
acta physica slovaca vol. 52 No. 6, 559 – 564 December 2002
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Using the field theoretic renormalization group and the operator product expansion the struc-
ture of the fluctuations of passively advected magnetic field in a given anisotropic stochastic
environment is analyzed. Inertial-range anomalous scaling behaviour is studied, and explicit
asymptotic expressions for structure functions are determined. The corresponding anomalous
exponents are calculated in the first order in a small parameter of the model as functions of the
anisotropy parameters. The negativeness of some exponents indicates a complex multifractal
structure of the fluctuations of the passively advected magnetic field in such environment.

PACS: 47.27.−i

1 Introduction

Instabilities of the hydromechanic motion of fluids leads to generation of complex stochastic
processes in these. As a result, the macroscopic dynamics becomes complicated and can cause a
nontrivial topological structure of hydrodynamic systems.

Quantum field theory method, including the renormalization group (RG) and the operator
product expansion (OPE) approach, has been successfully used for theoretical explanation of
various phenomena in stochastic flows (see [1] and refs. therein).

Over the last five years some progress has been achieved in the understanding of the physical
origin of multifractality and anomalous scaling in stochastic dynamics [2, 3]. The central role in
this was played by the model of the passive advection of a scalar quantity (e.g. temperature, or
concentration of the marker) by random Gaussian field in the rapid-change model [4].
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Straightforward generalization of the model of the passive advection of a scalar field are the
models of the passively advected vector fields (see e.g. [5–9] and references therein).

The aim of this work is to study of the spacial structure of fluctuations of the passively
advected magnetic field in the framework of the kinematic magnetohydrodynamic so-called
Kazantzev-Kraichnan model [10]. The fluctuations are generated stochastically by a given ani-
sotropic white in time and self-similar in space Gaussian noise. The goal is the calculation of the
anomalous exponents as the functions of the anisotropy parameters. It was found that (from the
mathematical point of view) the model is in some aspects equivalent to the model of a passive
scalar quantity advected by the Gaussian strongly anisotropic velocity field [11], meaning that
the corresponding structure functions of both models exhibit the same anomalous behaviour.

2 Definition of the model

We consider the passive advection of the magnetic field b ≡ b(x, t) which is described by the
stochastic equation

∂tb = ν04b − (v∇)b + (b∇)v + f
A + f , (1)

where ν0 is a “diffusion” coefficient of unrenormalized theory and v ≡ v(x, t) is a random
solenoidal (owing to the incompressibility) velocity field. The term f

A = χ0ν0(n∇)2b is related
to anisotropy and is needed to have multiplicatively renormalizable model [11]. χ0 is a new
parameter of the model and the unit vector n specifies the direction of the anisotropy axis. The
transverse Gaussian stirring force f ≡ f(x, t) with zero mean and a white noise in time pair
correlator

Df
ij ≡ 〈fi(x, t)fj(x

′, t′)〉 = δ(t − t′)Cij(r/L), r = x− x
′ (2)

is the source of the fluctuations of the passive magnetic admixture b. The parameter L is the
integral scale related to the stirring and Cij are dimensionless functions finite in the limit L → ∞.
In our considerations its precise form is irrelevant.

The random velocity field v obeys the Gaussian statistics with zero mean and the noise

Dv
ij(x, t) ≡ 〈vi(x, t)vj(0, 0)〉 =

D0δ(t)

(2π)d

∫

dd
k

eikx Tij(k)

(k2 + r−2
c )d/2+ε/2

, (3)

where rc is the correlation length, d is the dimensionality of the coordinate space, D0 > 0 is an
amplitude factor related to the coupling constant g0 of the model by relation D0/ν0 ≡ g0 and
0 < ε < 2 is a free parameter. Its “physical” value ε = 4/3 mimics the Kolmogorov statistics
of the velocity field in developed turbulence. The tensor quantity Tij(k) characterizes the space
vector structure of v. In case of incompressible fluid, it is represented by a transverse structure
with uniaxial anisotropy, where the distinguished direction of the anisotropy axis is defined by
the unit vector n [11]

Tij(k) ≡

(

1 + α1
(nk)2

k2

)

Pij(k) + α2nsnlPis(k)Pjl(k); Pij(k) = δij −
kikj

k2
. (4)

The anisotropy parameters α1,2 > −1, and Pij(k) being the ordinary transverse projection
operator.
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The main object of the study is the asymptotic behaviour of the equal-time structure functions
SN(r), which represent the equal-time correlations of the N -th powers of differences of the
projection of the field b onto the direction along two separate space coordinates x and x

′

SN (r) ≡ 〈[br(x, t) − br(x
′, t)]N 〉, br ≡ br/r, r ≡ |x − x

′|. (5)

In the quantum field theory language, they are defined as

SN (r) ≡

∫

Db
′DbDv[br(x, t) − br(x

′, t)]NeS(b,b′,v) (6)

with the Janssen-Dominicis action functional [12, 13] for the set of three fields b
′,b,v

S(b,b′,v) ≡ b
′Df

b
′/2 + b

′[−∂t − (v∇) + ν0∆ + χ0ν0(n∇)2]b +

b
′(b∇)v − v(Dv)−1

v/2, (7)

where b
′ is an auxiliary field. All necessary integrations over space-time coordinates and sum-

mations over the vector indices are implied.

3 Analysis of statistical properties of the passively advected magnetic field

Renormalization group analysis of SN in the non-dissipative range of scales r � rd, where rd is
the Kolmogorov dissipative (inner) length leads to the equal-time structure functions in the form:

SN (r) = D
−N/2
0 rN(1−ε/2)RN (r/rc) (8)

with some still unknown scaling functions RN (r/rc) (for details see [11]).
Physically interesting range of scales is the so-called inertial range, specified by inequalities

rd � r � rc, where the behaviour of the functions RN (r/rc) can be studied by the operator
product expansion (OPE) technique [1, 14].

In the limit r/rc → 0 these scaling functions take the following asymptotic forms

RN (r/rc) =
∑

F

AF (r/rc)
∆F , (9)

where summation over all possible renormalized composite operators F is implied (see below),
∆F are their critical dimensions and AF are the Wilson coefficients regular in r/rc.

The specific feature of the models describing turbulence is the existence of the so-called
“dangerous” composite operators with negative critical dimensions (see [1, 15] and references
therein). Their contribution into the OPE leads to singular behaviour of the scaling functions for
r/rc → 0. The leading singular contribution is given by the operator with minimal ∆F . As a
result, SN have singular powerlike behaviour as r/rc → 0:

SN (r) = D
−N/2
0 rN(1−ε/2)

∑

F

AF (r/rc)
∆F ∝ rN(1−ε/2)(r/rc)

∆N , (10)

with the most singular exponent ∆N .
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Fig. 1. Behaviour of the critical dimensions ∆[7, p]/ε for d = 3 as functions of the anisotropy parameters
α1 and α2.

4 Critical dimensions of composite operators

A composite operator is any monomial or polynomial constructed of primary fields and their
derivatives at the same space-time point x ≡ (x, t). In our case, anomalous exponents ∆F are
critical dimensions of the scalar composite operators constructed solely of the fields b without
derivatives:

F [N, p](x) ≡ [nb(x)]p[bi(x)bi(x)]l, (11)

with N ≡ 2l + p, giving the leading singular contributions to the sum (9). The operators (11)
mix only with each other in renormalization

F [N, p] =
∑

N ′,p′

Z[N,p][N ′,p′]F
R[N ′, p′] (12)

and the corresponding infinite renormalization matrix Z[N,p][N ′,p′] takes the block-triangular
form, i.e., Z[N,p][N ′,p′] = 0 for N ′ > N .

The elimination of ultraviolet (small scale) singularities of correlation functions containing
such operators leads to the non-trivial values of the matrix of critical dimensions ∆[N, p] ex-
pressed via matrix Z[N,p][N ′,p′]. The critical dimensions ∆F are the eigenvalues of the matrix
∆[N, p].

In isotropic case (p = 0), only even correlation functions S2N (5) persist and the contribution
to them is determined by the critical dimensions ∆N ≡ ∆[N, 0], which have been calculated in
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Fig. 2. Behaviour of the critical dimensions ∆[8, p]/ε for d = 3 as functions of the anisotropy parameters
α1 and α2.

the leading order of perturbative series in small ε

∆N = −
2N(N − 1)ε

d + 2
, (13)

and coincide with those obtained for the advection of passive scalar quantity [3, 11].

In anisotropic case an analytical expression has been obtained for the exponents ∆N to the
1st order in ε for N = 2. For N > 2 the exponents can be found analytically only within an
expansion in small parameters characterizing the intensity of anisotropy. Such expansions have
been obtained up to the next to leading order of anisotropy parameters for all exponents with N ≤
4. The exponents beyond this expansion have been obtained numerically. The main conclusion
is that the exponents ∆N remain negative in anisotropic case and decrease monotonically as N
increases for both odd and even values of N .

Although, at a first sight, the vector model under consideration is more complicated than
model of the passively advected scalar quantity, nevertheless, the considering structure functions
in both models have the same asymptotic behaviour in the inertial range. Thus, we do not present
explicit expressions for the anomalous dimensions here (they can be found in Ref. [11]). Instead
we present numerical analysis of the anomalous dimensions for the higher-order structure func-
tions SN with N = 7, 8. In Fig. 1 and Fig. 2, the eigenvalues ∆[N, p] for N = 7, 8 of the matrix
of anomalous dimensions are presented as functions of the anisotropy parameters α1, α2. One
can see that the exponents exhibit a hierarchy related to the degree of anisotropy.
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5 Conclusion

The field theoretic renormalization group and the operator product expansion have been applied
to analyze the kinematic MHD Kazantzev-Kraichnan model with small-scale anisotropy. The
anomalous scaling behaviour of the structure functions has been found and the anomalous expo-
nents have been calculated. The negative values obtained for these exponents imply a singular
asymptotic behaviour of structure functions SN for r/rc → 0. As it is known from various
phenomenological multifractal models of stochastic systems [16], this is a signal for complex
multifractal structure of passively advected magnetic field fluctuations in turbulent incompress-
ible fluids.
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