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ON WILSONIAN FLOWS IN GAUGE THEORIES1
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An Exact Renormalisation Group (ERG) approach to non-Abelian gauge theories is dis-
cussed. We focus on the derivation of universal beta-functions and the choice of the initial
effective action, the latter being a key input in the approach. To that end we establish the
map between the renormalisation group (RG) scaling of the full theory and the anomalous
scaling in an ERG approach. Then this map is used to sketch the derivation of the two loop
β-function within a simple straightforward calculation. The implications for the choice of the
initial effective action are discussed.

PACS: 11.10.Hi, 11.15.−q, 11.15.Tk

Introduction

The investigation of the infra-red sector of non-Abelian gauge theories still offers challenges,
both qualitatively and quantitatively. In the present contribution we consider a non-perturbative
approach to these problems within the framework of the Exact Renormalisation Group (ERG)
in its continuum formulation a la Polchinski [1]. So far, quite some effort has been devoted to
the task of working out a formulation of gauge theories within this approach (for a review see
ref. [2]). Most of these formulations are based on the following picture: an explicit infra-red
cut-off leads to gauge variant flows. The gauge symmetry of the underlying theory is, during the
flow, encoded in ‘modified’ Ward-Takahashi or BRST identities (mWI) [2–10]. These identities
guarantee that physical Greens functions satisfy the usual gauge invariance requirements.

The background field approach to gauge theories, e.g. [11], allows for the definition of a
gauge invariant effective action, a property, which can be maintained within ERG flows. Hence
it is an attractive choice for ERG applications in non-Abelian gauge theories [2, 3, 9, 10, 12–19],
Abelian gauge theories [20] and in gravity [21]. However, despite of gauge invariance of the
effective action, one has to deal with mWI’s [3,9,15,17,18]. Moreover, approximation schemes to
ERG flows that exploit the advantages of the background field formulation require some further
work concerning their reliability [17, 22].

Hence, for any attempt at reliable analytic or numerical calculations it is important to fully
understand how basic properties of the underlying theory manifest themselves in an ERG ap-
proach. A prominent example are anomalous dimensions, in particular their universal parts.
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A related issue concerns the choice of the effective action ΓΛ at the initial scale Λ. This object
is a key input of the formalism. In general, an accurate choice of ΓΛ stabilises the flow. In
other words, minimising the error (in the irrelevant vertices) in the choice of ΓΛ also reduces
the unphysical part of the flow. In order to make use of results obtained by other methods (e.g.
perturbation theory, semi-classical approximations) we have to map them into the parameters of
the initial effective action in the ERG approach.

Here we provide a summary of the issues described above. We aim at a presentation of
the key ideas behind the calculations and of the general framework. The details will be given
elsewhere. After a brief introduction to ERG’s for non-Abelian gauge theories in the background
field approach [3], we discuss the map from RG equation to ERG equation. Then we sketch
the calculation of one loop and two loop β-functions with help of this map. Implications of our
findings are discussed, in particular their relevance for the choice of the initial effective action.

Flow equation with background fields

The background field approach hinges on the splitting of the gauge field A = a + Ā into a back-
ground field Ā and a fluctuation field a. This a priori arbitrary splitting motivates the following
gauge invariant definition of the effective action: we use the background gauge Dµ(Ā)aµ = 0.
This gauge constraint is invariant under simultaneous gauge transformations of A and Ā. Within
this gauge the classical action with gauge fixing and ghosts reads

S[φ, Ā] =
1

2

∫

x

tr (F 2)µµ +
1

2ξ

∫

x

(D̄ a)2 −

∫

x

c̄ D̄D c, (1)

where D̄ = D(Ā) and the trace tr sums over the fundamental representation of the gauge group.
We also introduced the short hands

∫

x
=

∫

d4x and the field φ = (a, c, c̄). For later use we also
introduce φ∗ = (a, c̄,−c).

Strictly speaking, the derivation of the flow equation presented here only assumes the ex-
istence of a finite Schwinger functional of the full quantum theory. It does not rely on a path
integral representation. However, in case the latter exists we have

exp W [J, Ā] =

∫

[Dφ]ren exp

{

−S[φ, Ā] +

∫

x

J∗φ

}

, (2)

where the subscript ren refers to the necessary renormalisation of the path integral, J = (Ja, η, η̄)
and J∗ = (Ja, η̄,−η). Then, J∗φ = Ja a+η̄ c+c̄ η. The effective action Γ[φ, Ā] is the Legendre
transformation of W [J, Ā]

Γ[φ, Ā] =

∫

d4x J∗φ − W [J, Ā]. (3)

Here φ comprises the expectation values of the gauge field fluctuation, the ghost and the anti-
ghost respectively. The action S[φ, Ā] is invariant under the transformation (δ + δ̄)S = 0, where
δω(φ, Ā) =

(

[D(A), ω] , [C, ω] , [C̄, ω] , 0
)

and δ̄ω(φ, Ā) =
(

−[D(Ā), ω] , 0, 0 , [D(Ā), ω]
)

.
This entails that the effective action Γ[φ, Ā] is invariant under a transformation with (δ + δ̄):

(δ + δ̄)Γ[φ, Ā] = 0. (4)
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However, physical gauge invariance is encoded in Ward-Takahashi identities obtained from a
gauge variation of the quantum fields φ under δ. It is now possible to define a gauge invariant
effective action as Γ[A] := Γ[φ = 0, A], giving Ā = A the interpretation of the physical mean
field A = a+Ā (thus taking a = 0) and setting the unphysical ghost fields to zero. Consequently
gauge invariance of Γ[A] mirrors physical gauge invariance.

This picture is the starting point for the background field formulation of the ERG approach
for the effective action. The ERG is based on the introduction of an infra-red (IR) cut-off scale k

to the theory: momentum degrees of freedom with momenta p2 � k2 are suppressed whereas the
propagation of degrees of freedom with larger momenta is unchanged. Then, the flow equation
describes the infinitesimal change of the infra-red regularised effective action with the cut-off
scale k. The above picture is achieved by an appropriate cut-off term ∆Sk[φ, Ā]. We restrict
ourselves to flows that are one loop exact in the full field dependent propagator 3. It has been
shown that for one loop exact flows the cut-off terms have to be quadratic in the fields coupled
to the currents [23]. Thus, a general cut-off term for gauge fields and ghosts reads

∆Sk[φ, Ā] =
1

2

∫

d4x φ∗Rk[Ā]φ, (5)

where Rk = (Ra, Rc, Rc) ⊗ 1lφ. Eq. (5) leads to a modification of the propagators of ghosts
and gauge field fluctuations as 1

2
φ∗Rk φ = 1

2
a Ra a + c̄ Rc c. The regulator Rk[Ā] depends on

an infra-red (IR) scale k which interpolates from some ultra-violet (UV) scale k = Λ to the
infra-red limit k = 0. Eq. (5) is quadratic in the fields and therefore leads to a modification of the
propagator. Regulators Rk should leave the UV modes unchanged but suppress the propagation
of IR modes. General regulators, as functions of momentum, thus vanish for high momenta and
behave like a mass or even diverge for small momenta. Moreover, they should vanish for k → 0
and diverge for k → Λ. The k-dependent Schwinger functional is defined with

exp Wk[J, Ā] =
1

Nk
exp

(

−
1

2

∫

x

δ

δJ
R∗

k[Ā]
δ

δJ∗

)

exp W [J, Ā] , (6)

where R∗ = (Ra,−Rc,−Rc) ⊗ 1lφ and Nk is a possibly Ā-dependent normalisation. We em-
phasise that this is not precisely the same as adding the cut-off terms to the classical action in
the exponent of the path integral in (2). In (6) the renormalisation of the full theory at k = 0
is lifted by the regulator dependent exponential to finite k, whereas adding the cut-off term to
the classical action in (2) in general results in a k-dependent renormalisation. Upon Legendre
transformation, (6) leads to the effective action

Γk[φ, Ā] =

∫

d4x J∗φ − Wk[J, Ā] − ∆Sk[φ, Ā]. (7)

This object tends to the classical action for diverging cut-off k → Λ, subject to an appropriate
definition of Nk. For k → 0, when removing the regulator, Γk approaches the full effective
action Γ = Γk=0. For Rk[Ā] that transform as tensors under gauge transformations, δ̄ωRk =
[Rk , ω] one can define a gauge invariant effective action Γk[A] := Γk[φ = 0, A]. This functional
approaches the gauge invariant effective action of the underlying physical theory, Γ[A], for k →

3Multi-loop exact flows can be devised as well, but lack the accessibility of one loop exact flows.
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0. Only in this limit gauge invariance of Γk[A] is directly related to physical gauge invariance.
For k 6= 0 an application of δ leads to modified Ward-Takahashi identities for Γk[φ, A].

The flow equation describes how Γk[φ, Ā] changes under an infinitesimal variation of the
logarithmic scale t = ln k. It is derived from (6) with ∂tW [J, Ā] = 0 and the commutator
[∂t , δ

δJ
R∗

k[φ] δ
δJ∗

] and reads

∂tΓk[φ, Ā] =
1

2
TrGk [φ, Ā] ∂tRk[Ā] + ∂t lnNk[Ā] (8)

with

Gk,ij [φ, Ā] =

[

1

Γ
(2)
k [φ, Ā] + Rk[Ā]

]

ij

and Γ
(2)
k,ij [φ, Ā](x, y) =

δ2Γk[φ, Ā]

δφ∗j(y)δφi(x)
. (9)

The trace Tr denotes a sum over momenta, indices and the different fields φ. The relative minus
sign of fermionic loops is encoded in the definition of Gk in (9). The regulator Rk[Ā] not
only dependson the IR scale k but also depends on the UV scale Λ. Hence, the flow of Γk

w.r.t. ∂λ = Λ∂Λ + ∂t entails the information about the full scale dependence introduced by
the regulator Rk[Ā]. It is obtained by just substituting ∂λ for ∂t in (8). The flow of the gauge
invariant effective action, ∂tΓk[A], is described by (8) for φ = 0. Since (8) depends on the
propagator of the fluctuation field φ, the flow of Γk[A] requires some knowledge about Γk[φ, A].

Flow equation versus RG equation

The solution of the flow equation provides us with the running of the k-dependent vertices of
Γk. The anomalous coefficients of the underlying theory are related to the latter. The derivation
of the map between them is done along the same lines as the standard discussion of the relation
between the RG and Callan-Symanzik equations (see e.g. ref. [24]). Similar considerations in the
context of the ERG have been put forward in refs. [25–27]. The RG equation for Γ[φ, Ā] reads

µ
d

dµ
Γ[φ, Ā] =

(

µ∂µ + Dφ
)

Γ[φ, Ā] = 0, (10)

where µ is the usual RG-scale and

Dφ = γgg∂g + γξξ∂ξ + γφi

∫

x

φi
δ

δφi
+ γA

∫

x

Ā δ
δĀ

. (11)

In (11) a summation over i is understood: φ1 = a, φ2 = c, φ3 = c̄. From (8) and (10)
one derives similar equations for (∂s + Dφ)Γk and (µ∂µ + Dφ)Γk. Here the derivative ∂s =
µ∂µ + ∂t + Λ∂Λ encodes the derivative w.r.t. all UV and IR scales. First we notice that Eq. (10)
implies µ d

dµ
W [J, Ā] = 0 for µ d

dµ
Jφ = −γφJφ. With (6) we proceed along the same lines as in

the derivation of the flow equation and are led to

(

∂s + Dφ
) (

Γk[φ, Ā] − lnNk[Ā]
)

=
1

2
TrGk[φ, Ā]

(

∂s + Dφ + 2γφ

)

Rk[Ā]. (12)

The right hand side of (12) stems from the commutator [∂s + Dφ , δ
δJ

R∗

k[φ] δ
δJ∗

]. We also lift
the RG equation (10) for the full effective action Γ[φ, Ā] to one for Γk[φ, Ā] by substituting



On Wilsonian flows in gauge theories 479

∂s → µ∂µ in (12). This means that for Γk the RG-scaling of the underlying theory is changed
by the right hand side of (12) (with ∂s → µ∂µ).

A few comments are in order. It is obvious from the derivation that the anomalous dimensions
γφ, γA, γg, γξ in (12) are those of the full theory. Eq. (12) reduces to a Callan-Symanzik type
equation for R ∝ k2. We also see that the right hand side of (12) (with ∂s → µ∂µ) vanishes
smoothly in the IR limit k → 0 for regulators Rk that decay fast enough for large momenta.
There we are left with the RG-equation (10). In turn, this property is not guaranteed for regulators
which decay too slowly for large momenta, e.g. R ∝ k2. Then, additional care is required
concerning the limit k → 0, for a more extensive discussion see [2, 10, 17].

An interesting class of regulators is provided by the Rk satisfying the condition

(µ∂µ + Dφ + 2γφ)Rk = 0. (13)

With (13) the effective action Γk satisfies the same RG equation as the full effective action (10):
(µ∂µ + Dφ)Γk = 0. This follows directly from (12), when substituting ∂s with µ∂µ. A quite
general class of regulators Rk satisfying (13) is just proportional to (part of) the second derivative
of Γk w.r.t. to the fluctuation fields: Rk = Γ

(2)
k [φ = 0, Ā] r[x], where the dimensionless function

r[x] depends on an appropriately chosen covariant Laplacean (e.g. x = D2(Ā)+spin parts).
Now we focus on the consequences of (background) gauge invariance for the anomalous

dimensions introduced in (11). Gauge invariance of Γk[A] implies the invariance of gĀ under

general flows: gĀ → ZgZ
1/2
A gĀ, in particular

γg = −γA, and ∂t(ZgZ
1/2
A ) = ∂λ(ZgZ

1/2
A ) = 0. (14)

Note that the first equation displayed in (14) already follows from the gauge invariance of Γ[A],
regardless, whether Γk[A] has this property or not. The two equations in (14) are key relations to
be exploited later. It is not surprising that this is so. Already in the usual perturbative approach
with background fields it is precisely (14) which simplifies particular calculations tremendously.

Initial effective action and regulator dependence

We have stressed before that an important ingredient of the approach is the choice of an Ansatz
for the effective action Γk[φ, Ā]. It should include the full information (in its coefficients) rele-
vant for the issues under investigation. The strategy we pursue is the following: the calculation is
done at the initial scale Λ, where all irrelevant vertices are suppressed. This facilitates the iden-
tification of trivial contributions in (12). Moreover the calculation of the remaining non-trivial
terms in (12), namely the operator trace on the right hand side and of ∂sΓk, is quite simple. We
consider the following parametrisation for Γk,rel[φ, Ā]:

Γk,rel[φ, Ā] = S[Z
1/2
φ φ, Z

1/2
A Ā; Zgg, Zξξ]

−Tr
(

ZDD̄ ⊗ D̄ + ZF F [gĀ] + m2
k

)

a ⊗ a + O[φ3] (15)

In (15) the trace Tr denotes a sum over momenta, indices in the fundamental representation
and the classical action S[φ, Ā] is defined in (1). All other terms have (power counting) irrel-
evant couplings and vanish together with their t, λ-derivatives at one loop and k = Λ. Con-
sequently, as we only need the one loop effective action Γk[φ, Ā] as an input for the flow of
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Γk[A] at two loop, we safely can set these terms to zero for the present purpose4. Their con-
tributions have to be considered only beyond two loop, where they can be deduced from the
(flow of the) mWI. Moreover, no further terms with marginal couplings can be present in (15)
as it follows from (4), that Γ

(2)
k [φ, Ā] transforms as a tensor under a combined transformation

(δ + δ̄)Γ
(2)
k [φ, Ā] = [Γ

(2)
k [φ, Ā] , ω]. This property also facilitates in general the use of the mWI.

It drastically reduces the number of relevant terms. The Z|k=Λ’s, the mass mΛ and Rk implicitly
fix the renormalisation conditions (Zk=0, m0 = 0) of the full theory at k = 0. Consequently
the Z’s and mk depend on µ, k, Λ and on the regulator function Rk. A priori the λ-derivatives
of the Z’s have nothing to do with the anomalous dimensions γ generated by the implicit µ-
dependence of g, ξ and the fields. This makes it generally difficult to extract the anomalous
dimensions γ from ∂λ ln Z.

We have stated above that the initial effective action ΓΛ depends on the regulator Rk via the
coefficients Z and mk. This information is displayed by the following equation

Tr
(

δRk
δ

δRk

)

Γk[φ, Ā] =
1

2
TrGk [φ, Ā] δRk[Ā], (16)

valid for any scale k. In (16) δRk is a change of the regulator up to our disposal. An important
example is given by δRk = ( δ

δĀ
Rk) δĀ. For this choice (16) describes the background field

dependence introduced by the regulator itself [10,17]. If the s-derivative of (16) is non-vanishing,
we have introduced an implicit scale dependence of field (Ā) dependent terms via the regulator.
This spoils the identification of the t-running with the µ-running. When choosing regulators that
diverge in the infra-red, this is even present at one loop, see [10, 17]. Generally, this happens if
the cut-off term is more than quadratic in the fields, see also [28]5. It was argued in [10, 17] that
one can use Nk to cancel this unwanted dependence. Here we just restrict ourselves to a class of
regulators where no implicit λ-scaling is introduced at two loop and k = Λ. We note, however,
that for general k such terms are unavoidable.

UV renormalisation and consequences

It is left to identify all terms on the left hand side of (12). To that end we resort to a loop
expansion of the effective action. This leads to

(

∂s + Dφ
)

Γk[A] = 2γĀSA[A] +
(

∂s + Dφ
)

∆Γ[A], (17)

where ∆Γ comprises renormalised vacuum loops and SA is the classical Yang-Mills action. We
choose regulators that do not introduce implicit λ-scaling at two loop. On the technical level,
apart from other restrictions, this requires taking ξ = 1 following from an evaluation of (16).
Then, about k = Λ, Γk is a function of ratios of k, Λ and µ up to terms suppressed by powers
of (Λ2 − k2). At one loop this implies that ∂λ ln Z = γ. Hence, for this class of regulators we
can read-off the anomalous dimensions γ of the full theory from the ERG-scaling ∂λ ln Z. We
conclude that

(

∂s + Dφ
)

∆Γ = ∂s∆Γ2 + Dφ∆Γ1 = Dφ∆Γ1 at k = Λ and two loop. It is here
where the choice of regulators satisfying (13) pays off. For other choices the contributions do

4Some care is required concerning the momentum dependent terms F (gĀ)f1(p2) + F 2(gĀ)f2(p2) in Γ
(2)
Λ

.
5When working on gauge invariant regularisations, this becomes an important issue, see [29].
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not decouple that neatly and some further work is required6. It follows for ξ = 1, mΛ = 07 and
k → Λ that

(

∂s + Dφ
)

Γk[A] = 2γASA[A] + 3-loop terms. (18)

Then, the two loop flow follows from the one loop results for ∂λ ln Zφi
= 2γφi

, ∂λ ln Zg =
γg, ∂λ ln Zξ = γξ and ZF . So far we have achieved a result for ξ = 1 and mΛ = 0. This result
extends to mΛ 6= 0, since contributions proportional to mΛ are the same on both sides of (12).
Taking the ξ-derivative of the flow (12) confirms the ξ-independence of γA. For details we refer
to ref. [17].

Results and outlook

Using the relations described in the previous section we extract the correct one loop result for
the β-function directly from the ERG scaling of the coupling. However, for regulators that
diverge at vanishing momenta we have to consider ∂sΓΛ 6= 0 even at one loop [10, 17]. Its
contribution to the left hand side of (12) can be deduced from (16). It just combines with the
right hand side to the correct regulator independent result for γg . Strictly speaking, the check of
one loop universality within the ERG approach with background fields is not complete without
this statement. Indeed, for regulators with singular IR behaviour the ERG scaling does not match
the RG scaling: 2γg 6= −∂λ ln ZA. In terms of the map between RG scaling and ERG scaling
the difference can be tracked down very easily.

The two loop β-function of gauge theories has not yet been derived in the ERG approach. For
scalar theories this was done in ref. [30], see also [26, 27, 31, 32]). Within the present approach
the ERG scaling matches the RG scaling for a specific class of regulators. This leads to the
identity (18) for the left hand side of (12). The computation of the operator traces on the right
hand side of (12) requires the correct renormalisation related to the quantum fluctuations. This
part of the renormalisation plays an important rôle in the flow equation approach as opposed
to the usual perturbative background field approach. The remaining operator trace is calculated
straightforwardly and we arrive at the correct value for γA at two loop. With (14) this gives the
two loop β-function. Universality is encoded in the invariance under changing the Z’s, which
implicitly fix the renormalisation conditions at k = 0. Note also that in general γA cannot
be deduced from the ERG-scaling ∂λ ln ZA alone as this scaling is not universal. The actual
calculation is very simple and boils down to the evaluation of heat kernel traces as in the one
loop case the only difference being a one loop improvement of the operators. Here the careful
discussion of initial conditions and the map between ERG-scaling and RG scaling fully pays off.

Obviously, even though we have restricted ourselves to a calculation of the β-function, the
methods presented here allow for an analytic calculation of the effective action beyond the
present approximation. Clearly beyond one loop (and away from the scaling region) deriva-
tives w.r.t. the UV scale µ and the IR scale t do not necessarily match even for coefficients that
are universal at two loop. This is not too surprising since the proofs of universality at two loop
assume a mass-independent renormalisation. The introduction of an explicit IR scale contrasts
this demand. Hence, the non-trivial map of (UV) vertices of the underlying theory to vertices in

6Alternatively, for ξ = 1 and mΛ = 0 we can trade the explicit µ-scaling for a Callan-Symanzik scaling.
7mΛ = 0 imposes a further constraint on the class of regulators Rk.
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Γk is chiefly important, if one aims at improving the stability of the flow by means of an accurate
choice of the initial effective action.

Acknowledgement: I thank the organisers of RG 2002 for the invitation to this interesting con-
ference and the warm hospitality and the DFG for financial support.
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