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The 1D Kane oscillator is analysed. It is defined by the Schrödinger-Wannier equation in
which the potential-energy term represents the zero-centred quadratic well and in which the
‘kinetic-energy’ term is chosen as an operator corresponding to the conduction-electron dis-
persion function of the Kane two-band theory. The author considers the approximate form
of the Kane function for the conduction band well-known in the theory of narrow-gap semi-
conductors. Employing the momentum representation, he calculates the eigen-energies of the
electrons in frame of the WKB approach. The eigen-energies are roots of a transcendental
equation involving the complete elliptic integrals of the first and second kind. The author
presents a detailed discussion of the dependence of the eigen-energies of the electrons on the
Kane nonparabolicity of the conduction band.

PACS: 71.24.+q, 73.22.Fg, 73.61.Ey

1 Introduction

Recently Gashimzade and Babaev published a short paper [1] describing a quantum dot as a Kane
oscillator. They focused attention on the Kane eight-band model referring to results derived by
Darnhofer and Rössler [2]. In our present paper, we will direct attention on the Kane two-band
model. We will not treat a dot, but a thin film, modelling the perpendicular confining potential
by the quadratic function

V (z) =
1

2
Kz2 (K > 0) . (1)

This function (meaning, within the framework of the theory of envelope wave functions, the
perpendicular profile of the lower boundary of the conduction band) was deemed reasonable by
some theorists from the very beginning of the theory of the ‘thin-film quantization’, although the
majority of investigators, when having directed attention to a semiconductor thin film, preferred
to use another model—the Sommerfeld model with V (z) = 0 and with boundary conditions
requiring zero values of the envelope functions of the conduction electrons at the surfaces of the
film [3]. Nevertheless, the model with the function V (z) defined by expression (1) has proved to
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be advantageous in some theories. For instance, it allowed to accomplish (whilst the Sommerfeld
model did not) the complete analytical calculation of the one-electron propagator concerning a
thin film in a non-perpendicular constant magnetic field B. (The Sommerfeld model implies that
conduction electrons bounce off elastically from the film surfaces like balls. Even if the quantum
mechanics of these electrons can be formulated by means of Feynman’s path-integral theory,
the classical trajectories—which are the basic attribute of the Feynman theory with quadratic
Lagrangians—are extremely intricate in the case of a general orientation of B. Therefore, it
is difficult to calculate the one-electron propagator. This difficulty is circumvented if V (z) is
defined as a quadratic function.)

However, the quadratic confinement model affords an opportunity to discuss interesting as-
pects of the solid-state theory even if B = 0 and we will only deal with such a case.

If the value of K in function (1) is high, the conduction electrons are confined in a narrow
‘layer’, i.e. their perpendicular positional uncertainty, ∆z, is small. But then, their momentum
uncertainty, ∆pz ≈ h̄/∆z, is considerable. This indicates that if we consider the one-electron
Hamiltonian with the potential energy 1

2Kz
2, the lowest perpendicular energy eigen-value may

be high and, correspondingly, the distances between perpendicular energy eigen-values may also
be large enough. Then, even if we may approximate, with sufficiently low values of K, the
dispersion function of the conduction electrons (in the perpendicular direction), E(kz), by the
usual quadratic function h̄2k2

z/(2m), this possibility ceases to be acceptable with such values of
K when V (z) may model nanometre confinements. In such a case, a good theory has to reckon
with the nonparabolicity of the dispersion law E = E(k), especially if we consider narrow-gap
semiconductor thin films. The dispersion function E(k) of the conduction electrons in narrow-
gap semiconductors can well be approximated—at least in an interval (0, Ẽ) where Ẽ > 0 is a
value comparable with the width Eg > 0 of the forbidden energy gap—by the Kane function
[4–8]

EKane(k) =
Eg

2

[(

1 +
2h̄2k2

mEg

)1/2

− 1

]

. (2)

Here k2 = |k|2. Since the direct-gap semiconductors are cubic, the effective mass m > 0 of the
conduction electrons may be considered as a scalar,

1

m
=

1

h̄2

∂2EKane(k)

∂k2

∣

∣

∣

∣

k=0

.

Expression (2) is a simplified modification of the Kane function which has followed from his
two-band perturbation theory. If m0 > 0 is the factual electron mass, the dispersion function of
conduction electrons according to the k.p-approximation [9] would, in the two-band theory, be
equal to

Ek.p(k) =
h̄2k2

2m0
+
Eg

2

{[

1 +
2h̄2

Eg

(

1

m
− 1

m0

)

k2

]1/2

− 1

}

.

However, in some semiconductors, the effective mass m is much smaller than m0. (A notable
example is InSb where the value of m is by two orders of magnitude smaller than m0.) When
neglecting 1/m0 against 1/m and omitting the term h̄2k2/(2m0), we find that Ek.p(k) is ap-
proximately equal to expression (2).
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Throughout the present paper, we take kx = ky = 0. Thus we will analyse a 1D quantum-
mechanical problem defined, in the z-representation, by the Schrödinger-Wannier equation

[

EKane

(

− i
∂

∂z

)

+
1

2
Kz2

]

ψn(z) = Enψn(z) . (3)

Here EKane(− i∂/∂z) is the differential operator obtained from the function EKane(kz) by sub-
stituting − i∂/∂z for kz . The eigen-energies En > 0 form a discrete spectrum and are non-
degenerated, n = 0, 1, 2, . . . The eigen-functions may be considered as real functions. Formally,
equation (2) is a one-band equation, concerning the conduction band only. The influence of the
valence band has been respected in the derivation of the Kane function. The proximity of the
valence band to the conduction band causes the nonparabolicity of the dispersion law of the con-
duction electrons. (Indeed, only ifEg → ∞, the Kane function is reduced to the quadratic func-
tion h̄2k2/(2m).) Regarding the dynamics of the conduction electrons as essentially separated
from the dynamics of the holes, we will solve equation (3) in the quasi-classical approximation.

The standard outline of the quasi-classical approximation (or, synonymously saying, the
WKB approximation) can be found in many quantum-mechanical monographs. (Cf. e.g. [10].)

2 Solution of the problem

In compendia on quantum mechanics, the quasi-classical approximation was described, as a rule,
in the position representation. In our paper, on the other hand, we will employ the momentum
representation, with the Fourier transform

φn(kz) =
1√
2π

∫

∞

−∞

dz exp(− ikzz)ψn(z)

in the role of the eigen-function. Then equation (3) is transformed into the equation

− K

2

∂2φn(kz)

∂k2
z

+ EKane(kz)φn(kz) = Enφn(kz) . (4)

Formally taken, we can reinterpret this equation as if it were the Schrödinger equation in a
fictitious position representation. We propose to use

µ =
h̄2K

E2
g

> 0

as a fictitious mass and

ξ =
h̄kz√
µK

=
Egkz

K

as a fictitious position variable. With the wave function

ψ̃n(ξ) = φn(
√

µK ξ/h̄) = φn(Kξ/Eg)

and the ‘potential energy’

Ṽ (ξ) = EKane(
√

µK ξ/h̄) = EKane(Kξ/Eg) ,
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equation (4) goes over into the 1D Schrödinger equation

− h̄2

2µ

∂2ψ̃n(ξ)

∂ξ2
+ Ṽ (ξ)ψ̃n(ξ) = Enψ̃n(ξ) ,

i.e.

− h̄2

2µ

∂2ψ̃n(ξ)

∂ξ2
+

Eg

2

[

√

1 +
2µK

mEg
ξ2 − 1

]

ψ̃n(ξ) = Enψ̃n(ξ) . (5)

To the best of our knowledge, this equation was not solved in an exact analytical way yet. The
eigen-functions of this equation are surely not expressible in terms of elementary functions and
we doubt whether there exists a simple possibility to express them in terms of known special
functions.

Fortunately, we can solve equation (5) approximately by employing the WKB technique
which reputably has lead to satisfactory results in the theory of semiconductor quantum films,
wires and dots. Moreover, the WKB method is universal in the sense that it is equally suitable
for a broad class of potential-energy functions.

The clue function to be calculated first in the WKB theory is the classical momentum func-
tion. This function, for a particle of mass m and a general potential energy V , would read
p =

√

2m(E − V ). In our case, we have got the function

p̃E(ξ) =
√

2µ

√

√

√

√E +
Eg

2
− Eg

2

√

1 +
2µK

mEg
ξ2 . (6)

For each value E > 0, we define the interval of the ‘classical attainability’, IE ≡ (− bE , bE).
Here bE > 0 has to be determined as the value of ξ equal to the positive root of the equation
p̃E(ξ) = 0. A short calculation leads to the expression

bE =

√

2mE(E +Eg)

µKEg
.

In the spirit of the WKB theory, we write the stationary wave function corresponding to the
energyE in the sine form

ψ̃E(ξ) =
CL

E
√

p̃E(ξ)
sin

(

1

h̄

∫ ξ

−bE

dξ′p̃E(ξ′) +
π

4

)

=

=
CR

E
√

p̃E(ξ)
sin

(

1

h̄

∫ bE

ξ

dξ′p̃E(ξ′) +
π

4

)

. (7)

These two sines have to fit the same function. To achieve this, one has to require the fulfilment
of the condition

1

h̄

∫ bn

−bn

dξ p̃n(ξ) =

(

n+
1

2

)

π , (n = 0, 1, 2, . . . ) , (8)
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where

p̃n(ξ) ≡ p̃En
(ξ) , bn ≡ bEn

=

√

2mEn(En +Eg)

µKEg
,

and to require also that the coefficients CL
E ≡ CL

n and CR
E ≡ CR

n have to be equal in their
absolute value but with opposite signs if n is odd:

CL
n = (−1)nCR

n .

For each chosen value of n (= 0, 1, 2, . . . ), equation (8), as a transcendental equation for En,
has rightly one positive root.

For formal reasons, we define the dimensionless variable u and the dimensionless parameters
β > 0, A > 0:

u =

√

2µK

mEg
ξ , β =

√

2µK

mEg
bE , A =

2E +Eg

Eg
=

√

β2 + 1 .

We calculate the integral

Eg

2

√

m

µK
I =

∫ bE

0

dξ

√

√

√

√E +
Eg

2
− Eg

2

√

1 +
2µK

mEg
ξ2 ,

i.e.

I =

∫ β

0

du

√

A−
√

u2 + 1 =

∫ β

0

du

√

√

β2 + 1 −
√

u2 + 1 . (9)

When making use of the variable v =
√
u2 + 1, we transform integral (9) in the form

I =

∫ A

1

dv
√
A− v

v√
v2 − 1

=

∫ A

1

dv
√
A− v

d
√
v2 − 1

dv
.

When using the integration by parts, we obtain the result

I =
1

2

∫ A

1

dv

√

v2 − 1

A− v
=

1

2

∫ A

1

dv

√

(v − 1)(v + 1)

A− v
.

In Ryzhik’s and Gradshtein’s book of tables [11], one finds the formula

∫ A

B

dv

√

(v −B)(v − C)

A− v
=

2

3

√
A− C

[

(2A−B − C) E(Γ 2) − (B − C) K(Γ 2)
]

,

0 < Γ 2 =
A−B

A− C
< 1 . (10)
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(See the expression No. 22 in Section 3.141 of [11].) This integral formula is valid with any
three real parameters A, B and C provided that A > B > C. The symbols K(Γ 2) and E(Γ 2)
signify the complete elliptic integrals of the first and of the second kind, respectively:

K(Γ 2) =

∫ π/2

0

dϕ
√

1 − Γ 2 sin2 ϕ
, E(Γ 2) =

∫ π/2

0

dϕ

√

1 − Γ 2 sin2 ϕ .

Since B = − C = 1 in integral (10), we can rewrite equation (8) in the form

2Eg

3π

√

2(A+ 1) [A E(Γ 2) − K(Γ 2)] = h̄ω0

(

n+
1

2

)

.

Here we have introduced the frequency parameter

ω0 =

√

K

m

characterizing the oscillator under consideration. Using the explicit expressions

A ≡ An =
2En +Eg

Eg
, Γ ≡ Γn =

√

An − 1

An + 1
=

√

En

En +Eg
,

we obtain the final form of the equation for En:

4

3π

√

Eg(En +Eg)

[

2En +Eg

Eg
E

(

En

En +Eg

)

− K

(

En

En +Eg

)

]

=

= h̄ω0

(

n +
1

2

)

. (11)

The complete elliptic integrals can be expressed as the hypergeometric series [11, 12]:

K(Γ 2) =
π

2
F

(

1

2
,
1

2
; 1;Γ 2

)

=

=
π

2

[

1 +

(

1

2

)2

Γ 2 +

(

1.3

2.4

)2

Γ 4 +

(

1.3.5

2.4.6

)2

Γ 6 + . . .

]

,

E(Γ 2) =
π

2
F

(

− 1

2
,
1

2
; 1;Γ 2

)

=

=
π

2

[

1 −
(

1

2

)2
Γ 2

1
−

(

1.3

2.4

)2
Γ 4

3
−

(

1.3.5

2.4.6

)2
Γ 6

5
− . . .

]

.

Once we have got the solution En > 0 of equation (11), we can calculate the eigen-function
ψn(z) in the coordinate representation as the Fourier integral
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ψn(z) =
1√
2π

∫

∞

−∞

dkz exp(ikzz)φn(kz) =

=
1√
2π

K

Eg

∫

∞

−∞

dξ exp

(

i
Kz

Eg
ξ

)

ψ̃n(ξ) . (12)

Since the function ψ̃n(ξ) itself has been expressed (by formula (7)) as an integral, expression (12)
is a double integral. Nevertheless, utilizing the integration by parts, we can transform integral
(12) into a single integral. Regrettably, the function p̃(ξ) defined by formula (6) is fairly compli-
cated, so we do not count on the possibility to calculate integral (12) exactly without applying a
numerical method. Problems linked with the numerical calculation are merely mathematical, so
we give up discussing them here. We point out only that if the value of En is sufficiently high,
then, in order to manage effectively the calculation of integral (12), we may take advantage of the
theory of asymptotic methods (cf. e.g. [13]). (In particular, we have in mind the stationary-point
method.)

3 Discussion of the spectrum of the eigen-energies

Using h̄ω0 as the energy unit, we define the dimensionless energies

En =
En

h̄ω0
(13)

and the ‘nonparabolicity parameter’

α =
h̄ω0

Eg
. (14)

Then (11) becomes a one-parameter equation

Fα(En(α)) = n+
1

2
. (15)

Here, in conformity with equation (11), we have defined the function

Fα(E) =
4

3π

√
1 + αE
α

[

[1 + 2αE ] E

(

αE
1 + αE

)

−K

(

αE
1 + αE

)]

. (16)

When α → +0, the Kane function defined by expression (2) is reduced to the quadratic function,

lim
α → +0

EKane(k) =
h̄2k2

2m
, (17)

and

F0(E) = E . (18)
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Fig. 1. Plot of the functions Fα(E) for six values of the nonparabolicity parameter α. The curves, from the
right to the left, correspond to α = 0 (the straight line) and α = 1, . . . , 5. The horizontal lines correspond
to n + 1

2
(n = 0, . . . , 15).

In equation (15), we have emphasized explicitly that the energies En depend on the value of α.
Within the framework of the WKB theory, equation (15) is exact and, therefore, equally usable
with all positive values of α. For each quantum number n, we can easily calculate En(α) in a
numerical way and the algorithm of this calculation is simple. In Fig. 1, we have plotted graphs
of several functions Fα(E). If α = const, Fα(E) is an increasing function of the variable E . The
value En(α) is determined as the horizontal coordinate of the intersection point of the function
Fα(E) with the horizontal straight line defined by the vertical coordinate equal to n+ 1

2 .
If the value of α is sufficiently small, we can solve equation (15) in an analytical manner. We

may regard α > 0 as a parameter of a perturbation theory. We write En(α) as a series:

En(α) = h̄ω0En(α) = h̄ω0[E(0)
n + E(1)

n α+ E(2)
n α2 + . . . ]

A straightforward calculation—see Appendix—gives us the value

En(0) = h̄ω0E(0)
n = h̄ω0

(

n+
1

2

)

.

This is the well-known result valid for a linear harmonic oscillator.
In Appendix, we calculate also the coefficient E (1)

n . According to our calculations, the first-
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α = 0 α = 0.1 α = 0.2 α = 0.5 α = 1 α = 2
n En(0) En(0.1) En(0.2) En(0.5) En(1) En(2)

0 0.5 0.49105 0.48285 0.46177 0.43460 0.39672
1 1.5 1.42589 1.36700 1.24098 1.11130 0.96438
2 2.5 2.30885 2.17300 1.91280 1.67308 1.42297
3 3.5 3.14955 2.92234 2.51905 2.17205 1.82643
4 4.5 3.95491 3.62799 3.07945 2.62929 2.19434
5 5.5 4.73007 4.29850 3.60524 3.05595 2.53665
6 6.5 5.47902 4.93986 4.10361 3.45885 2.85926
7 7.5 6.20492 5.55650 4.57946 3.84250 3.16603
8 8.5 6.91031 6.15180 5.03637 4.21012 3.45969
9 9.5 7.59729 6.72840 5.47701 4.56408 3.74222

10 10.5 8.26761 7.28842 5.90347 4.90621 4.01512
11 11.5 8.92275 7.83361 6.31740 5.23794 4.27960
12 12.5 9.56398 8.36539 6.72015 5.56043 4.53660
13 13.5 10.1924 8.88499 7.11284 5.87463 4.78690
14 14.5 10.8089 9.39344 7.49640 6.18132 5.03116
15 15.5 11.4144 9.89164 7.97160 6.48118 5.26990

Tab. 1. Some WKB exact values of En(α) calculated from equation (15)

order perturbation theory (with respect to α) leads to the formula

En(α) = h̄ω0

(

n+
1

2

)[

1 − 3α

8

(

n+
1

2

)]

+ O(α2) . (19)

In Tab. 1, we present some values of En(α). Since these values have been calculated from
equation (15), we consider them as ‘WKB exact’. The purpose of Tab. 2 is to illustrate the ac-
curacy of the ‘WKB linear approximation’ which means that the values of En(α) are calculated
according to formula (19) with neglecting all terms O(α2). For a given value of α, the ‘WKB
linear approximation’ becomes worse and worse as the index n grows. The ‘WKB linear’ value
of En(α) is always lower than the corresponding ‘WKB exact’ value. With α = 0.1, the discrep-
ancy between these values does not exceed 10 per cent for 0 ≤ n ≤ 5, whilst for α = 0.5, the
discrepancy does already exceed 10 per cent if n ≥ 1. If α > 1, the accuracy of the ‘WKB lin-
ear approximation’ is practically not tolerable. (If α = 1, then even for the lowest eigen-energy,
when n = 0, the discrepancy between the corresponding ‘WKB linear’ and ‘WKB exact’ values
of E0(1) is about 6.52 per cent. If α = 2, this dicrepancy would be about 21.23 per cent!)

An improvement could be, of course, realised if the second-order perturbation theory (with
respect to α) were taken into account. We could generalize formula (19) by extending the cal-
culations of Appendix. Nonetheless, the ‘WKB exact’ calculation employing equation (15) is so
simple that, we believe, we need not further to work up the perturbation theory in more detail.

If the value of n is fixed, the function En(α) decreases asymptotically to zero if α tends to
infinity. To prove this statement, let us take E = const and analyze the asymptotic behaviour of
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α = 0.1 α = 0.5
n Eexact

n
(α) E linear

n
(α) δEn(α) n Eexact

n
(α) E linear

n
(α) δEn(α)

0 0.49105 0.490625 0.09 0 0.46177 0.453125 1.87

1 1.42589 1.415625 0.72 1 1.24098 1.078125 13.12

2 2.30885 2.265625 1.87

3 3.14955 3.040625 3.46

4 3.95491 3.740625 5.42

5 4.73007 4.365625 7.70 α = 1
6 5.47902 4.915625 10.28 n Eexact

n
(α) E linear

n
(α) δEn(α)

0 0.43460 0.40625 6.52

1 1.11130 0.65625 40.95

α = 0.2
n Eexact

n
(α) E linear

n
(α) δEn(α)

0 0.48285 0.48125 0.33

1 1.36700 1.33125 2.62 α = 2
2 2.17300 2.03125 6.52 n Eexact

n
(α) E linear

n
(α) δEn(α)

3 2.92234 2.58125 11.67 0 0.39672 0.3125 21.23

Tab. 2. Comparison of ‘WKB exact’ with ‘WKB linear’ values of En(α). In this Table, δEn(α) =
100×[Eexact

n
(α)−E linear

n
(α)]/Eexact

n
(α) means the percentage in which E linear

n
(α) differs from Eexact

n
(α).

Tab. 2 is composed of five partial tables. With any fixed value of α, the sequence δE0(α), δE1(α), δE2(α),
. . . increases. The last row in each partial table corresponds to the first value of the oscillator quantum
number, n = ñ(α), for which δEn(α) exceeds ten per cent. The values of Eexact

n
(α), E linear

n
(α) and

δEn(α) for n > ñ(α) have not been included in these tables.

the function Fα(E) (cf. expression (16)) for α → ∞. The complete elliptic integral K(Γ 2)
diverges logarithmically if Γ → 1 from the left [11]. Indeed, if α → ∞,

K

(

αE
1 + αE

)

= K

(

1 − 1

1 + αE

)

= ln
(

4
√

1 + αE
)

[

1 + O
(

1

α

)]

.

On the other hand,

E

(

αE
1 + αE

)

= E

(

1 − 1

1 + αE

)

= 1 +
1

2
ln

(

4
√

1 + αE
)

O
(

1

α

)

.

Thus, the leading term in the large brackets [. . . ] in expression (16) is 2αE and we may write the
asymptotic expression for Fα(E):

Fα(E) ≈ 8

3π
α1/2E3/2 .

(Here we have neglected unity againstαE .) Hence, equation (15) gives us the asymptotic solution

En(α) ≈
(

3π

8

)2/3(

n+
1

2

)2/3
1

α1/3

for α → ∞.
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Fig. 2. Plot of the functions En(α) for eleven values of the quantum number n. From below upwards,
n = 0, 1, . . . , 10. The scale of α is linear. The curves start, at α = 0, from En(0) = n + 1

2
.

In Fig. 2, we have shown the functions En(α) for the lowest eleven values of n. Clearly, the
functionEn(α) decreases most steeply at α → +0 and if we compare the functionsEn(α) with
different indices n, we observe that the steepness of the decrease of these functions at α → +0
grows with n. This affirmation does also follow from formula (19) which yields us the derivative

∂En(α)

∂α

∣

∣

∣

∣

α=+0

= − 3

8

(

n+
1

2

)2

.

4 Concluding remarks

In this paper, we have solved the one-dimensional Schrödinger-Wannier equation

E

(

i
∂

∂z

)

ψn(z) +
1

2
Kz2ψn(z) = Enψn(z)

with E(kz) chosen in the form of the Kane function EKane(kz). (Cf. expression (2) with kx =
ky = 0.) Obviously, the method which we have employed in this paper, based on the quasi-
classical approximation (WKB approximation), is equally applicable with many other adequate
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functions E(kz). Generally, in correspondence to the choice of E(kz), we may speak, when
discussing quantum thin films modelled by a quadratic confining potential, not only of the Kane
oscillator but also of other oscillators that are different from the common quantum-mechanical
harmonic oscillator.

Here it should be pointed out that realistic functions E(kz), as a rule, resemble the quadratic
function h̄2k2

z/(2m) in a wide enough interval of kz around the point k0z = 0. This is a
favourable aspect for our theory since, as it was well known from the very discovery of the
quantum mechanics, the WKB approximation gives exact results for all eigen-energies of the
harmonic oscillator, i.e. also for low-lying energiesEn. On the other hand, in general, if the po-
tential energy is not quadratic, the WKB approximation holds as a high-energy approximation.
In our theory, we have used the kz-representation. Then the dispersion function E(kz) plays the
role of a ‘potential energy’ which behaves quadratically in a relatively wide interval around the
central point k0z = 0, but non-quadratically at high values of |kz |. Therefore, there is a good
reason to believe that for a broad class of dispersion functions E(kz), the WKB approximation
may provide, at least in the case of the quadratic potential energy V (z) = 1

2Kz
2 (which, in the

kz-representation becomes the ‘kinetic-energy’ operator − 1
2K∂

2/∂k2
z ), quite good values both

for low-lying and for high-lying eigen-energiesEn. For energies in between, the WKB approxi-
mation may still be deemed reasonable as a natural interpolation between two regions where the
suitability of this approximation was well established.

Our second remark concerns the dependence of the oscillator eigen-energies on the non-
parabolicity parameter α ∼ 1/EG. We can clarify why Eg(α) are decreasing functions of α as
follows. The Kane electron is a quasi-particle whose effective mass grows with energy. Indeed,
what we have denoted as m is the effective mass at E = 0. For E > 0, the effective mass
mKane(E) of the Kane electron is defined by the formula [9]

1

mKane(E)
=

1

h̄2

∂2EKane(kz)

∂k2
z

,

which gives the function

mKane(E) = m

(

1 +
2E

Eg

)3

,

or, if we use the denotation m̃Kane(E) ≡ mKane(E), the function

m̃(E) = m (1 + 2αE)3 .

Thus, the Kane electron, when oscillating in a potential well defined by the function V (z), keeps
actually moving like a heavier quasi-particle than the ‘free electron’ of mass m: the heavier, the
higher the value of the energyEn is and the higher the value of the nonparabolicity parameter is.
Only if α = 0, the electron is ‘light’, with the effective mass m which is energy-independent.

Our conclusion that the values of the eigen-energies En decrease if 1/Eg increases (i.e. if
Eg decreases) is valid quite generally, whichever the shape of the potential-well function V (z)
is. To exemplify this conclusion, let us now discuss the 1D Sommerfeld model. In this case, the
eigen-functions of the Kane electron are ψn(z) ∼ sin(πnz/a), where a > 0 is the width of the
well and n = 1, 2, . . . Correspondingly, the Sommerfeld-Kane eigen-energies are

ESK
n

(

1

Eg

)

=
Eg

2

[(

1 +
2π2h̄2n2

ma2Eg

)1/2

− 1

]
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and, clearly,

ESK
n

(

1

Eg

)

< ESK
n (0) =

π2h̄2n2

2ma2

for 0 < Eg <∞.
Finally, let us point out that although we have applied the WKB approach to the 1D Kane

oscillator, there would be no hindrance to apply it to 2D and 3D Kane (and other) oscillators.

Appendix

We write

En(α) = E(0)
n + E(1)

n α+ E(2)
n α2 + O(α3) .

If α is small, we may approximate relevant expressions in the l.h.s. of equation (17) by poly-
nomials. As the prefactor in function (16) involves α in the denominator, then, to obtain the
coefficients E(0)

n and E(1)
n , we may confine ourselves to considering the remaining expressions in

formula (16) as the second-order polynomials. Thus we write the following expressions:

√

1 + αEn(α) = 1 +
E(0)

n

2
α +

4E(1)
n − [E(0)

n ]2

8
α2 + O(α3) ,

1 + 2αEn(α) = 1 + 2E(0)
n α+ 2E(1)

n α2 + O(α3) ,

αEn(α)

1 + αEn(α)
= E(0)

n α+ (E(1)
n − [E(0)

n ]2) α2 + O(α3) ,

K

(

αEn(α)

1 + αEn(α)

)

=
π

2

[

1 +
αEn(α)

4[1 + αEn(α)]
+

9

64

(

αEn(α)

1 + αEn(α)

)2

+ O(α3)

]

=

=
π

2

[

1 +
E(0)

n

4
α +

16E(1)
n − 7[E(0)

n ]2

64
α2 + O(α3)

]

,

E

(

αEn(α)

1 + αEn(α)

)

=
π

2

[

1 − αEn(α)

4[1 + αEn(α)]
− 3

64

(

αEn(α)

1 + αEn(α)

)2

+ O(α3)

]

=

=
π

2

[

1 − E(0)
n α

4
− 16E(1)

n − 13[E(0)
n ]2

64
α2 + O(α3)

]

,

Equation (15) has the structure

4

3π

√

1 + αEn(α)

α

[

. . .

]

=
4

3πα

(

1 +
E(0)

n

2
α +

4E(1)
n − [E(0)

n ]2

8
α2 + O(α3)

)[

. . .

]

=

= n +
1

2
,
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where
[

. . .

]

= [1 + 2αEn(α)] E

(

αEn(α)

1 + αEn(α)

)

− K

(

αEn(α)

1 + αEn(α)

)

=

=
3πα

4

(

E(0)
n +

8E(1)
n − [E(0)

n ]2

8
α

)

+ O(α3) .

Hence,

4

3πα

√

1 + αEn(α)

[

. . .

]

=

(

1 +
E(0)

n

2
α

)(

E(0)
n +

8E(1)
n − [E(0)

n ]2

8
α

)

+ O(α2) =

= E(0)
n +

(

E(1)
n +

3

8
[E(0)

n ]2
)

α + O(α2) = n+
1

2
.

In this way, we have obtained the values:

E(0)
n = n+

1

2

and

E(1)
n = − 3

8
[E(0)

n ]2 .

Therefore,

En(α) =

(

n+
1

2

)[

1 − 3α

8

(

n+
1

2

)]

+ O(α2) .
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