
acta physica slovaca vol. 52 No. 6, 483 – 488 December 2002

RENORMALIZATION SCHEME DEPENDENCE IN THE CASE
OF A QCD NON-POWER PERTURBATIVE EXPANSION1
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A novel, non-power, expansion of QCD quantities replacing the standard perturbative expan-
sion in powers of the renormalized couplant a has recently been introduced and examined
by two of us. Being obtained by analytic continuation in the Borel plane, the new expansion
functions Wn(a) share the basic analyticity properties with the expanded quantity. In this
note we investigate the renormalization scale dependence of finite order sums of this new
expansion for the phenomenologically interesting case of the τ -lepton decay rate.

PACS: 11.15.Bt, 12.38.Aw, 12.38.Cy, 13.35.Dx

1 Renormalization scale and scheme dependence

In the standard perturbation theory the finite order approximations of physical quantities are
renormalization scale (µ) and scheme (RS) dependent. The quest for in some sense “optimal”
scale and scheme is vital for meaningful applications but has so far no generally accepted so-
lution. There are several recipes [1–3] how to do that. The one proposed in [1] and known
as the Principle of Minimal Sensitivity (PMS) selects the scale and scheme by the condition of
local scale and scheme invariance. For a physical quantity R(Q) depending on one external
kinematical variable Q and admitting the perturbative expansion in powers of the QCD coupling
parameter αs

R(Q) = a(µ, RS)(1 + r1(Q, µ, RS)a(µ, RS) + r2(Q, µ, RS)a2(µ, RS) + ...), a ≡ αs/π, (1)

this implies for the sum R(N)(Q, µ, RS) of first N terms in (1)

∂R(N)(Q, µ, RS)

∂ ln µ

∣∣∣∣
opt

=
∂R(N)(Q, µ, RS)

∂(RS)

∣∣∣∣
opt

= 0. (2)
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The PMS thus selects the point where the truncated approximant has locally the property which
the all order sum must have globally. In the absence of additional information this choice appears
particularly well-motivated. But even if we do not subscribe to PMS it is definitely useful to
investigate the scale and scheme dependence of finite order approximants. The scheme can be
labeled by the set of free parameters ck, k ≥ 2, defining the r.h.s. of the RG equation for the
couplant a

∂a(µ, RS)

∂ ln µ
= β(a) = −ba2(1 + ca + c2a

2 + c3a
3 + · · ·), (3)

together with some parameter specifying which of the solutions of eq. (3) we have in mind. One
way of doing this is by means of the parameter Λ̃ defined by the condition a(µ = Λ̃) = ∞.
Note that in QCD with nf massless quarks the first two coefficients in (3), b = (33 − 2nf )/6,
c = (153 − 19nf )/(66 − 4nf ), are universal, and that Λ̃ defined above is related to the more
commonly used definition of Λ by a simple scale factor close to unity: Λ̃ = Λ(2c/b)−c/b.

At the second order there are two free parameters: the scale µ and Λ̃, specifying the scheme,
but without loss of generality we can fix the latter and vary the scale only

R(2)(Q, µ) = a(2)(µ)[1 + r1(Q, µ)a(2)(µ)], (4)

where a(2)(µ) solves (3) with the first two terms on its r.h.s. only and satisfies

b ln(µ/Λ̃) = 1/a(2)(µ) + c ln[ca(2)(µ)/(1 + ca(2)(µ))]. (5)

The formal (i.e. to the order considered) scale independence of (4) implies

∂r1(Q, µ)/∂ ln µ = b, ⇒ r1(Q, µ) = b ln(µ/Λ̃) − ρ1(Q/Λ̃) , (6)

where ρ1 is a scale and scheme invariant depending on Q and the numerical value of Λ̃, which
can be evaluated using the results in MS RS as ρ1 = b ln(Q/Λ̃MS) − r1(µ = Q, MS).

At the third order, the coefficients r2 in (1) and c2 in (3) come into play. As a consequence,
both r2 and the couplant a depend beside µ and RS also on c2. We refer to [4] for details and
mention only the expression for r2 which will be used in the following

r2 = ρ2 − c2 + (r1 + c/2)2 , (7)

where ρ2 is another scale and scheme invariant, which unlike ρ1, is a pure number. Although
at the third order c2 is a free parameter, we shall not exploit the associated freedom, but will
work in the RS where c2 = 0 at all orders. We prefer this choice of the RS to the conventional
MS RS since in this case the coupling a(µ) is well defined and the same at all orders, and any
manifestation of the divergence of perturbation expansion concerns exclusively the coefficients
of the expansion (1).

2 Non-power expansions

In [6–8] a method was proposed that replaces perturbative expansions of observables in powers
of the QCD couplant a by expansions in the set of functions Wn(a) encompassing the available
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knowledge of the large order behaviour of standard perturbative expansions. As an example we
consider the phenomenologically interesting observable

Rτ =
Γ(τ → ντ + hadrons)

Γ(τ → ντ + e−νe)
= 3(1 + δEW)(1 + Rτ ), (8)

where δEW is an electroweak correction and the QCD contribution Rτ is of the form (1). As
shown in [10], the term Rτ can be formally written in the form of the Borel transform

Rτ (Mτ ) =

∫

C

e−u/a(µ)B(µ, u)F (bu/2)du (9)

involving the functions 3

F (u) =
−12 sin(πu)

πu(u − 1)(u − 3)(u − 4)
, B(µ, u) =

∞∑

n=0

Dn+1(Mτ , µ)

n!
un. (10)

In (9) we have written explicitly the dependence on the arbitrary scale µ but suppressed that on
Mτ . The coefficients Dn come from the perturbative expansion of the Adler function Dτ (s) in
the Euclidean region s < 0

Dτ (s) = D(0)
τ

(
1 + D1(κ)a(κ

√
−s) + D2(κ)a2(κ

√
−s) + · · ·

)
, D(0)

τ = 3(1 + δEW), (11)

where the scale ambiguity is now parameterized via the parameter κ relating µ to s: µ = κ
√
−s.

The contour C runs from 0 to ∞, circumventing the singularities of B(u), which create non-
uniqueness of the integral (9). We choose the principal value prescription.

Following [6–9] we expand B(u) in powers of a special function w(u) that maps the holo-
morphy domain of B(u) (or its known part) onto a unit circle. For Dτ and Rτ , w(u) has the
form

w(u) =

√
1 + u −

√
1 − u/2

√
1 + u +

√
1 − u/2

, (12)

which enters the definition of the functions Wn(a)

Wn(a) ≡ 1

n!

(
8

3

)n (
2

b

)n
2

ab

∫

C

e−2u/(ab)F (u)wn(u)du (13)

relevant for Rτ . For Dτ the Wn(a) are also given by (13), but with F (u) = 1. The Wn(a)
take into account the positions u = −2/b and u = 4/b of the two leading singularities of B(u).
But we also know that these singularities have the form (1 + ub/2)γ1 and (1 − ub/4)γ2 with
γ1 = −2.589 and γ2 = −2.58. To use this knowledge we define

W̃n(a) =
1

n!

(
8

3

)n (
2

b

)n
2

ab

∫

C

e−2u/(ab)(1 + u)γ1(1 − u/2)γ2F (u) wn(u)du (14)

3Eqs. (9,10) were derived in [10] using the one-loop expression for the analytic continuation of a(−s) from Euclidean
to Minkowskian region in the formula relating D(s) to Rτ , thus, setting c = 0. Using the NLO expression (5) for
a(−s) would lead to a more complicated relation between B(u) and Rτ . However, as we use F (u) merely to define
our expansion functions, we can use the expression derived in [10], still retaining a consistent expansion of Rτ in terms
of our functions to all orders.
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and expand Rτ in terms of them. We explore the scale dependence of both expansions, in Wn(a)

and in W̃n(a). The incorporation of the nature of a singularity turns out to be quite important.
For details about the functions Wn and W̃n see [6–8].

As was shown in [7], expansions in terms of the functions Wn or W̃n are convergent under
rather loose conditions on the coefficients. On the other hand, the functions themselves are
singular at a = 0 [8], the series

Wn(a) ∼
∑

j≥n

cnja
j , W̃n(a) ∼

∑

j≥n

c̃nja
j (15)

being asymptotic. We choose the normalization such that cnn = 1, c̃nn = 1, n ≥ 1.

3 Renormalization scale dependence for non-power expansions

The scale and scheme dependence of Rτ in the standard perturbation theory was discussed in
[4, 10]. In terms of the functions Wn(a) or W̃n(a) we can rewrite Rτ as

Rτ = W1(a) + r1W2(a) + r2W3(a) + · · · , Wn = Wn or W̃n, (16)

where the coefficients rk(Mτ , µ) are related to the rk(Mτ , µ) of (1) as follows

r1 = r1 − c12, r2 = r2 − r1c23 − c13, etc. (17)

The finite sums R(N)
W of the first N terms in the expansion (16) have the same property of

formal scale independence as the conventional finite sums in powers of the coupling a, i.e. their
derivatives with respect to ln µ start at the order N + 1

∂R(N)
W (µ)

∂ ln µ
=

∞∑

k=N+1

skWk(a), (18)

where sk are some numbers, which is a generalization of the analogous relation in the conven-
tional perturbation theory. In our numerical studies we set Q = Mτ = 1.8 GeV in the expression
for the invariant ρ1(Q), and took b = 4.5, c = 1.8, ρ2 = −6.27, corresponding to nf = 3 [4]. In
the NLO we work in standard MS scheme, in the NNLO in the scheme where c2 = 0. We did
not resort to the conventional practice of expanding the solution of eq. (5) in inverse powers of
ln(µ/Λ), but solved this equation numerically.

In Figs. 1a-c we compare the scale dependence of the conventional perturbation expansions
of Rτ at the LO, NLO and NNLO with the corresponding expansions in the functions Wn and
W̃n for Λ̃

(3)

MS
= 0.31 GeV. The local maxima of the curves in Fig. 1a define the PMS choices,

the intersections of the NLO and NNLO curves with the LO one correspond to the “effective
charges”(EC) approach of [2]. Conventionally the scale µ is identified with Mτ , but this seem-
ingly natural choice has a serious drawback as the resulting finite order approximations depend
on the choice of the scheme 4.

4The point is that in different schemes the same choice µ = Mτ leads to different results for R(N)
τ . Conventionally

one works in the MS RS, but there is no compelling theoretical argument for this choice. Had we worked, for instance,
in MS or MOM schemes instead, the same choice µ = Mτ would correspond in Fig. 1a to the points µMS = 0.68 GeV

and µMOM = 3.9 GeV respectively and thus yield significantly different values of R(N)
τ . On the other hand, the scale

fixings based on the PMS and EC criteria lead to the same value of R(N)
τ in any scheme.
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Fig. 1. Scale dependence of R(N)
τ in the conventional PQCD (a) as well as for the expansion (16) in the

functions W̃n (b) and Wn (c). In d) and e) R
(2)
τ and R

(3)
τ of the conventional PQCD (dotted curves)

are compared with the corresponding approximations using Wn(a) (dashed) and W̃n(a) (solid). f) the
dependence of R(3)

τ obtained with functions W̃n(a) on Λ̃
(3)

MS
.
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In Figs. 1d-e we compare R(N)
W , N = 2, 3 in the conventional perturbation theory with the

results obtained within non-power expansion (16) for both sets of functions Wn and W̃n. Finally,
in Fig. 1f the dependence of R(3)

W obtained with the functions W̃n on Λ̃
(3)

MS
is displayed. Several

interesting conclusions can be drawn from these figures:

• Scale dependence of the NLO and NNLO approximants R(2)
W and R(3)

W differs, for both

Wn and W̃n, significantly from that of the conventional perturbation theory.

• There is a striking difference between the scale dependence of the approximants R(2)
W and

R(3)
W , both for Wn and W̃n.

• There is no region of local stability of R(3)
W obtained with the functions Wn, whereas using

the functions W̃n there is a plateau for Λ̃
(3)

MS
. 0.3 GeV, but even for higher values of Λ̃

(3)

MS

there is at least a “knee” in R(3)
W .

• The value of R(3)
τ obtained with functions W̃n is very close to the PMS optimal point

of the conventional NNLO approximation. Remarkably, at this order the approximation
obtained with Wn starts to deviate from the conventional NNLO approximation close to
just this stationary point.

• The preceding conclusions depend only weakly on the value of Λ̃
(3)

MS
in the reasonably

wide interval (200, 400) MeV.

Similar analyses of the non-power expansions introduced by Shirkov [11] et al. and Cvetic
[12] et al. could bring interesting new insights.
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