 are

calculated using perturbation theory.
According to eq. (6), the transformed state is

|Ψα(~p)〉 = N {L0(α)|Ψ0(~p)〉+ g [L1(α)|Ψ0(~p)〉+ L0(α)|Ψ1(~p)〉] (18)

+ g2 [L2(α)|Ψ0(~p)〉+ L1(α)|Ψ1(~p)〉+ L0(α)|Ψ2(~p)〉]
}

= N

[

|Ψ0(~pα)〉+ g|Ψ1(~pα)〉+ g2|Ψ2(~pα)〉+ g2δm2 d

dm
|Ψ0(~pα)〉

]

.

All terms but the last one are what one could expect having experience from a free field case. The
last term in eq. (18) can be understood as follows. The physical state is labeled by ~p and it is the
eigenstate of Hλ with the eigenvalue Ephys. Further on, ~p and Ephys form a four-vector pphys.
The Poincaré transformation we consider here changes pphys to pphysα = (~pphysα, Ephysα),
thus the transformed state should be |Ψ(~pphysα)〉. Because the considered transformation is
dynamical, then the definition of ~pphysα, which should label the transformed state, involves the
physical mass mphys. Therefore, if we perform the calculation up to the second order in g,
we have to expand |Ψ(~pphysα)〉 in the vicinity of |Ψ(~pα)〉. We have to do this only for the
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|Ψ0(~pphysα)〉 component because the physical and bare masses differ by the term of order g2.
Thus

a
†
λpphysα

= a
†
λpα

+ g2δm2 d

dm
a
†
λpα

(19)

shows the source of the last term in eq. (18). Details of the calculation can be found in [3].

4 Conclusion

The renormalized Poincaré group generators obtained for gφ3 satisfy all required commutational
relations up to the order g2 including the hard-to-satisfy relation between dynamical generators.
Exponentiation of the generators gives a representation of Poincaré group that correctly trans-
forms physical states as it is required by special relativity.
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