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The Milburn equation is solved exactly for multi-quanta Jaynes-Cummings model (JCM) in
the presence of Stark shift. The influence of intrinsic decoherence and Stark shift on nonclas-
sical properties (such as collapses and revivals of the population inversion and squeezing of
the field modes) of the system is studied. The dynamical behaviour is adjusted in the presence
of Stark shift. It is shown that the dynamic Stark shift plays an important role in nonclassical
effects in multi-quanta processes. Also, even in the presence of Stark shift the revivals of the
population inversion and squeezing of the field are destroyed in the decoherence process.

PACS: 42.50.-p, 42.50.Dv

1 Introduction

Due to the recent advances in cooling and trapping of ions [1] the motion of the center-of-mass
(c.m.) of trapped ions has to be dealt with quantum mechanically. Laser irradiation [2–6] is used
to control this motion coherently by coupling the ion’s external and internal degrees of freedom.
Models have been constructed to describe a two-level ion undergoing quantized vibrational mo-
tion within a harmonic trapping potential and interacting with a classical light field [2,3,7,8]. It
has been pointed out that the dynamics of a trapped ion can be described by a Hamiltonian sim-
ilar to a Jaynes-Cummings model [9] or its generalizations under certain regimes [4,5,10–12].
Within the framework of these Jaynes-Cummings-like models, various aspects of the dynamics
of trapped ions have been studied. For example, quantum nondemolition measurement of vibra-
tional quanta of trapped ions has been analyzed theoretically [13] and several schemes have been
proposed [14] for the reconstruction of quantum-mechanical vibrational states of a trapped ion

One of these schemes has been successfully applied to the experimental reconstruction of
the Wigner function of nonclassical states of the vibrational mode of a trapped ion [15]. It is
to be noted that ion trap experiments suffer from decoherence due to classical noise in the laser
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beams and trapping potential. Such effect has been seen in recent experiments [16]. This kind of
decoherence may be described using the intrinsic decoherence models [17–22].

The intrinsic decoherence approach has been proposed and investigated in the framework
of several models [23–27]. In particular, Milburn [17,28] proposed a simple intrinsic decoher-
ence models based on an assumption that on sufficiently short time steps the system evolves in
a stochastic sequence of identical unitary transformations. This assumption modifies the von
Neumann equation for the density operator of a quantum system through a simple modification
of the usual Schrödinger evolution equation. The off-diagonal elements of the density operator
in Milburn’s model are intrinsically suppressed in the energy eigenstate basis, thereby intrinsic
decoherence is realized without the usual dissipation associated with the normal decay. The de-
cay is entirely of phase dependence only. Free evolution of a given quantum system has been
discussed early [17] but investigations of interacting sub-systems followed [18–20]. The later
were concerned with the Jaynes-Cummings model either with one-photon or multiphoton transi-
tions. The Jaynes-Cummings model (JCM) [9] in quantum optics describes many pure quantum
phenomena, such as collapses and revivals of the atomic inversion and oscillations of photon
number distribution. It has been generally accepted that these nonclassical effects originate to
form quantum coherences between the amplitudes. Therefore, it is an interesting topic to inves-
tigate the effects of the intrinsic decoherence on the nonclassical properties in the JCM, when
we have single-mode of the interacting field affecting the interaction, and hence multi-quanta
JCM. Such a model is discussed in this article when it is governed by the Milburn equation.
On the other hand, there has been increased interest in the problem of decoherence in quantum
mechanics because of its possible applications in quantum measurement processes and quantum
computers [29].

Decoherence due to normal decay is often said to be the most efficient effect in physics, to a
point where observation comes too late after the effect has reached completion [30]. The effect
in action has been observed in quantum optics where the decoherence phenomena transforming a
Schrödinger-cat into a statistical mixture was observed while unfolding [31]. It is well known that
the Jaynes-Cummings model (JCM) in quantum optics [32] and cavity QED with cold trapped
ions [11] can describe many pure quantum phenomena, called nonclassical properties, such as
collapses and revivals of population inversion, oscillations of number distributions for quanta
and squeezing of the cavity field.

In this model, when the two atomic levels are coupled with comparable strength to the in-
termediate relay level, the Stark shift becomes significant and can not be ignored [33–36]. The
authors [34–36] studied the influence of the Stark shift term on the atomic inversion and dipole
squeezing in the two-photon processes. They found that the dynamic Stark shift plays an impor-
tant role in atomic inversion, but the influence of the Stark shift on the atomic inversion does not
show if the two-levels are coupled equally strongly with the relay level under the condition of a
strong initial field, and they also showed that the dipole squeezing shows a weak phase depen-
dence in the absence of the Stark shift, but a strong phase dependence when it is present. Ashraf
and Zubairy [37] included this power-dependent effect in their study of the equal-frequency two-
photon micromaser. Gou [38] discussed how to eliminate the Stark shift through the use of a
correlated two-mode field state in unequal frequency absorption. Nasreen and Razmi [36,39]
discussed the effect of the dynamic Stark shift on atomic emission and cavity field spectra in
the two-photon JCM and have shown that the Stark shift leads to asymmetric vacuum field Rabi
splitting.
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The purpose of this work is to study the multi-quanta JCM governed by Milburn equation
in the presence of Stark shift. When the Stark shift is included, the dynamical behaviour is
significantly affected. Our results show that the dynamic Stark shift plays an important role in
nonclassical effects in multi-quanta processes. Also, it will be shown that the intrinsic deco-
herence in the particle (atom or trapped ion)-field interaction modifies the time evolution of the
population inversion of the quanta and squeezing of the cavity field even in the presence of Stark
shift.

This article is organized as follows. In section 2, We present an exact solution of the Milburn
equation for the multi-quanta Jaynes-Cummings Hamiltonian in the presence of Stark shift and
give the explicit expression of this solution in the two-dimensional basis of the particle. In
section 3, We investigate the influence of the intrinsic decoherence and Stark shift on population
inversion and squeezing of the radiation field in the JCM either in the resonant or the off-resonant
cases. Finally, conclusion are presented in section 4.

2 Exact solution of the Milburn equation

We consider a quantum system described by the density operator ρ(t). In standard quantum
mechanics, dynamics of the system is governed by the evolution operator Û(t) = exp[− i

h̄
tĤ ],

where Ĥ is the Hamiltonian describing the system. Milburn assumed [17] that on sufficiently
short time steps the system does not evolves continuously under unitary evolution but rather in a
stochastic sequence of identical unitary transformation. Based on this assumption, he has derived
the equation for the time evolution density operator ρ(t) of the quantum system [17]

d

dt
ρ̂(t) = γ

{

exp

[

− i

h̄γ
Ĥ

]

ρ̂(t) exp

[

i

h̄γ
Ĥ

]

−ρ̂(t)

}

, (1)

where γ is the mean frequency of the unitary time step. This equation formally corresponds to the
assumption that on sufficiently short time steps the system evolves with a probability p(τ) = γτ .
Obviously, the generalized Eq. (1) alters the Schrödinger dynamics. It reduces to the ordinary
von Neuman equation for the density operator in the limit γ → +∞. Expanding Eq. (1) to first
order in γ−1, the following dynamical equation is obtained:

d

dt
ρ̂(t) = − i

h̄
[Ĥ, ρ̂] − 1

2h̄2γ
[Ĥ, [Ĥ, ρ̂]] , (2)

which is the Milburn equation that we shall study below. This equation has been solved for
a harmonic oscillator and a precessing spin system [17] the simple JCM [18,19], the resonant
multiphoton JCM [20] and the nondegenerate two-mode JCM [21,22]. In what follows we shall
consider the exact solution of this equation for the multi-quanta JCM with a detuning parameter
in the presence of the Stark shift.

The system considered here consists of a two-level particle (atom or trapped ion) interacting
with a single-mode quantized field via m-quanta transition processes. The Hamiltonian in the
rotating wave approximation (RWA) [40], is written as:

Ĥ = ωâ†â+
ω◦

2
σ̂z++â†â(β1 | g >< g | +β2 | e >< e |)+λ(â†mσ̂−+âmσ̂+) (h̄ = 1), (3)
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where ω is the field frequency and ω◦ is the transition frequency between the excited and ground
states of the particle (atom or trapped ion), â and â† are the annihilation and the creation operators
of the cavity field respectively, β1 and β2 are parameters describing the intensity-dependent Stark
shifts of the two levels that are due to the virtual transition to the intermediate relay level; λ is the
effective coupling constant, σ̂z is the population inversion operator, and σ̂± are the ”spin flip”
operators which satisfy the relation [σ̂+, σ̂−] = σ̂z and [σ̂z , σ̂±] = ±2σ̂±, with the detuning
parameter ∆ = ω◦ − mω.

Now, we look for the exact solution for the density operator ρ̂(t) of Eq. (2) taking into account
the Hamiltonian (3). For convenience, we introduce three auxiliary superoperators [18–22] Ĵ , Ŝ
and L̂ defined by

exp(Ĵτ)ρ̂(t) =
∞
∑

k=0

1

k!

(

τ

γ

)k

Ĥkρ̂(t)Ĥk (4)

exp(Ŝτ)ρ̂(t) = exp(−iĤτ)ρ̂(t) exp(iĤτ) (5)

exp(L̂τ)ρ̂(t) = exp

[

− τ

2γ
Ĥ2

]

ρ̂(t) exp

[

− τ

2γ
Ĥ2

]

. (6)

From Eqs. (4–6) it follows that

Ĵ ρ̂ =
1

γ
Ĥρ̂Ĥ, Ŝρ̂ = −i[Ĥ, ρ̂], L̂ρ̂ = − 1

2γ
{Ĥ2, ρ̂} = − 1

2γ
(Ĥ2ρ̂ + ρ̂Ĥ2) . (7)

By substituting Eq. (7) into Eq. (2), we can obtain the formal solution of the Milburn equation as
follows:

ρ̂(t) = exp(Ĵ t) exp(Ŝt) exp(L̂t)ρ̂(0) , (8)

where ρ̂(0) is the density operator of the initial particle-field system.
We assume that initially the field is prepared in the coherent state | α >:

| α >=

∞
∑

n=0

exp(−1

2
|α|2) αn

√
n!

| n >=

∞
∑

n=0

Qn | n > (9)

and the particle (atom or trapped ion) is in its excited state | e >, so that

ρ̂(0) =| α >< α | ⊗ | e >< e | . (10)

In a two-dimensional basis for the particle the Hamiltonian (3) can be expressed as a sum of
Ĥ◦, which is diagonal and ĤI , which is not

Ĥ = Ĥ◦ + ĤI , [Ĥ◦, ĤI ] = 0, (11)

where

Ĥ◦ =

[

ω(n̂ + m
2

) + δ̂+(n + m) 0

0 ω(n̂ − m
2

) + δ̂+(n)

]

(12)
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ĤI = λ

[

[ ∆

2λ
+ 1

λ
δ̂−(n + m)] âm

â†m −[ ∆

2λ
+ 1

λ
δ̂−(n)]

]

(13)

with

δ̂±(n) =
1

2
[β2(n̂−m)±β1n̂],

1

λ
δ̂−(n) = [(n̂−m)−R2n̂]/2R, R2 = β1/β2, λ =

√

β1β2 .

(14)

Similarly, the square of the Hamiltonian (3) can also be expressed as a sum of two matrices in
the form

Ĥ2 = Â + B̂, [Â, B̂] = 0 , (15)

where Â is diagonal in the form

Â =

[

Θ̂2(n + m) 0

0 Θ̂2(n)

]

(16)

and B̂ is given by

B̂ = 2λ

[

η̂(n + m)ζ̂(n + m) âmζ̂(n)

ζ̂(n)â†m −η̂(n)ζ̂(n)

]

(17)

with

η̂(n) = [
∆

2λ
+

1

λ
δ̂−(n)], ζ̂(n) = [ω(n̂ − m

2
) + δ̂+(n)] (18)

Θ̂2(n) = ζ̂2(n) + λ2F̂ 2(n). (19)

F̂ 2(n) = η̂2(n) + ν̂2(n), ν̂2(n) =
n̂!

(n̂ − m)!
. (20)

Taking into account the initial condition (10) we can write down the following expression

ρ̂2(t) = exp(Ŝt) exp(L̂t)ρ̂(0)

= exp(−iĤI t) exp

(

− t

2γ
B̂

)

ρ̂1(t) exp

(

− t

2γ
B̂t

)

exp(iĤI t) , (21)

where the auxiliary operator ρ̂1(t) is defined by

ρ̂1(t) =

[

| Ψ̂(t) >< Ψ̂(t) | 0
0 0

]

(22)

with

| Ψ̂(t) >= exp

[

− t

2γ
Θ̂2(n + m)

]

exp[−iζ̂(n + m)t] | α > . (23)
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The powers of the operator B̂ can be written as

B̂2k =





[2λζ̂(n + m)F̂ (n + m)]2k 0

0 [2λζ̂(n)F̂ (n)]2k



 (24)

B̂2k+1 =











η̂(n + m)
[2λζ̂(n + m)F̂ (n + m)]2k+1

F̂ (n + m)
âm [2λζ̂(n)F̂ (n)]2k+1

F̂ (n)

[2λζ̂(n)F̂ (n)]2k+1

F̂ (n)
â†m −η̂(n)

[2λζ̂(n)F̂ (n)]2k+1

F̂ (n)











(25)

then we can write the operator exp[− t
2γ

B̂] in the form

exp[− t

2γ
B̂] =











X̂(n + m, t) − η̂(n + m)
Ŷ (n + m, t)

F̂ (n + m)
−âm Ŷ (n, t)

F̂ (n)

− Ŷ (n, t)

F̂ (n)
â†m X̂(n, t) + η̂(n)

Ŷ (n, t)

F̂ (n)











, (26)

where

X̂(n, t) = cosh

[

λt

γ
ζ̂(n)F̂ (n)

]

, Ŷ (n, t) = sinh

[

λt

γ
ζ̂(n)F̂ (n)

]

. (27)

Similarly, we can write the operator exp[−iĤIt] in the two-dimensional basis for the particle as

exp[−iĤI t] =











Ĉ(n + m, t) − iη̂(n + m)
Ŝ(n + m)

F̂ (n + m)
−iâm Ŝ(n, t)

F̂ (n)

i
Ŝ(n, t)

F̂ (n)
â†m Ĉ(n, t) + iη̂(n)

Ŝ(n, t)

F̂ (n)











(28)

with

Ĉ(n, t) = cos[λtF̂ (n)] and Ŝ(n, t) = sin[λtF̂ (n)]. (29)

Then,

exp[−iĤI t] exp

(

− t

2γ
B̂

)

=











R̂(n + m, t) − η̂(n + m)
V̂ (n + m, t)

F̂ (n + m)
−âm V̂ (n, t)

F̂ (n)

− V̂ (n, t)

F̂ (n)
â†m R̂(n, t) + η̂(n)

V̂ (n, t)

F̂ (n)











,

(30)

where

R̂(n, t) = Ĉ(n, t)X̂(n, t) + iŜ(n, t)Ŷ (n, t) (31)



Influence of intrinsic decoherence in... 425

V̂ (n, t) = Ĉ(n, t)Ŷ (n, t) + iŜ(n, t)X̂(n, t). (32)

Substituting Eqs. (22) and (30) into Eq. (21), we obtain an explicit expression for the operator
ρ̂2(t) as follows:

ρ̂2(t) =

[

Ψ̂11(t) Ψ̂12(t)

Ψ̂21(t) Ψ̂22(t)

]

, (33)

where we have used the following symbol

Ψ̂ij(t) =| Ψ̂i(t) >< Ψ̂j(t) | (i, j = 1, 2) (34)

with

| Ψ̂1(t) >=

[

R̂(n + m, t) − η̂(n + m)
V̂ (n + m, t)

F̂ (n + m)

]

| Ψ̂(t) > (35)

| Ψ̂2(t) >= −â†m V̂ (n + m, t)

F̂ (n + m)
] | Ψ̂(t) > , (36)

where | Ψ̂(t) > is given by Eq. (23). Taking into account the definition of the superoperator Ĵ ,
it is straightforward to obtain the action of the operator exp(Ĵ t) on the density operator ρ̂2(t) as
follows:

ρ̂(t) =

∞
∑

k=0

1

k!
(
t

γ
)kĤkρ̂2(t)Ĥ

k , (37)

where the Hamiltonian Ĥ and the operator ρ̂2(t) are given by Eqs. (3) and (33), respectively.
Equation (37) describes the exact solution of the Milburn equation (2) for the multi-quanta pro-
cesses. Once the density operator is calculated all relevant statistical quantities can be computed.

3 Influence of the intrinsic decoherence on nonclassical properties of the system

In this section, we investigate the effect of the intrinsic decoherence and Stark shift on nonclas-
sical properties of the multi-quanta JCM when the particle (atom or trapped ion) is taken to be
prepared initially in the excited state.

3.1 Population inversion

It is well known that in the JCM the quantum coherences which are built up during the interaction
between the field and the particle significantly affect the dynamics of the particle [11,32,40-
43]. The existence of the quantum coherences is the reason why one can observe collapses and
revivals of the population inversion of the particle. Now we evaluate the population inversion in
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the multi-quanta JCM. Using the exact solution ρ̂(t), we find that population inversion is given
by

< σ̂z(t) > = Tr[ρ̂(t)σ̂z ]

=

∞
∑

n=0

| Qn |2
F 2(n + m)

{

η2(n + m) + ν2(n + m)

× exp

[

−2λ2t

γ
F 2(n + m)

]

cos 2λtF (n + m)

}

. (38)

We now discuss the numerical results of the population inversion < σz(t) > given by equa-
tion (38) for the multi-quanta JCM, when the particle (atom or trapped ion) initially starts in the
excited state.

The time evolution of the population inversion is presented in Figs. (1–4), for various val-
ues of the parameter λ/γ, and fixed initial mean number of quanta n̄ for two-quanta precesses
(m = 2).

In Fig. 1 we plotted the population inversion < σz(t) > for three values of the parameter
λ/γ (namely 10−6, 10−4, 10−3) with the fixed initial mean numbers of quanta n̄ = 20 in the
absence of Stark shift R = 0 (β1 = β2 = 0).

In Fig. 2, 3 and 4, we plotted the population inversion in the presence of Stark shift R = 1.0
(β1 = β2), R = 0.5 and R = 0.3, respectively. From Fig. 1 (in the absence of Stark shift), we
see that the population inversion evolves at a revival period π/λ.

In the case described in Fig. 2, the Stark shift parameter is R = 1.0 (β1 = β2), which
corresponds to the case in which the two levels of the particle are equally strongly coupled with
the intermediate relay level. By comparing Fig. 1 and 2, we see that the population inversion is
almost similar for both cases. In this case, the Stark shift does not effect the time evolution of
the population inversion.

For the cases described in Figs. (2–4) (in the presence of Stark shift), Ref. [34] gives the
period of the revivals, tR = 2πR/[λ(1 + R2)].

When R = 1.0 (the Stark shifts of the two levels are equal), the population inversion evolves
at a revival period tR = π/λ, while tR becomes small, the excited particle has the tendency to
trap the excitation energy.

In Figs. 3 and 4, we show the cases in which the two levels have unequal Stark shift (R < 1,
in Fig. 3 R = 0.5 while in Fig. 4 R = 0.3). We see the Stark shift leads to decreasing of
the values of the atomic revivals of the population inversion and the evolution period of the
population inversion decreases with reduced of the Stark shift parameter R.

Also, these Figures show that with the decrease of the parameter γ, i.e., with a more rapid
suppression of quantum coherences we can observe rapid deterioration of revivals of the popu-
lation inversion. Which means that the decay of quantum coherences is due to the very specific
time evolution described by Eq. (2), i.e., due to the intrinsic decoherence.

3.2 Amplitude-Squared Squeezing Of The Field

Now, we study the amplitude-squared squeezing of the field of multi-quanta JCM governed by the
Milburn equation in the presence of the Stark shift and discuss effects of the intrinsic decoherence



Influence of intrinsic decoherence in... 427

0 5 10 15
−1

−0.5

0

0.5

1
(a)

0 5 10 15
−1

−0.5

0

0.5

1
(a)

0 5 10 15
−1

−0.5

0

0.5

1
(b)

<
σ z(t

)>

0 5 10 15
−1

−0.5

0

0.5

1
(b)

<
σ z(t

)>

0 5 10 15
−1

−0.5

0

0.5

1
(c)

λ t
0 5 10 15

−1

−0.5

0

0.5

1
(c)

λ t

Fig. 1. The population inversion as function of the
scaled time λt when the particle initially prepared
in the excited state, the field in the coherent state
with mean number n̄ = 20 in the absence of Stark
shift (R = 0) for various values of the parameter
λ/γ: (a) λ/γ = 10−6, (b) λ/γ = 10−4 and (c)
λ/γ = 10−3.

Fig. 2. The population inversion in the presence of
Stark shift R = 1.0 (β1 = β2) .

and Stark shift on the squeezing. We define the operators of the real and imaginary parts of the
square of the amplitude [44]

X̂1 =
1

2
[â2(t) + â†2(t)], X̂2 =

1

2i
[â2(t) − â†2(t)] . (39)

These operators satisfy the commutation relation,

[X̂1, X̂2] = i(2n(t) + 1), (40)
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Fig. 3. The same as in Fig. 2, but with R = 0.5. Fig. 4. The same as in Fig. 2, but with R = 0.3

which implies the uncertainty relation

(∆X̂1)
2(∆X̂2)

2 ≥ 1

4
|< [X̂1, X̂2] >|2 . (41)

The state of the field is said to be amplitude-squared squeezed whenever one of the two quadra-
tures satisfies the relation:

(∆X̂i) <
1

2
(2n + 1), (i = 1or2), (42)

where n = â†â. On the other hand, the condition (42) can be rewritten as

Si = (∆X̂i)
2 − 1

2
(< 2n + 1 >), (i = 1, 2), (43)
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Fig. 5. The amplitude-squared squeezing as func-
tion of the scaled time λt with mean number n̄ =
10 in the absence of Stark shifts (R = 0) for vari-
ous values of the parameter λ/γ: (a) λ/γ = 10−6 ,
(b) λ/γ = 10−3 and (c) λ/γ = 10−2.

Fig. 6. The amplitude-squared squeezing in the
presence of Stark shift R = 1.0 (β1 = β2).

and squeezing occurs when S1 or S2 < 0. In terms of the photon annihilation and creation
operators of the field, we get for the amplitude-squared squeezing factors Sj the expression

S1 =
1

4
[2 < â†2 â2 > + < â4 > + < â†4 > −(< â2 > + < â†2 >)2], (44)

S2 =
1

4
[2 < â†2 â2 > − < â4 > − < â†4 > +(< â2 > − < â†2 >)2]. (45)



430 A.-S. F. Obada, A. M. Abdel-Hafez, H. A. Hessian

0 2 4 6 8 10
−4

−2

0

2

4
(a)

0 2 4 6 8 10
−4

−2

0

2

4
(a)

0 2 4 6 8 10
0

1

2

3

4
(b)

S
1(t

)

0 2 4 6 8 10
0

1

2

3

4

S
1(t

)

(b)

0 2 4 6 8 10
0

10

20

30

40
(c)

λ t
0 2 4 6 8 10

0

10

20

30

40
(c)

λ t

Fig. 7. The same as in Fig. 6 but with R = 0.5 Fig. 8. The same as in Fig. 6 but with R = 0.3

By using the field density operators ρ̂F (t), we obtain the expectation value in the general form
for the field operators â†r

âs as follows:

< â†r

âs > =
1

4
|α|r+s

∞
∑

n=0

| Qn |2 exp[iλt[(r − s)(1 + R2)/2R]]

×
{

[(1 + DS)(1 + Dr) + J ] exp(iλta−(n)) exp(− t

2γ
b+(n))

+[(1 + Ds)(1 − Dr) − J ] exp(−iλta+(n)) exp(− t

2γ
c−(n))

+[(1 − Ds)(1 + Dr) − J ] exp(iλta+(n)) exp(− t

2γ
c+(n))

+[(1 − Ds)(1 − Dr) + J ] exp(−iλta−(n))exp(− t

2γ
b−(n))

}

, (46)
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where

J =
(n)!

(n + m)!

ν2(n + s + m)

Fn+s+m

ν2(n + r + m)

Fn+r+m

Ds =
[ ∆

2λ
+ 1

λ
δ̂−(n + s + m)]

Fn+s+m

and Dr is obtained from Ds by s → r with

a±(n) = Fn+r+m ± Fn+s+m, (47)

b±(n) = {(ω(r − s) +
λ

2R
[(r − s)(1 + R2)] ± λa−(n)}2, (48)

c±(n) = {(ω(r − s) +
λ

2R
[(r − s)(1 + R2)] ± λa+(n)}2. (49)

By using Eqs. (46–49), and specifying the exponents r, s we get the expression for the amplitude-
squared squeezing of the multi-quanta Jaynes-Cummings model.

Now, we discuss the temporal behaviour of the S1(t), which gives information on amplitude-
squared squeezing, when we take n̄ = 10 and investigate the influence of the decoherence pa-
rameter and Stark shifts on amplitude-squared squeezing.

Numerical results for Eq. (44) are presented in Figs. (5–8), we plotted S1(t) against λt for
n̄ = 10 and different values of the decoherence parameter λ/γ (namely 10−6, 10−3, 10−2) for
two-quanta processes (m = 2).

In Fig. 5, we display amplitude-squared squeezing for three values of the parameter λ/γ
(namely 10−6, 10−3, 10−2) with the fixed initial mean numbers of quanta n̄ = 10 in the absence
of Stark shift R = 0 (β1 = β2 = 0).

Figs. 6, 7 and 8 are the same as in Fig. 5, but with the Stark shift parameter R = 1.0, R = 0.5
and R = 0.3, respectively.

In two Figs. 5 and 6 (see Figs. 5 and 6), i.e, R = 0 (in the absence of the Stark shift) and
R = 1.0 (β1 = β2) gives better amplitude-squared squeezing and it reoccurs at later times.
Here it is observed that squeezing occurs during the revival periods in contrast to the two cases
(R = 0.5) and (R = 0.3) (see Figs. 7 and 8).

Also in Figs. 7 and 8 i.e. (R = 0.5) and (R = 0.3), we observed that no squeezing appear
in the short time 0 ≤ λt ≤ 3 and appear many times at later times and the amount of squeezing
decreasing with decreasing R.

In view of these Figures, we note that with the decrease of the parameter γ i.e., with a more
rapid decohering, we observe rapid decrease of the amount of squeezing for amplitude-squared
squeezing even in the presence of the Stark shift.

4 Concluding remarks

In this paper, we have considered an effective Hamiltonian (3) describing the interaction between
a two-level particle (atom or trapped ion) and a single mode field through multiquanta. We
have found the exact solution of the Milburn equation (Eq. 2) for the multi-quanta JCM in the
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presence of Stark shifts . Using the exact solution (Eq. 37), we have discussed the effect of the
intrinsic decoherence and Stark shift on population inversion and squeezing of the radiation field.
Our results show that the dynamic Stark shift plays an important role in nonclassical properties
in multi-quanta processes. It is shown that even in the presence of Stark shifts the intrinsic
decoherence in the particle-field interaction suppress the nonclassical effects, where with the
decrease of the parameter γ, i.e. with a more rapid decohering, we observed a rapid decrease of
the amount of squeezing.
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