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INFLUENCE OF ANISOTROPY ON THE SCALING REGIMES IN FULLY
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Fully developed turbulence with anisotropy is investigated by means of the renormalization
group approach and double expansion regularization for dimensions d ≥ 2. Modification
of the standard minimal subtraction scheme has been used to analyze the restoration of the
stability of the Kolmogorov scaling regime under a transition from d = 2 to 3. The results
are in qualitative agreement with results obtained in the framework of a typical analytical
regularization scheme.
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1 Introduction

A traditional approach to the description of fully developed turbulence is based on the stochastic
Navier-Stokes equation [1]. An exact solution of the Navier-Stokes equation does not exist, and
so one is forced to find some convenient methods to treat the problem at least step by step.

A suitable and also powerful tool in the theory of developed turbulence is the so-called
quantum-field renormalization group (RG) method [2, 3]. In early papers, the RG approach
was applied only to isotropic models of developed turbulence. However, the method can also
be used in the theory of anisotropically developed turbulence. A crucial question immediately
arises here: whether the scaling regime remains stable under transition from the isotropic to the
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anisotropic case. In other words, do the stable fixed points of the RG equations remain stable
under the influence of anisotropy?

In Refs. [4, 5], d-dimensional models with d > 2 were investigated for two cases, weak
anisotropy [4] and strong anisotropy [5], and it was shown that the stability of the isotropic fixed
point is lost for dimensions d < dc = 2.68. It was also shown that the stability of the fixed
point, even for dimension d = 3, takes place only for sufficiently weak anisotropy. The only
problem in these investigations is that it is impossible to use them in the case d = 2, because new
ultraviolet (UV) divergences appear in the Green functions, when one considers d = 2. Correct
treatment of the two-dimensional isotropic turbulence was given in Ref. [6]. The correctness
in the renormalization procedure was reached by introducing a new local term into the model,
which allows one to remove additional UV divergences in accordance with the basic principles
of renormalization [7, 8].

In Ref. [9] the double-expansion procedure introduced in Ref. [6] and the minimal subtrac-
tion (MS) scheme for an investigation of developed turbulence with weak anisotropy for d = 2
were used. The main result of the paper was the conclusion that the two-dimensional fixed point
is not stable under weak anisotropy. They also tried to restore the stability of the fixed point using
analytical continuation from d = 2 to the three-dimensional turbulence. From analysis made in
Ref. [9], it follows that it is impossible to restore the stable regime by transition from dimension
d = 2 to 3 in the framework of the standard MS scheme.

In Ref. [10,11] a modified MS scheme was introduced and applied in which the d-dependence
of the UV divergences of graphs were kept. It was shown that the using of such modification in
the procedure of renormalization allows to restore the stability of the fixed point of fully devel-
oped turbulence with weak anisotropy by transition from d = 2 to 3.

In the present paper we follow the idea of Ref. [10] but we allow the parameters of the
anisotropy to have arbitrary possible values (strong anisotropy). Our aim is to analyze the in-
fluence of the strong anisotropy on the stability of the scaling regime in the case with d ≥ 2
and also to study the restoration of the stability by transition from d = 2 to 3 and to find the
dependence of the borderline dimension dc on the parameters of anisotropy. We also compare
our results with that obtained in the framework of a typical analytical regularization scheme (so
called ε-expansion) [5].

2 Description of the model

We work with fully developed turbulence, and assume a strong anisotropy of the system. In the
statistical theory of anisotropically developed turbulence, the turbulent flow can be described by
a random velocity field v(x, t), and its evolution is given by the randomly forced Navier-Stokes
equation

∂v

∂t
+ (v∇)v − ν0∆v − f

A = f , (1)

where we assume incompressibility of the fluid, which is given mathematically by the well-
known conditions (∇v) = 0 and (∇f) = 0. In eq. (1) the parameter ν0 (subscript 0 denotes
bare parameters) is the kinematic viscosity, the term f

A is related to anisotropy, and its form is
dictated by the condition to have a multiplicatively renormalizable model. In our case it has the
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following form

f
A = ν0

[

χ10(n∇)2v + χ20n∇
2(nv) + χ30n(n∇)2(nv)

]

. (2)

Bare parameters χ10, χ20 and χ30 characterize the weight of the individual structures in eq. (2).
The large-scale random force per unit mass f is assumed to have Gaussian statistics defined by
the averages

〈fi〉 = 0, 〈fi(x1, t)fj(x2, t)〉 = Dij(x1 − x2, t1 − t2). (3)

In our case, the two-point correlation matrix

Dij(x, t) = δ(t)

∫

dd
k

(2π)d
D̃ij(k) exp(ikx) (4)

is convenient to parameterize as [10]:

D̃ij(k) = g10ν
3
0k2−2δ−2ε[(1 + α1ξ

2
k)Pij (k) + α2Rij(k)]

+ g20ν
3
0k2[(1 + α30ξ

2
k)Pij(k) + (α40 + α50ξ

2
k)Rij(k)] , (5)

where a vector k is the wave vector, d is the dimension of the space (in our case: 2 ≤ d),
ε ≥ 0 and δ = (d − 2)/2 are dimensionless parameters of the model (the physical value of ε
is ε = 2). The values ε = 0 and δ = 0 correspond to a logarithmic perturbation theory for
calculation of Green functions when g10 and g20, which play the role of bare coupling constants
of the model, become dimensionless. The second line in eq. (5) is needed if one want to include
into consideration the two-dimensional case (see below). In the case d > 2 it is enough to work
with the first line in eq. (5). The problem of continuation from ε = 0 to physical values has been
discussed in [12]. The (d × d)-matrices Pij and Rij are the transverse projection operators and
in the wave-number space are defined by the relations

Pij(k) = δij −
kikj

k2
, Rij(k) =

(

ni − ξk
ki

k

) (

nj − ξk
kj

k

)

, (6)

where ξk is given by the equation ξk = (kn)/k . In eq. (6), the unit vector n specifies the
direction of the anisotropy axis. The tensor D̃ij , given by eq. (5), is the most general form with
respect to the condition of incompressibility of the system under consideration, and contains two
dimensionless free parameters α1 and α2. From the positiveness of the correlation tensor Dij

one immediately gets restrictions on the above parameters, namely α1 ≥ −1 and α2 ≥ −1.
Coupling constant g20 and the parameters α30, α40 and α50 are consequence of d = 2 of the
model (see [10]).

3 UV-divergences, RG analysis and stability of the fixed point

Using the well-known Martin–Siggia-Rose formalism [13], one can transform the stochastic
problem (1) with the correlator (4) into the field-theoretic model of fields v and v

′. Here v
′ is in-

dependent of the v auxiliary incompressible field, which we have to introduce when transforming
the stochastic problem into a functional form.
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The action of the fields v and v
′ is given in the form

S =
1

2

∫

dd
x1dt1d

d
x2dt2

[

v′i(x1, t1)Dij(x1 − x2, t1 − t2)v
′
j(x2, t2)

]

+

∫

dd
xdt

{

v
′(x, t)

[

−∂tv − (v∇)v + ν0∇
2
v + f

A
]

(x, t)
}

. (7)

The functional formulation gives the possibility to use the field-theoretic methods, including
the RG technique to solve the problem. By means of the RG approach it is possible to extract
large-scale asymptotic behavior of the correlation functions after an appropriate renormalization
procedure which is needed to remove UV-divergences.

In our case (d = 2), the UV divergences are present in the 1-irreducible Green functions
〈v′

v〉 and 〈v′
v
′〉. The last one is finite when d > 2, and to remove the divergences correctly in

the specific case d = 2 it is necessary to introduce and work with additional terms (the second
line in eq. (5)), which are local contrary to the standard terms (first line in eq. (5)) [6, 10]. Thus,
our model is multiplicatively renormalizable. In [6,14] a double-expansion method with a simul-
taneous deviation 2δ = d − 2 from the spatial dimension d = 2 and also a deviation ε from the
k2 form of the forcing pair correlation function proportional to k2−2δ−2ε was proposed. In the
present paper we follow the formulation founded on the two-expansion parameters (details see
in [10]).

Using the standard field-theoretic analysis with standard renormalization procedure and mod-
ified MS-scheme we are left with eight-charge model [10] and in the one loop approximation we
have the following system of β-functions

βg1
= g1(−2ε + 3A(g1d1 + g2e1)) ,

βg2
= g2

[

2δ + 3A(g1d1 + g2e1) +
A

2

(

g2
1

g2
a1 + g1b1 + g2c1

)]

,

βχi
= −A [(g1di+1 + g2ei+1) − χi(g1d1 + g2e1)] ,

βαi+2
= −

A

2

[

−

(

g2
1

g2
ai+1 + g1bi+1 + g2ci+1

)

+ αi+2

(

g2
1

g2
a1 + g1b1 + g2c1

)]

,

i = 1, 2, 3 , (8)

where A = Sd−1/(2π)d−1(d2 − 1), Sd−1 = 2π(d−1)/2/Γ((d−1)/2) (d−1 dimensional sphere),
and functions Yi = ai, bi, ci, di, ei are nontrivial integrals of the following form

Yi =

∫ 1

−1

dx
PYi

(α, χ, d, x2)

xj1
1 xj2

2 xj3
3

(1 − x2)
d−3

2 , (9)

where x1 = 1+χ1x
2, x2 = 1+χ1x

2+(χ2+χ3x
2)(1−x2), x3 = x1+x2, j1, j2, j3 = 2, 3, and

PYi
are huge polynomial functions of α = αi, i = 1, ..., 5, χ = χj , j = 1, ..., 3, d and x2. The

scale dependent effective variables are governed by the set of differential equations (s = k/Λ is
rescaled wave number)

s
dC̄

ds
= βC(C̄ ; α1,2, d), s ∈ [0, 1] (10)
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Fig. 1. Dependence of the borderline dimension dc on the anisotropy parameters α1,2 for physical value
ε = 2 and for both double-expansion and ε-expansion technique.

with the initial conditions C̄|s=1 = C, where we denote C = {g1, g2, χi, αi+2}, i = 1, 2, 3. The
large scale limit is described by the fixed point of the RG equations C̄ |s=0 = C∗.

We perform a numerical analysis of this system of differential equations, and our aim is to
find and analyze the so-called borderline dimension dc between stable and unstable regimes as
a function of the anisotropy parameters α1,2. In Fig. 1 one can see the dependence of dc on
anisotropy parameters for ε = 2. We also compare our results (double-expansion technique,
where the analytical continuation is taken from d = 2 to d = 3) with that obtained by using
standard ε-expansion method (the analytical continuation is performed from d = 3 to 2). One
can see that results obtained by these two different approaches are qualitatively the same.

4 Conclusion

We have investigated the influence of the strong anisotropy on the fully developed turbulence us-
ing the quantum field RG double-expansion method, and a modified minimal subtraction scheme
in which the space dimension dependence of the divergent parts of the Feynman diagrams is kept.
Such modification of the minimal subtraction scheme is needed when one wants to compute the
d dependence of important quantities, and is necessary for restoration of the stability of scaling
regimes when one makes transition from dimension d = 2 to d = 3. We have calculated the
dependence of dc on the anisotropy parameters α1,2 for physical value of ε = 2. Below this
dimension the scaling regime is unstable. In the limit case of infinitesimally small anisotropy
(α1 → 0 and α2 → 0) and in the so-called energy pumping (physical) regime ε = 2, we have
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found the borderline dimension dc = 2.44 (see also [10]). We have compared our results with
the ones obtained by standard ε-expansion scheme, where analytical continuation is taken from
d = 3 to 2 [5], and where the borderline dimension dc = 2.68 was found (in the same infinitesi-
mal case α1,2 → 0).
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