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The effect of random velocity field on the kinetics of single-species and two-species anni-
hilation reactions is analysed near two dimensions in the framework of the field-theoretic
renormalisation group. Fluctuations of particle density are modeled within the approach of
Doi. The random incompressible velocity field is generated by stochastically forced Navier-
Stokes equation in which thermal fluctuations—relevant below two dimensions—are taken
into account.
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1 Introduction

The effect of density fluctuations on the asymptotics of reaction rates in low dimensionalities has
attracted considerable attention recently [1,2]. Reaction rates may also be affected by fluctuations
of an advective velocity field. Most work in this direction has been carried out for the case of
quenched random drift [3–5]. Recently, the asymptotic behaviour of the unimolecular reaction
A + A → ∅ in a dynamically generated random drift has been analysed with the aid of field-
theoretic renormalisation group (RG) [6]. In my report I shall describe a similar approach to the
bimolecular reaction A+B → ∅.

Classical rate equations for densities nA, nB with the homogeneous initial conditionnA(0) =
nA0, nB(0) = nB0

dnA
dt

= −K0nAnB ,
dnB
dt

= −K0nAnB (1)

yield the “normal” decay laws. Let, for definiteness, nA0 < nB0, then

nA(t) ∼
t→∞

(nB0 − nA0)
nA0

nB0
e−K0(nB0−nA0)t , nB(t) ∼

t→∞
(nB0 − nA0) . (2)
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In case of equal initial densities nA0 = nB0 = n0 a powerlike decay takes over:

nA(t) = nB(t) ∼
t→∞

1

K0t
. (3)

A heuristic account of initial-density fluctuations amplified by diffusion together with numerical
simulations [7, 8] yield anomalous decay at d < 4, e.g. for nA0 = nB0 = n0:

nA(t) ∼
t→∞

cn
1/2
0

(Dt)d/4
, (4)

which is slower than the “classical” decay rate (3).

2 Second quantization for reactions

For a systematic analysis of the effect of density fluctuations it is convenient to use a field-
theoretic approach. There are two possibilities available for this. First, the more widely known
Martin-Siggia-Rose (MSR) approach [9], which corresponds to the solution of a Langevin-type
stochastic equation to describe fluctuations. Physically, this approach is well-suited to situations
in which fluctuations are of “external” origin, e.g. small-scale thermal fluctuations from the
point of view of macroscopic (hydrodynamic) scale physics, or fluctuations caused by some
external random source. Second, the several times reinvented Doi approach [10], in which the
randomness is described by a probability distribution functional (PDF) or, if you like, an infinite
set of probability distribution functions on a lattice, with the subsequent set of master equations
instead of Langevin equations. This approach is better suited to cases, in which fluctuations
of intrinsic origin are dealt with. This is the case, for instance, for density fluctuations due to
randomness in the (chemical) reaction process itself.

Therefore, I will use here the Doi approach, which allows for a “mesoscopic” analysis of
density fluctuations. To calculate expectation values with the probability distribution functional
(PDF) P ({nA(x)}; {nB(x)}, t) for the particle densities nA(x) and nB(x), the formal solution
of the set of master equations for the PDF may be expressed in a functional form with the aid of
bosonic field operators [10, 11] with the commutation relations

[ψA(x), ψ+
A(x′)] = δ(x − x′) , [ψA(x), ψA(x′)] = [ψ+

A(x), ψ+
A(x′)] = 0 ,

and a similar set for the B particles. In a fairly standard-looking second-quantization setting the
average of an observableO may be written as a vacuum expectation value

〈O(t)〉 =
∑

{ni(x)}
O[{nA}, {nB}]P ({nA)}; {nB}, t)

= 〈0|O[(ψ+
A + 1)ψA, (ψ

+
B + 1)ψB ] e−Ĥ

′t (5)

× e
∫

dx (nA0ψ
+

A
+nB0ψ

+

B
−r0

√
nA0nB0ψ

+

A
ψ+

B
)|0〉 ,
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with the kinetic operator

Ĥ ′ =

∫

dx

{

ψ+
A∇(vψA) + ψ+

B∇(vψB) −DA0ψ
+
A∇2ψA −DB0ψ

+
B∇2ψB

+ K0

(

ψ+
A + ψ+

B + ψ+
Aψ

+
B

)

ψAψB

}

. (6)

The last exponential in (5) corresponds to the initial PDF. A customary choice is the Poisson dis-
tribution for the local particle number [1,2]. However, in view of the hostile nature of interaction I
have allowed for negative initial correlations by using in (5) a bivariate Poisson distribution [12].
This choice leads to the following expressions for the low-order moments of initial densities:

nA(x, 0) = nA0 , nB(x, 0) = nB0 , ∆nA(x, 0)∆nB(x′, 0) = −r0
√
nA0nB0 δx,x′ ,

∆nA(x, 0)∆nA(x′, 0) = nA0 δx,x′ , ∆nB(x, 0)∆nB(x′, 0) = nB0 δx,x′ . (7)

Physically this corresponds to thermal fluctuations with anticorrelations in initial reactant densi-
ties.

3 Dynamic action for the advection-diffusion-controlled reaction A + B → ∅

Construction of perturbation theory through the T exponent for the evolution operator

U(t, t0) = eĤ
′

0te−Ĥ
′(t−t0)e−Ĥ

′

0t0 = T e
−

∫

t

t0
Ĥ′

I
dt

allows to write the expectation value (5) as the following functional integral:

〈O(t)〉 =

∫

D[ψ]ON (1, ψA, 1, ψB)eS0+S1 , (8)

where ON is the normal symbol of the operatorO

O[ψ+
AψA, ψ

+
BψB ] = N [ON (ψ+

A , ψA, ψ
+
B , ψB)] ,

S1 is the dynamic action [2]

S1 = −
∫

dxdt
{

ψ+
A∂tψA + ψ+

B∂tψB + ψ+
A∇(vψA) + ψ+

B∇(vψB)

− DA0ψ
+
A∇2ψA −DB0ψ

+
B∇2ψB +K0

(

ψ+
A + ψ+

B + ψ+
Aψ

+
B

)

ψAψB

}

(9)

and S0 contains terms brought about by the initial bivariate Poisson distribution

S0 =

∫

dx
[

nA0ψ
+
A + nB0ψ

+
B − r0

√
nA0nB0ψ

+
Aψ

+
B

]

.

Schwinger equations with respect to ψ+
A , ψ+

B

〈

∂tψA + ∇(vψA) −DA0∇2ψA +K0ψAψB
〉

= nA0δ(t) , (10)
〈

∂tψB + ∇(vψB) −DB0∇2ψB +K0ψAψB
〉

= nB0δ(t) , (11)
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in the mean-field approximation yield the classical rate equations (1) for the homegeneous av-
erage densities 〈nA(t)〉 = 〈ψA(t)〉, 〈nB(t)〉 = 〈ψB(t)〉. It should be borne in mind, however,
that the second and higher order moments of the fields ψA and ψB are not equal to the corre-
sponding moments of the densities. For instance, the pair correlations ofA particles are given by
〈nA(t,x)nA(t,x′)〉 = 〈[ψA(t,x)ψA(t,x′) + δ(x − x′)ψA(t,x)]〉.

To describe fluctuations of the drift field v in (9) I use random velocity field generated by the
transverse stochastic Navier-Stokes equation

∂tv + P (v · ∇)v − ν0∇2v = fv (12)

with the incompressibility conditions: ∇ · v = 0, ∇ · f v = 0. For the random force the Gaussian
distribution with zero mean and the correlation function

〈 fvm(x1, t1)f
v
n(x2, t2) 〉 = δ(t1 − t2)

∫

dk

(2π)d
Pmn(k)df (k)e

ik·(x1−x2) (13)

is assumed. In (13) Pmn(k) = δmn − kmkn/k
2 is the transverse projection operator in the

wave-vector space, and df (k) is a function of the wave number k and the parameters of energy
pumping, which is used to produce stationary random drift. The kernel function is often chosen
in the nonlocal form

df (k) = g10ν
3
0k

4−d−2ε (14)

to generate turbulent velocity field with Kolmogorov’s scaling [13, 14] (which is achieved by
choosing ε = 2).

The stochastic Navier-Stokes equation (12) is a Langevin-type equation leading to a MSR
operator functional which in the functional-integral form gives rise to the following action func-
tional

S2 =
1

2

∫

dtdxdx′ ṽ(x, t) · ṽ(x′, t)df (|x − x′|)

+

∫

dtdx ṽ ·
[

−∂tv − (v · ∇)v + ν0∇2
v
]

. (15)

Here, transverse auxiliary vector field ṽ is implied, and therefore the projection operator P from
(12) and (13) has been omitted.

Combined averaging over density and velocity fluctuations yields

〈O(t)〉 =

∫

D[ψ,v]ON (1, ψA, 1, ψB) eS0+S1+S2 (16)

for the expectation value of the observable O.

4 Decay asymptotics controlled by stable fixed points

Power counting shows that in the case in which all three reaction terms in (9) have the same
scaling dimension the critical dimension of the model is two [2]. Near two dimensions, however,
the drift part (15) of the dynamic action with the nonlocal kernel (14) is not multiplicatively
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renormalisable. Therefore I have used the kernel function [15] with a local term added at the
outset:

df (k) = g10ν
3
0k

4−d−2ε + g20ν
3
0k

2 . (17)

Apart from rendering the field theory multiplicatively renormalisable, the local term also has an
important physical meaning: with a suitable choice of the parameter g20 it describes thermal
fluctuations of the velocity field near equilibrium.

Taking this into account, I write the renormalised action in the form

S = −
∫

dxdt
{

ψ+
A∂tψA + ψ+

B∂tψB +ψ+
A∇(vψA) + ψ+

B∇(vψB)

− uAνZ2Aψ
+
A∇2ψA − uBνZ2Bψ

+
B∇2ψB

+ λνµ−2δZ4

(

ψ+
A + ψ+

B + ψ+
Aψ

+
B

)

ψAψB

− 1

2
ṽ

[

g1ν
3µ2ε(−∇2)1−δ−ε − g2ν

3µ−2δZ3∇2
]

ṽ (18)

+ ṽ ·
[

∂tv + (v · ∇)v − νZ1∇2v
]

}

+

∫

dx
[

κAµ
dZ5Aψ

+
A + κBµ

dZ5Bψ
+
B − ρµdZ5ψ

+
Aψ

+
B

]

,

in which, apart from the standard renormalisation of the dynamic action, also the renormalisa-
tion of the initial condition—predicted by power counting and confirmed by calculations—is
introduced.

Renormalisation constants have been calculated in one-loop approximation with the use of
combined dimensional and analytic regularisation with the parameters ε and δ = (d − 2)/2,
which eventually give rise to a two-parameter expansion of critical exponents and other physical
quantities.

The unrenormalised parameters of the initial conditions have positive canonical scaling di-
mensions. This means that the corresponding running parameters grow in the long-time large-
scale limit. Therefore, some kind of partial summation of the perturbative expansion is called
for to cope with this problem. A natural way would be the use of skeleton equations for Green
functions with dressed field averages and correlation functions. In the case of single-species an-
nihilation reactionA+A → ∅ this leads to well-controlled estimates of the behaviour of scaling
functions in the long-time limit [1]. Basically, this amounts to independence of the asymptotics
of the initial density [16]. In the present case of bimolecular annihilation, however, a similar
direct summation has not been found [2]. Unfortunately, I have not been able to do any better
with an analytic solution of the set of integro-differential equations, which can be written for the
dressed one-point and two-point Green functions of the present model and incorporate the effect
of initial conditions completely.

In the leading order in the coupling constant λ the initial density fluctuations change the
classical rate eqs (1) by the addition of an inhomogeneous term. This leads to the system

∂tnA = −λνµ−2δ

{

nAnB − ρµd

[4πν(uA + uB)t]d/2

}

,

∂tnB = −λνµ−2δ

{

nAnB − ρµd

[4πν(uA + uB)t]d/2

}

, (19)
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with the initial condition: nA(0) = κAµ
dZ5A, nB(0) = κBµ

dZ5B . For the important special
case nA = nB = n the special Riccati’s equation results. The solution is known and may be
expressed in terms of modified Bessel functionsK2/(4−d) and I2/(4−d). In this solution the blow-
up of initial conditions is controllable and the asymptotic behaviour of the particle density may
be inferred. However, the effect of initial conditions is not fully accounted for by the manageable
system of eqs (19), and therefore the following results give the correct asymptotic density decay
with this provision only.

The renormalised action (18) gives rise to a system of characteristic equations with four IR
stable physical fixed points with the following asymptotic decay of the density.

(i ) Gaussian fixed point

g∗1 = g∗2 = λ∗ = 0 .

The Gaussian fixed point is stable, when
ε < 0, δ > 0. Asymptotic decay of the number density in terms of physical (unrenormalised)

parameters

n(t) ∼
t→∞

√
r0n0

[4π(DA0 +DB0)t]d/4
(20)

is not given by the classical solution (3) but is slower. This is different from the unimolecular
case [6] in which at the Gaussian fixed point the mean-field solution holds. Note that there is no
dependence on the rate coefficient in (20), but the parameter of initial correlations remains. The
influence of initial correlations becomes irrelevant and the mean-field decay ∝ 1/t is restored
only at d > 4 [2].

(ii ) Thermal fixed point

g∗1 = 0 , g∗2 = −32πδ , u∗ =

√
17− 1

2
, λ∗ = −2π(

√
17 − 1)δ .

The basin of attraction of this fixed point is δ < 0, 2ε + 3δ < 0. Decay rate is faster than the
initial-density-fluctuation induced:

n(t) ∼
t→∞

√
r0n0

[4πν0(
√

17 − 1)τ ]d/4

(τ

t

)1/2

. (21)

Here, τ is a reference time scale and δ = d/2− 1.
(iii ) Reactive kinetic fixed point

g∗1 =
64π

9

ε (2ε+ 3δ)

ε+ δ
, g∗2 =

64π

9

ε2

δ + ε
,

u∗ =

√
17− 1

2
, λ∗ = −4π

3
(
√

17 − 1)(ε+ 3δ) ,

is stable, when ε > 0, − 2
3ε < δ < − 1

3ε. To linear order in δ, ε, decay exponent the same as in
thermal fixed point

n(t) ∼
t→∞

√
r0n0

[4πν0(
√

17 − 1)τ ]d/4

(τ

t

)1/2

. (22)
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ε +   δ = 0
2
3

ε +   δ = 03
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δ
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Fig. 1. Basins of attraction of the Gaussian fixed point (G), thermal fixed point (T), the reactive kinetic fixed
(K1) and the passive kinetic fixed point (K2) in the (δ, ε) plane.

The independence of the exponent of time of δ and ε in (21) and (22) is most probably an artifact
of the one-loop approximation.

(iv ) Passive kinetic fixed point

g∗1 =
64π

9

ε (2ε+ 3δ)

ε+ δ
, g∗2 =

64π

9

ε2

δ + ε
, u∗ =

√
17− 1

2
, λ∗ = 0 ,

is stable, when ε > 0, δ > − 1
3ε. Decay rate is faster than the initial-density-fluctuation induced

here, too:

n(t) ∼
t→∞

√
r0n0

[4πν0(
√

17 − 1)τ ]d/4

(τ

t

)d/4(1−ε/3)
. (23)

Here, τ is the reference time scale. The decay exponent in (23) is exact.
From these results it follows that the decay exponent is a continuous function of δ = d/2− 1

and ε—apart from logarithmic corrections on the basin boundaries.
As in the case of unimolecular reaction [6], the fixed point corresponding to the pure diffusion-

limited reaction

g∗1 = g∗2 = 0 , λ∗ = −4π(
√

17 − 1)δ

is unstable in d < 2. This means that any velocity fluctuations (including the ubiquitous ther-
mal noise!) drive the system to the advection-diffusion-controlled regime with different decay
exponents.
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In case of unequal initial densities the system (19) leads to a particular form of Riccati’s
general equation, for which the solution seems to be unknown. Therefore, I will not discuss this
case here in the hope that a solution of this equation in terms of known special functions may
eventually be found with a reasonable effort.

5 Conclusions

The main physical result of this work is that diffusion-limited two-species annihilation reaction
is shown to be unstable to short-range (thermal) velocity fluctuations for d ≤ dc = 2 and un-
stable to long-range (turbulent) velocity fluctuations for d ≥ 2. Decay exponents in four stable
advection-diffusion-controlled regimes have been calculated at one-loop order. Although the
renormalisation and fixed-point analysis are fairly straightforward, the asymptotic analysis of
scaling functions is not. The blow-up of the effective (running) initial conditions in the scaling
functions is difficult to control, in contrast with the single-species case, and a firm conclusion
about the asymptotics of scaling functions is not yet available.

As to possible generalisations, it would be interesting to amend the decay analysis by a
similar treatment of a stationary state with reactant sources.

It seems quite plausible that the asymptotic behaviour of the density heavily depends on the
localisation of the initial density profiles; therefore, an analysis of the problem with localised
initial conditions would be desirable.

Due to the incompressibility condition imposed on the drift field, the present results have a
direct physical meaning at d ≥ 2 only. Thus, the effect of compressibility should be analysed.
This, however, does not seem to be feasible at present in the full stochastic Navier-Stokes frame-
work. Therefore, to make some progress in this direction, it would be interesting to analyse the
effect of velocity fluctuations with given statistics instead of dynamically generated random drift.
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