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RENORMALIZATION GROUP IN THE STATISTICAL THEORY OF TURBULENCE:
TWO-LOOP APPROXIMATION1
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The field theoretic renormalization group is applied to the stochastic Navier–Stokes equation
that describes fully developed fluid turbulence. The complete two-loop calculation of the
renormalization constant, the beta function and the fixed point is performed. The ultravio-
let correction exponent, the Kolmogorov constant and the inertial-range skewness factor are
derived to second order of the ε expansion.
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1 Introduction

One of the oldest open problems in theoretical physics is that of describing fully developed tur-
bulence on the basis of a microscopic model. The latter is usually taken to be the stochastic
Navier–Stokes (NS) equation subject to an external random force which mimics the energy input
by the large-scale modes; see, e.g., [1, 2]. The aim of the theory is to verify the basic princi-
ples of the celebrated Kolmogorov–Obukhov phenomenological theory, study deviations from
this theory, determine the dependence of various correlation functions on the times, distances,
external (integral) and internal (viscous) turbulence scales, and derive the corresponding scaling
dimensions. Most results of this kind were obtained within the framework of numerous semiphe-
nomenological models which cannot be considered to be the basis for construction of a regular
expansion in certain small (at least formal) parameter [1, 2].

An important exception is provided by the renormalization group (RG) method that was
earlier successfully applied in the theory of critical behaviour to explain the origin of critical
scaling and to calculate universal quantities (critical dimensions and scaling functions) in the
form of the ε expansions [3].

The RG approach to the stochastic NS equation, pioneered in [4–7], allows one to prove the
existence of the infrared (IR) scale invariance with exactly known “Kolmogorov” dimensions
and the independence of the correlation functions on the viscous scale (the second Kolmogorov
hypothesis), and calculate a number of representative constants in a reasonable agreement with
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experiment; see [8–10] for a review. Much more detailed exposition of the RG theory of turbu-
lence and the bibliography can be found in [11].

In contrast to the standard φ4 model of critical behaviour [3], where the critical exponents
are known up to the order ε5 (five-loop approximation), all the calculations in the RG approach
to the stochastic NS equation have been confined with the simplest one-loop approximation. The
reason for this distinction is twofold. First, calculation of the multiloop diagrams for this dy-
namical model appears rather involved due to the presence of frequencies and vector indices in
the corresponding integrands. Our experience has shown that the two-loop calculation for the
stochastic NS equation is, roughly speaking, as cumbersome as the four-loop calculation for the
conventional φ4 model. Second, the use of Galilean invariance and functional Schwinger equa-
tions allows one to calculate the critical dimensions for the most important physical quantities
(velocity and its powers, frequency, energy dissipation rate and so on) exactly [4–7]. The cor-
responding ε series terminate at first-order terms (in this sense, they are given by the one-loop
approximation exactly) and the higher-order calculations for them are not needed.

However, the ε series for other important quantities do not terminate and the calculation of
the higher-order terms for them is of great interest. In this paper, we present the results of the
two-loop calculation for a number of such quantities: the ultraviolet (UV) correction exponent
ω, the Kolmogorov constant CK and the inertial-range skewness factor S.

2 The model, field theoretic formulation and renormalization

Detailed exposition of the RG theory of turbulence and the bibliography can be found in [10,11];
below we restrict ourselves to only the necessary information.

As the microscopic model of the fully developed, homogeneous, isotropic turbulence of an
incompressible viscous fluid one usually takes the stochastic NS equation with a random driving
force

∇tϕi = ν0∂
2ϕi − ∂iP + Fi, ∇t ≡ ∂t + (ϕ∂). (1)

Here ϕi is the transverse (due to the incompressibility) three-dimensional vector velocity field,
P and Fi are the pressure and the transverse random force per unit mass (all these quantities
depend on x ≡ {t,x}), ν0 is the kinematical viscosity coefficient, ∂2 is the Laplace operator and
∇t is the Lagrangian derivative. The problem (1) is studied on the entire t axis and is augmented
by the retardation condition and the condition that ϕi vanishes for t → −∞. We assume for F a
Gaussian distribution with zero mean and correlator

〈Fi(x)Fj (x
′)〉 = δ(t − t′)(2π)−3

∫
dkPij(k)dF (k) exp

[
ik (x − x

′)
]
, (2)

where Pij(k) = δij − kikj/k2 is the transverse projector and dF (k) is some function of k ≡ |k|
and model parameters.

The stochastic problem (1), (2) is equivalent to the field theoretic model of the doubled set of
fields Φ ≡ {ϕ, ϕ̂} with action functional

S(Φ) = ϕ̂DF ϕ̂/2 + ϕ̂[−∂tϕ + ν0∂
2ϕ − (ϕ∂)ϕ], (3)

where DF is the random force correlator (2) and the required integrations over x = {t,x} and
summations over the vector indices are understood.
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The standard RG technique can be applied to the model (3) if the function dF (k) is chosen
in the form

dF (k) = D0 k1−2ε h(m/k), D0 > 0, h(0) = 1. (4)

Here m = 1/L is the reciprocal of the integral turbulence scale L and the function h(m/k),
rapidly decaying for m/k → ∞, provides the IR regularization. The exponent ε > 0 plays the
part of the RG expansion parameter, similar to that played by ε = 4 − d in Wilson’s theory of
critical phenomena [3]. The real (physical) value of this parameter is ε = 2: idealized energy
injection by infinitely large eddies corresponds to dF (k) ∝ δ(k), and the function (4) for ε → 2
and the appropriate choice of the amplitude can be considered as a power-law model of the
three-dimensional δ function.

The model (3) is logarithmic (the coupling constant g0 ≡ D0/ν3
0 is dimensionless) at ε = 0,

and the UV divergences have the form of the poles in ε in the correlation functions of the fields
ϕ and ϕ̂. Superficial UV divergences, whose removal requires counterterms, are present only in
the 1-irreducible function 〈ϕ̂ϕ〉, and the corresponding counterterm has the form ϕ̂∂2ϕ. Thus
for the complete elimination of the UV divergences it is sufficient to perform the multiplicative
renormalization of the parameters ν0 and g0 = D0/ν3

0 with the only independent renormalization
constant Zν :

ν0 = νZν , g0 = gµ2εZg, Zg = Z−3

ν (D0 = g0ν
3

0 = gµ2εν3). (5)

Here µ is the reference mass in the minimal subtraction (MS) scheme, which we always use
in what follows, g and ν are renormalized analogues of the bare parameters g0 and ν0, and
Z = Z(g, ε, d) are the renormalization constants. In the MS scheme they have the form “1 +
only poles in ε,” in particular,

Zν = 1 +

∞∑

k=1

ak(g)ε−k = 1 +

∞∑

n=1

gn
n∑

k=1

ankε−k, (6)

with the one-loop coefficient a11 = −1/40π2 [6, 7].

3 Two-loop approximation for the RG functions, fixed point and the UV correction
exponent

We have performed calculation of the constant Zν with the accuracy of g2 (two-loop approx-
imation). Divergent parts (that is, poles in ε) of the two-loop diagrams can be represented as
integrals over three variables: moduli of the two integration momenta and the angle between
them. With an appropriate choice of the function h(m/k) in (4), one modular integration can be
got rid of using the differentiation with respect to the IR cut-off m; the other two integrations
can be performed numerically for any given value of d, the space dimensionality. Details of this
calculation can be found in [12, 13], and below we give only the results for the residues a22 and
a21 at the second-order and first-order poles in ε in the representation (6) in three dimensions:

a22/a2

11 = 1, a21/a2

11 ' −1.65. (7)
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The knowledge of the renormalization constant Zν to order g2 allows for the calculation of
the RG functions, the anomalous dimension γν and the beta function βg(ε, g), with the following
accuracy:

β(g, ε) ≡ D̃µg = g (−2ε + 3γν(g)) ,

γν(g) ≡ D̃µ ln Zν = −2g∂ga1(g) = −2
(
a11g + 2a21g

2
)

+ O(g3), (8)

where D̃µ is the operation µ∂/∂µ at fixed bare parameters. In the MS scheme only the residues
at the first-order poles in ε, that is, only the coefficients ak1, contribute to the RG functions owing
to the UV finiteness of the latter.

The coordinate of the fixed point is determined by the condition that β(g∗) = 0. From (7)
and (8) we thus obtain:

g∗ = (40π2ε/3)(1 + λε) + O(ε3), λ ≡ 2a21/3a2

11 ' −1.10. (9)

Due to the first relation in (8), the value of the anomalous dimension γν at the fixed point is
found exactly, γν(g∗) = 2ε/3, and has no corrections of order ε2 and higher. On the contrary,
the correction exponent ω = β′(g∗), determined by the slope of the beta function at the fixed
point, is given by an infinite series in ε. From (8) and (9) we obtain the first and second terms of
its ε expansion:

ω = 2ε(1 − λε) + O(ε3). (10)

4 Two-loop calculation of the Kolmogorov constant

The Kolmogorov constant CK can be defined as the (dimensionless) coefficient in the inertial-
range expression S2(r) = CK(ε r)2/3 for the second-order structure function, predicted by the
Kolmogorov–Obukhov theory and confirmed by experiment [1, 2]. Here ε is the mean energy
dissipation rate and the n-th order (longitudinal, equal-time) structure function is defined as

Sn(r) ≡
〈
[ϕr(t,x + r) − ϕr(t,x)]n

〉
, ϕr ≡ (ϕi · ri)/r, r ≡ |r|. (11)

Using the exact relation S3(r) = −4ε r/5 that follows from the energy balance equation [1, 2],
the constant CK can be related to the inertial-range skewness factor:

S ≡ S3/S
3/2

2
= −(4/5) C

−3/2

K .

Many studies have been devoted to the derivation of CK within the framework of the RG
approach; see [14–22]. In order to obtain CK , it is necessary to augment the solution of the RG
equation for S2 by some formula that relates the amplitude D0 in the random force correlator
(4) to the physical parameter ε. In particular, in [14–16] the first-order term of the ε expansion
for the pair correlator was combined with the so-called eddy damped quasi-normal Markovian
approximation for the energy transfer function, taken at ε = 2. A more elementary derivation,
based on the exact relation between ε and the function dF (k) from (4) was given in [17]; see
also [10, 11]. In spite of the reasonable agreement with the experiment, such derivations are not
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immaculate from the theoretical viewpoints. Their common flaw is that the relation between ε
and D0 is unambiguous only in the limit ε → 2:

lim
ε→2

D0

4π2(2 − ε)
= ε, (12)

so that the coefficients of the corresponding ε expansions appear in fact arbitrary; see the discus-
sion in [21] and Sec. 2.10 of [11]. The ambiguity is a consequence of the fact that the notion of
the Kolmogorov constant has no definite extension to the nonphysical range ε < 2.

The experience on the RG theory of critical behaviour shows that unambiguous ε expansions
can be written for universal quantities, such as critical exponents, normalized scaling functions
and ratios of amplitudes in scaling laws [3]. The constant CK extended to the range ε < 2 as in
[14–16] or [17] involves a bare parameter, D0, and hence is not universal.

To circumvent this difficulty, we propose below an alternative derivation that relates CK to
an universal quantity and thus does not involve any relation between D0 and ε, and calculate
CK to second order of the expansion in ε (previous attempts have been confined to first order).
Consider the ratio

Q(ε) ≡ r∂rS2(r)/|S3(r)|
2/3 = r∂rS2(r)/(−S3(r))

2/3. (13)

The operation r∂r ≡ r∂/∂r kills the constant contribution 〈ϕ2〉 in S2 that diverges as Λ → ∞
for ε < 3/2; in S3 such constant contributions are absent.

Solving the RG equations for the quantities in Q(ε) in the IR range (Λr � 1) for general
0 < ε ≤ 2 gives

S3(r) = D0r
−3∆ϕf3(ε), r∂rS2(r) = D

2/3

0
r−2∆ϕ/3f2(ε), ∆ϕ = 1 − 2ε/3; (14)

see e.g. [10, 11]. Thus the quantity Q(ε) = f2/(−f3)
2/3 in (13) does not depend on D0 and can

be calculated in the form of a regular ε expansion. We calculated the scaling functions f2,3 to the
second order of the ε expansion, which corresponds to the two-loop approximation in (9), (10),
and obtained:

Q(ε) = (1/3)(20ε)1/3
[
1 + 0.525ε + O(ε2)

]
. (15)

It is worth noting that the ε expansion for f3 can be obtained not only from the direct perturbative
calculation, but also from the exact expression

S3(r) = −
6Γ(2 − ε)

22επ3/2Γ(3/2 + ε)
D0r

−3∆ϕ (16)

that follows from the energy balance equation. In the limit ε → 2 equation (16) along with the
formula (12) reproduce the correct coefficient −4/5 (see above).

The value of Q(ε) at ε = 2 determines the Kolmogorov constant and skewness factor through
the exact relations CK = 6 · 10−2/3 Q(2), S = −[1.5 · Q(2)]−3/2, which follow from the
definitions and the identity r∂rr

λ = λrλ for any λ. Substituting the value of (15) we obtain
CK = 3.02, S = −0.15. If we retained only the first-order term in (15) we would have obtained
CK = 1.47 and S = −0.45. We also recall the experimental estimates recommended in [1]:
CK ≈ 1.9 and S ≈ −0.28.
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Over the last four decades, deviations from the Kolmogorov theory due to intermittency and
the issue of anomalous scaling have been much debated [1, 2]. Within the framework of the RG,
such deviations can be related to Galilean invariant composite fields (operators) with negative
critical dimensions [10,11,17]. For the so-called Kraichnan’s rapid-change model (see [23] for a
review and references) this idea allows one to construct regular ε expansions for the anomalous
exponents that measure the deviations of the scaling laws from the predictions of the Kolmogorov
theory [24,25]. However, for the model (3), (4) no such operator has been presented in any study
we know of. Although the problem should be considered open, this fact suggests that Galilean
invariant objects may have a finite limit at m → 0 in agreement with the first Kolmogorov
hypothesis. Above we calculated the constant CK within the assumption that the second-order
structure function S2 in (11) is finite at m = 0. Such an assumption can be justified by the real
experiments, which indicate that the corresponding exponent is hardly distinguishable from the
Kolmogorov value [1], or by the example of the Kraichnan model, in which the second-order
function is not anomalous [23]. It should also be stressed that such a derivation is internally
consistent because no negative dimensions in model (3) for asymptotically small ε [10, 11].

5 Conclusion

We have accomplished the complete two-loop calculation of the renormalization constant and
RG functions for the stochastic problem (1)–(4) and derived the coordinate of the fixed point, the
UV correction exponent ω, the Kolmogorov constant CK and the inertial-range skewness factor
S to second order of the corresponding ε expansions. The new point is not only the inclusion of
the second-order correction, but also the derivation of CK through an universal (in the sense of
the theory of critical behaviour) quantity.

Of course, one should have not expected that the second-order terms of the ε expansions
would be small in comparison to the first-order terms. The experience from the RG theory of
critical behaviour shows that such corrections are not small for dynamical models (in contrast to
static ones) and for amplitudes (in contrast to exponents); see [3]. It is thus rather surprising that
in our case the account of the two-loop contributions leads to reasonable changes in the results.

Although the ε2 correction to ω in (10) is rather large, it does not change its sign and hence
does not destroy the IR stability of the fixed point.

The first-order approximation CK = 1.47 underestimates, and the second-order approxima-
tion CK = 3.02 overestimates the conventional experimental value of the Kolmogorov constant
CK ≈ 1.9 [1]. Thus the experimental value of CK (and hence for S) lies in between the two
consecutive approximations. A similar situation is encountered for the well-known Heisenberg
model [1], where the analogue of the Kolmogorov constant is known exactly and lies between
the first-order and second-order approximations given by the corresponding ε expansion [26]. If
we assume, by the analogy with the Heisenberg model, that the (unknown) exact predictions for
CK and S lie between the first two approximations, we may conclude that our calculation has
given a satisfactory estimate for these quantities.
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