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SELF-ORGANIZED CRITICALITY IN SIMPLE MODEL OF EVOLUTION:
EXACT DESCRIPTION OF SCALING LAWS1
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The the simplest version of the Bak-Sneppen model of self-organized biological evolution
with random interaction structure is considered. It‘s dynamics is described in the framework
of master equation. The master equations can be solved exactly both for infinite system and
for finite one. The equation for pair correlation function are solved exactly for infinite system.
The dynamical regime of self-organized criticality in this model appears to be similar to one of
completely integrable systems. Analysis of main characteristics of dynamics take it possible
to revive the most essential feature of dynamics.

PACS: 02.50.+s, 05.60.+w, 72.15.−v

1 Introduction

Recently, the dynamics of self-organized criticality (SOC) became a popular object of investi-
gation in the theoretical physics since one believes that the SOC is a manifestation of the most
universal self-organization mechanisms in the nature. The most essential feature of the SOC is
that the system evolves to a critical state without fine tuning of its parameters. In 1993 P.Bak and
K.Sneppen proposed a simple model of biological evolution [1]. It is a dynamical system describ-
ing the ecosystem evolution as mutation and natural selection of interacting species. The SOC
dynamic in the Bak-Sneppen model (BSM) is in a good agreement with the the specific charac-
ter of real biological evolution considered in the framework of the Gould-Eldridge “punctuated
equilibrium” conception [2]. One can hope that this model represent an important universal type
of critical dynamics of avalanche-like processes [3].

The formulation of dynamical rules in the BSM is the following [1]. The state of the ecosys-
tem of N species is characterized by a set {x1, ..., xN} of N number, 0 ≤ xi ≤ 1. The number
xi represents the barrier of the i-th species toward further evolution. Initially, each xi is set to
a randomly chosen value. At each time step the barrier xi with minimal value and all the bar-
riers of the neighbors of this “weakest” species are replaced by new random numbers. In the
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random neighbor model (RNM) [4] the K − 1 replaced non-minimal barriers are chosen at ran-
dom at each time step. In the local or nearest neighbor model (LM) these are the barriers of the
nearest neighbors to the species with minimal barrier. For each species in the LM the nearest
neighbors are assumed to be defined. For the LM the most of results are obtained by numericalq
experiments or in the framework of mean field approximation. The RNM is more convenient for
analytical studies. The master equations obtained in [5] for RNM are very useful for this aim.
These equations appeared to be exact solvable. The stationary solution was found in [5]. The
time dependent solutions were obtained in [6, 8] (infinite system), [7] (finite system). In [9, 10]
it is shown that dynamics of RNN is similar to one of completely integrable system. We present
the most important results contained in [7–10] and show the possible way to reach more com-
plete understanding of SOC phenomena in the RNM by means of investigation of correlation
functions.

2 Exact solutions of master equations

For description of the BSM behavior one can choose as a characteristic of dynamics the probabil-
ity Pn(t) that at time point t the barriers of n species are less then λ, where λ is a fixed parameter
from the interval [0,1]. For Pn(t)in the RNM one can derive the exact master equation [5]. In
terms of the generating function

q(z, u) ≡
∞
∑

t=0

N
∑

n=0

Pn(t; λ)znut (1)

it can be written for the infinite system as follows [8]:

q(z, u)[z − u(1 + λ(z − 1))K ] = zq(z, 0) + u(z − 1)(1 + λ(z − 1))Kq(0, u). (2)

Here K is the number of interacting species. For the finite ecosystem with N species and
K = 2 the master equations is presented in the form [7]

1

u
[q(z, u) − q(z, 0)] = (1 − λ + λz)2×

×
{

1

z

[

1 − 1 − z

N − 1

(

1

z
− ∂

∂z

)]

[q(z, u) − q(0, u)] + q(0, u)

}

. (3)

The function q(z, 0) in (2), (3) is defined by initial probability distribution Pn(0) and is assumed
to be given.

The equations (2), (3) can be solved exactly [7, 8]. One could easily do it, if the function
q(0, u) would be known. Therefore the problem is reduced to finding q(0, u). For infinite system
described by master equation (2) it can be done in the following way. In virtue of the usual
properties of probabilities, we have:

Pn(t) ≥ 0,
∞
∑

n=0

Pn(t) = 1. (4)
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Hence, q(z, t) is analytical in z, u for |z| < 1 and |u| < 1. Let us denote α(u) the analytical in
the neighborhood u = 0 solution of the algebraic equation for z

z − u(1 + λ(z − 1))K = 0.

It has the form

α(u) = u(1 − λ)K + Ku2λ(1 − λ)K−1 + . . . . (5)

The series for α(u) is convergent and |α(u)| < 1, if |u| < u0, and the parameter u0 is chosen
small enough. Assuming |u| < u0 < 1 and substituting in (2) z = α(u) we see that the left hand
side vanish because q(α(u), u) is finite for |u| < u0. Thus, the function q(0, u) is expressed in
terms of q(z, 0) as follows

q(0, u) =
α(u)q(α(u), 0)

u(1 − α(u))(1 + λ(α(u) − 1))K
=

q(α(u), 0)

(1 − α(u))
. (6)

Now, from equations (2) and (6) we obtain the solution for q(z, u)

q(z, u) =
z(1 − α(u))q(z, 0) + u(z − 1)(1 + λ(z − 1))Kq(α(u), u)

(1 − α(u))[z − u(1 + λ(z − 1))K ]
. (7)

The problem to construct the solution q(u, z) of equation (3) appears to be more difficult.
Nevertheless, the direct analysis of general solution of differential equation (3) enables one,
using the analytical properties of q(z, u), to find the evident expression for the function q(0, u)
in terms of q(z, 0) [7]:

q(0, u) =

1
∫

λ−1

λ

exp
(

−R(x, u) q(x,0)dx
(1−λ+λx)2(1−x)

)

1
∫

λ−1

λ

exp
(

−R(x, u) (1−u(1−λ+λx)2)dx
(1−λ+λx)2(1−x)

)

. (8)

Here,

R(z, u) =
N − 1

u

[

ln(1 − λ + λz) − (1 − u) ln(1 − z) +
1 − λ

λ(1 − λ + λz)

]

.

Substituting (8) into (3), we obtain the usual differential equation of the first order for the
function q(z, u), satisfying, in virtue of (1), (4), the initial condition q(1, u) = (1 − u)−1. Its
solution is of the form:

q(z, u) = z
N − 1

u
eR(z,u)

λ−1

λ
∫

z

e−R(x,u) q(x, 0)dx

(1 − λ + λx)2(1 − x)
+

+ q(0, u)






1 − z

N − 1

u
eR(z,u)

λ−1

λ
∫

z

e−R(x,u) (1 − u(1 − λ + λx)2)dx

(1 − λ + λx)2(1 − x)






,

where q(0, u) is defined by (8).
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3 Asymptotical dynamics

Simple characteristic of the RNM dynamics is the first moment M(t) of probability distribution
Pn(t):

M(t) =

∞
∑

n=0

Pn(t)n.

It has the meaning of the average value of the species number having the barriers less then λ at
time point t. For the infinite system the asymptotic of M(t) for large t appears to be of three
different kind [8]:

M(t) =

(

1 +
λ(K − 1)

2(1 − Kλ)

)

+ o(t−3/2) for λ < λcr,

M(t) = M(0) + t(Kλ − 1) + o(t−3/2) for λ > λcr,

M(t) = M(0) +

√

2(K − 1)t

Kπ
+ O(t−1/2) for λ = λcr,

where λcr ≡ 1/K.
The dissipation rate in the system can be characterized by the following quantity:

δS(t) =
δM(t)

M(t)
=

δ ln M(t)

δP (0)
δP (0).

It shows the dependence of M(t) from initial distribution Pn(0) and could be called the “mem-
ory” of the system. For λ > λcr, δS(t) is decreasing as t−1 and the system quickly “forgets” the
initial distribution. For λ = λcr, δS(t) goes down as t−1/2, and for λ < λcr δS(t) is decreasing
exponentially. The slowest rate of “forgetting” the initial distribution of barriers occurs at critical
value of λ.

4 Simplest description of dynamics

The variables Pn(t) have simple meaning, but the description of dynamics of infinite system by
master equation (2) is rather complicated. One can choose variables to obtain the simplest form
of the master equation. Let us consider the function d(y, u):

d(y, u) =
q(α(y), u)

1 − α(y)
, (9)

where α(y) was defined in (5). It is analytical in z and u in the neighborhood of y = 0 and
u = 0:

d(y, u) =

∞
∑

n,t=0

Cn(t)ynut. (10)

Let us denote β(z) the inverse in respect to α(y) function: α(β(z)) = z, β(α(y)) = y. Obvi-
ously,

β(z) =
z

(1 − λ + λz)K
. (11)
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Substituting in (9) y = β(z) we obtain

q(z, u) = (1 − z)d(β(z), u). (12)

Presenting in (2) the function q(z, t) in the form (12) and setting z = α(y), we obtain the
following equation

(y − u)d(y, u) = yd(y, 0) − ud(0, u). (13)

It is the master equation for generating function of variables Cn(t). It looks in terms of the
functions Cn(t) as

Cn(t + 1) = Cn+1(t) for n ≥ 0, t ≥ 0. (14)

The initial conditions for this equation

Cn(0) = cn (15)

are defined by q(z, 0):

d(y, 0) =
∞
∑

n=0

cnyn =
q(α(y), 0)

1 − α(y)
. (16)

The equations (14) has the simple solution:

Cn(t) = cn+t. (17)

Transforming the variables from Pn(t) to Cn(t) we have obtained the simplest of possible
descriptions of the SOC dynamics in the RNM: the master equations (13), (14) with initial con-
ditions (15), (16). Setting in (13) u = y we see that d(y, 0) = d(0, y) and

d(y, u) =
yd(y, 0) − ud(u, 0)

y − u
. (18)

Substituting y = β(z) in (18) and using (9), (11), (12), we obtain the solution (7) of the master
equation (2).

We have obtained the description of the system evolution in terms of variables Cn(t). It is
essentially different from original one defined by the master equation (2). The equation (14) for
Cn(t) does not contain the parameter λ controlling the dynamics of Pn(t) according to (2). The
restriction on the possible values of initial conditions Pn(0) are the usual general restrictions for
probabilities (4) being obviously independent on λ.

The restriction on the possible initial values of the variables Cn(t) are defined by equation
(16). Since the function α(u) depends on λ, the initial dates cn appear to be dependent on it.
Thus, in original formulation λ defines the dynamics, and in the terms of variables Cn(t) it
specifies the the initial dates.

The main characteristics of the avalanche-like processes in the SOC dynamics of RNM are
defined by asymptotic of Pn(t) for large t. Since α(0) = 0, it follows from (9) that q(0, u) =
d(0, u), i.e P0(t) = C0(t). In virtue of (17), C0(t) = ct. Hence, in terms of Cn(t) the SOC
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phenomena manifest itself in the the asympotical behavior of initial dates cn for large n. To
make the picture of the dynamics in terms of Cn(t) more clear let us call the state of the system
the ordered one, if all barriers of the species are more then λ. Than P0(t) = C0(t) = ct is
the probability for the system to be ordered at the time point t and 1 − ct is the probability
of disturbance of the order at this moment. The last situation could be called the “disordering
catastrophe” or (in accordance with usual terminology of the SOC theory) the avalanche. Thus,
the set of initial dates cn gives a rough description of the system evolution in terms of “oder-
avalanche”. The asymptotic cn for n → ∞ forecasts the specific of the avalanche-like processes,
which will be happened in the system in the future. It is of the form: [10]. For λ = λcr

cn =

√

K − 1

2πKn

{

1 − K

2n(K − 1)

[

M2 +
K2 − K + 1

6K2

]

+ O

(

1

n2

)}

,

and for λ 6= λcr

cn = θ(λcr − λ)(1 − Kλ) +
z0

√
Ke−nγ(z0)

√

2π(K − 1)n3
{φ0−

− z2
0K

2n(K − 1)

[

φ2 +
2(K + 1)

z0K
φ1 +

K2 + 11K + 1

6z2
0K

2
φ0

]

+ O

(

1

n2

)}

Here the following notations are used: γ(z) ≡ ln(β(z)), z0 = (1 − λ)/[λ(K − 1)],

M2 ≡
∞
∑

n=0

Pn(0)n2, φn =
∂n+1

∂zn+1

(

q(z, 0)

1 − z

)∣

∣

∣

∣

z=z0

.

As for large time asymptotic of M(t), we see that in the interval [0,1] of the possible values
of parameter λ the point λ = λcr plays a special role. For λ < λcr and λ > λcr the asymptotic of
initial dates cn for large n appear to be of essentially different types: if λ < λcr, limn→∞ cn =
1 − λ/λcr 6= 0 and if λ > λcr, limn→∞ cn = 0. Therefore it is naturally to consider λcr as an
inherent characteristic of the self-organization processes in the systems. For λ = λcr the leading
term of asymptotic of M(t) and cn are the power functions with universal amplitude and the
asymptotical dynamics of “critical” avalanches appears to be scale invariant in accordance with
usual properties of the SOC processes.

5 Pair correlation function

For description of dynamical correlations in the BSM one can choose as its characteristics the
probability Pn1,n2

(t) that at time point t in the system n1 species have the barriers from the
interval [0, λ1], and n2 species have barriers from the interval [λ1, λ2]. It is assumed that 0 <
λ1 < λ2 < 1. It is convenient for analysis of equation for Pn1,n2

(t) to use the generating
function P (z1, z2; u) defined as follows:

P (z1, z2; u) =

∞
∑

n1=0,n2=0,t=0

Pn1n2
(t)zn1

1 zn2

2 ut .
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It can be shown that in virtue of the RNM dynamical rules for infinite system the function
P (z1, z2; u) obeys the equation:

P (z1, z2; u)z2(z1 − uφ) + P (0, z2; u)uφ(z2 − z1) + P (0, 0; u)uφz1(1 − z2) =

= P (z1, z2; 0)z1z2 (19)

where

φ ≡ (p1z1 + p2z2 + p3)
K , p1 = λ1, p2 = λ2 − λ1, p3 = 1 − λ1 − λ2.

This equation appears to be exact solvable. Let us denote α(u) the analytical in u = 0
solution of equation

α = u[(p1 + p2)α + p3]
K .

Substituting in equation (19) z1 = z2 = α(u), we obtain the following relation

P (0, 0, u) =
P (α, α; 0)

1 − α
. (20)

Let β(z; u) be the analytical in z = 0, u = 0 solution of equation

β = u(p1β + p2z + p3)
K .

Substituting in (19) z1 = β(z2; u) we have

P (0, z2, u) =
P (β, z2; 0)z2(1 − α) − P (α, α; 0)β(1 − z2)

(1 − α)(z2 − β)
. (21)

Now, we can substitute in (19) instead of P (0, 0, u), P (0, z2, u) the right parts of equalities (20),
(21) and obtain the linear equation for P (z1, z2; u), having the solution of the form

P (z1, z2; u) =
P (α, α; 0)uφ(β − z1)(1 − z2)

(z1 − uφ)(1 − α)(z2 − β)
+

P (β, z2; 0)uφ(z1 − z2)

(z1 − uφ)(z2 − β)
+

P (z1, z2; 0)z1

(z1 − uφ)
(22)

If the initial distribution of barriers is given, than the generating function P (z1, z2; 0) and the
right hand site of (22) are known. Using the generating function P (z1, z2; u) one can calculate
different dynamical characteristic of correlations in the system. We do not give instance of
calculations of such a kind and note only that the pair distribution function Pn1,n2

(t) can not be
expressed in terms of the the probability Pn(t).

6 Conclusion

We have shown how the master equations for the RNM can be solved. The essential feature of the
SOC dynamics in the infinite system is the presence of the critical barrier λcr = 1/K character-
izing the types of dynamical pictures considered in the RNN evolution: over-critical (if λ > λcr)
sub-critical (if λ < λcr) and critical (if λ = λcr). The form of the master equation depends on
the chose of dynamical variables. In terms of a special set of variables Cn(t) it appears to be
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very simple and the SOC dynamics in RNM looks as renumeration Cn(t + 1) = Cn+1(t) of
variables. They are expressed straightforwardly in terms of infinite set of the constants defined
explicitly by the initial conditions. For each time step one of this constant is forgotten, i.e its
value does not influence on the further stages of the system evolution. The consequent loose of
the information about initial state is all what happens in the self-organization process described
by RNM. The system of such a kind could be called completely integrable dissipative system.

The scaling laws of SOC dynamics of RNM can be studied by means of distribution functions
of barriers describing the system dynamics. We considered only simplest of them: Pn(t) and
Pn1,n2

(t). Using Pn(t) and Pn1,n2
(t) it is possible to calculate different characteristic of critical

avalanches in RNM. Now it is not clear, whether the full description of the RNM dynamics can
be obtained in this way. If it is not the case, then there is for RNM the problem to construct the
full set of independent correlation function, which can be considered as a good task for further
investigations.
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