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Quantum information encoded in a pure state of a single qubit is very fragile in a sense that
under the errors induced by the environment the original information is deteriorated. In this
paper the protection of unknown states of qubits via symmetrisation with the help of the
universal quantum entangler is discussed. It is shown, that for certain values of parameters
pa,py,p- Of a Pauli channel it is useful first to entangle the original state with N’ — 1 ancillas
so that the output state is in a completely symmetric state of N qubits and only then let the
Pauli channel to act.

PACS: 03.67.-a, 03.65.Bz

1 Introduction

In general, quantum information distribution is not for free. Specifically, in some situations (e.g.
state swapping or quantum teleportation) a state can be transferred from one system to another
system without being changed at all. But these are very special cases. Usually, any control
over distribution of quantum information (encoded in unknown states of quantum systems) is
accompanied by degradation of the information. This is due to the fact that the control of flow
(distribution) of quantum information can only be performed by quantum devices (e.g. ancillas)
which during the process of information distribution become entangled with the carriers of quan-
tum information. This entanglement between the quantum information distributors and quantum
information carriers is the reason why the information encoded in unknown states of quantum
systems can be deteriorated. This source of degradation has no classical analogue and has to be
considered in the quantum information processing.

To illustrate possible consequences of the fundamental problem of information degradation
in specific protocols of quantum information distribution let us consider a quantum system in an
unknown state. It can be a result of a quantum computation, or any other type of information.
The crucial assumption is, that we have no prior knowledge about it.

Suppose, that we are asked to transmit this state to an other party, which is separated by a
distance. And we keep in our disposal a quantum channel between both parties, which is however
not error-free.
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And just errors, caused by external influences or by the device itself, are one of the very
important problems in handling quantum states and performing computation with them. In com-
parison with the classical systems, the error correcting schemes are more complicated. One of
the reasons is, that in quantum systems there are more types of errors, which can occur.

The classical bit can only flip 0 < 1, there are no more possibilities. This error is big, or
discretized, it either happens or not, there is nothing between. Quantum states can rotate by an
arbitrary angle, big or small, in different directions on the Bloch sphere, there are bit flip errors
and phase errors (for further information see Ref. [1]).

Another difficulty in protection of quantum states is, that there is no possibility to measure
and determine an unknown state [2] without disturbing it. Therefore it is also not possible to
create more copies of a state, i.e. it isn’t possible to clone unknown quantum states [3] which
would obviously solve the problem of protection of quantum information. On the other hand
perfect cloning of unknown states would lead to violation of another fundamental properties of
quantum theory. For instance, it would allow to utilize quantum entanglement for superluminal
communication [4].

For small errors there are many well developed and used schemes, called Quantum Error Cor-
rection schemes. A good review of them can be found in Ref. [5]. However, these schemes work
efficiently when the probability of a disturbance of a qubit is small. If the errors are large these
schemes might not be efficient enough to protect quantum information processing. Therefore it is
justified to study other schemes for stabilization of quantum information in a noisy environment.
In particular, Barenco et al. [6] proposed a method which is based on using of the symmetric
subspace of the full space of the original state and N — 1 reference states (ancilla).

In this paper, we want to concentrate on this idea. We encode an unknown quantum state
(from which we possess only one copy), to a symmetric state of IV copies of the system. The new
symmetric state should be more robust against stochastic influence of the environment. Besides
this, in most cases an error will lead our state out from the symmetrized subspace (since the
dimension of the symmetric subspace is rather small, especially for big IV, in comparison to the
dimension of the whole space). So a projection back to the symmetric subspace, if successful,
will restore the original state.

In the case of a single qubit we can consider an arbitrary input state in the form

) = al0) + 611) = cos (5 ) 0+ e*sin (5 ) I 0

This state is symmetrized with N — 1 reference qubits in a known state |0), which results in the
state

|®) = |4b) [000...0) +]|0)[¢)|000...0) + ... 4 [000...0)|1p) = [{2p, 02N —D}) (2)
N—_——

N-1

Unfortunately, for an unknown state |¢) perfect symmetrisation |£)|0) 2N =1 — |{s), 0®(N=11)
is not possible [7]. Nevertheless, approximate symmetrisation with help of the universal quantum
entanglers, see Ref. [7] is allowed. Therefore one might ask, whether this approximate covariant
symmetrisation (i.e. the fidelity of the symmetrisation is constant and does not depend on the
input state) would stabilize the quantum information encoded in the input qubit.
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In what follows we will address this problem in detail. As a model of quantum errors we
will consider the Pauli channel. So the scenario of stabilization via symmetrisation looks as
follows: Firstly, the input qubit is entangled symmetrically (with help of universal entanglers)
with (N — 1) ancillas prepared in a reference state |0). Then the set of N qubits (or, just a
fraction of them) is sent through the Pauli channel. Finally, at the output the projection back in
to the symmetric subspace is performed. The question is whether this process is better than just
sending a single qubit through the Pauli channel.

There exists another motivation for further investigation of symmetrising. And this is the
preparation and execution of general positive operator valued measurements (POVM’s). Ac-
cording to the Neumarks theorem, every POVM can be carried out by a suitable transformation
of the relevant state and ancilla and a subsequent projective measurement on part of whole space
(of the state and ancilla together). Results of this article can be, apart from the error correction,
viewed also as possible preparation of non-ideal POVM. We bind our unknown state |+/) togethe
with the ancilla of known qubits and investigate, how well this can bee done, if errors in the form
of Pauli channel are present.

2 A model

The Pauli channel is a very good approximation of most of errors, that can happen to a single
qubit in an environment. Consider a quantum bit in an arbitrary state |¢) which is processed by
a Pauli channel. The qubit is rotated by one of the three Pauli matrices or remains unchanged: it
undergoes a phase-flip (¢ ), a bit-flip (¢,;) or their combination (o) with respective probabilities
Da» Py @nd p. Thus we can write the resulting density matrix

[¥) = p = (1 =p)O)&] + peoa|)) (Plow + pyoy ) (Yloy + peo:|) (Yo ©)

For the special cases like depolarizing channel (p;=%) or dephasing channel (p; = p,p; =
pi. = 0) is the density matrix very simple,

4 2
Pdepol = (1 - gp)W}) <¢| + gpl (4)
and

Pdephase = (1 - pz)|¢> <1/J| +szz|7/)><1/f|Uz (5)

where i = z,y, z respectively. All our results will be presented for this four particular cases,
even though the calculations allow to handle all possibilities.

More complications arise for the 2 qubit state. Pauli channel does not cover collective effects,
it influences every qubit independently of the state of other qubits in the system. The explicit form
of the resulting density matrix is too complex to be presented here, but the logic of construction
is exactly the same as in the 1 qubit state. With probabilities p},p;,p} and p2,p2,p? the relevant
sigma matrices act on the first or second qubit respectively, leaving the other one unchanged.

For construction of the best approximation of the symmetrized state (2) we use the quantum
universal entangler [7]:

0)IN = 1;0)[e0)  — [yw|N;0)|ex) + dn[N; 1)]ez)]
[DIN = 1;0)e0)  — [6n|N;0)]es) +n|N;1)]er)] (6)
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where e, are three orthogonal states of the entangler, |N; k) is a fully symmetric state of v
qubits with & of them in state |1). 6 5 and v are given:

N+1 . T
e 2(N+1—\/N) 7 5Nim. "

For the input state |¢)), after tracing through the states of entangler, we get as a result the
density matrix

P = (laf*vR +1670%) IN;0)(N;0] + (la?6% + [B2v3) IN; 1){(N; 1| +
+aB* YR N; 0)(N; 1] + o By | N; 1)(N; 0] (8)

This state is (in the sence of fidelity, defined in the next paragraph) as close as possible the to
ideal symmetrised state (2). The fidelity is state independent and acieves the value F' = ~%,.

To compare results of different methods for preventing errors on qubits, we need a suitable
measure of success, evaluating the distance between the states. In this article, we use fidelity,
defined for pure states as a squared scalar product of these states. For two states |¢)) and |¢) we
define

F = |(lo)*. ©)

Sometimes, it is useful to compute the average fidelity for a certain region of parameters. If
we take state |¢)) as the input state and the superoperator P as the operator of the Pauli channel,
then the mean fidelity between the original and output state p = P (|¢)(¥]) is:

27 ™
Fp [ de [ antwip (o)) o), (10)
T Jo 0
where ¢ and ¢ are parameters of the input state.

Now we have defined a measure of success for the one-qubit states. This can be extended to
the many-qubit states, consisting of the original qubit and ancilla, by many ways. The easiest
one is to extract the information, encoded in the many-qubit state, back to one qubit. Then we
can compute the fidelity of this qubit with the original one (as it is done in the section IV B).
But, results using this methos depend also on the extracting procedure, what is not really what
we want.

Other possibility is to compare directly many-qubit states. We define the mean fidelity

F

2m ™
= | ae [ el (a1)

where |®) is defined in (2) and p is the density matrix resulted from the universal entangler.
Superoperator P now covers the action of the Pauli channel and also the projection back to the
symmetric subspace. In this case, we compute the fidelity between our result and the ideal sym-
metrised state. We beleave, that this measure indicates better the success of the symmetrisation,
since it is purged of the influence of the extraction process. This is the reason to use it throughout
the most of the paper.
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Fig. 1. Fidelity of the stabilization for depolarizing, o, oy, and o channel. On the y axis is the parameter
of the Pauli channel, on the x axis the parameter « from the input state.

Part of the process of computing the fidelity is the projection to the symmetric subspace, as
mentioned higher. Probability of a succesfull projection (it is a binary process, we can succeed
or not) is given by the trace of the reduced resulting density matrix (containing only symmetric
elements) and is rather high in all cases. In further calculations, we consider only the case of
succes. As we will show, even so the resulting fidelities are to small to regard this method as
useful.

3 Pauli channel acting on 2 qubits

This scenario can represent a situation, when a qubit has to be transported from one place to
another. We can either send it as it is (by sending we mean acting of the Pauli channel), or firstly
project it on the symmetric subspace of a 2 qubit space, and then send this two qubits through
the same channel - therefore we use a symmetric Pauli channel with equal probabilities p} = p?.
After it, the fidelities compared and the region of parameters is searched, where the 2-qubit state
has better result.

The “ideal” symmetrized state of 2 qubits would be

(2a]00) + v23|+))

(I)ideal —
| > (4|042|+2|/82|)1/2 ’

(12)

where |+) = % (|01) + |10)). But since we have no prior knowledge about the input state
and want to keep constant fidelity for the whole space of states, we have to use the universal
entangler. As the input state we use a density matrix in the form (8) for N = 2.
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We now “apply” the Pauli channel on it and then we make a projection back to the symmetric
subspace, which actually means, that we keep only symmetric states in the density matrix and
renormalize it back to unity. Resulting fidelities are presented in Fig. 1. The region, where
the fidelity after symmetrisation is bigger than that one, obtained by sending the original qubit
through the Pauli channel, are gray, the others are white.

We have to mention, that only real parameter « has been used, therefore the results for x and
y channels are so different. However, still, the results are not to optimistic. They are strongly
state dependent, and for the depolarizing channel only for a very small region of parameters we
get better results using 2 qubits as the naive scenario of sending the one qubit information, as it
is. The reason is simple: loss due to stabilization and the loss caused by errors on both qubits are
bigger than the gain of projection on the symmetrized subspace.

4 Pauli channel acting on one qubit

This case represents an other situation as in the previous section. The difference is, that the Pauli
channel acts only on the first qubit every time. We can imagine, that the original qubit is exposed
to the influence of the environment, whereas the ancilla is in a store with no errors acting on it.
The density matrix after the action of Pauli channel (for N > 1) is

p” = (lal*v% +18°6%) (1 — p+ pz) [N;0)(N; 0] +
Pz +p
+ (la*y% + 18208 ) =N (N3 1]+

p1+p
+(1af0% + 182%) 225 v 0y v 0] +
4 4
+ (Jof?5% + 1813) <1 prs (1 g a) ) INS DO+

>+ B pﬂ”pr) [N 0) (V3 1] +

+ <a6*v?v (1 —pHp—

* 2 * x
+(a ﬁv?v( p+pz—7)+ afy3k pr)IN;D(N;OH

2
J’_(pw +py) (|a|2612v+|ﬁ|2’712\f) m|N§2><N;2|+“' (13)

In the density matrix 13 only symmetric elements are displayed. The rest, denoted as dots, is
non-symmetrical and we can project it out by a suitable measurement. In practice that means,
we have to renormalize (13) to 1.

4.1 Quantum scenario

We compute now the mean fidelity of this matrix with the ideal symmetrized state (2). In Figs. 2,3
and 4 we can see the results.

As we see, the fidelity, especially for bigger probabilities, is growing with the number of
qubits N. For bigger IV, as expected, there is only a small dependence on the probability, because
the one qubit, on that the channel acts, is more and more negligible in comparison to other qubits.
But, the error produced by entangling is also growing with N. So, for defined probabilities it
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Fig. 3. The same as Fig. 2 but for o, channel.

Fig. 2. Fidelity as the function of the probability

of depolarasing Pauli channel and the number of

qubits used. For N

1 it is a simple acting of

the Pauli channel on one qubit.

Fig. 5. Fidelity of the measurement density matrix,
averaged over all possible orientations of the input

state and the estimated state.

Fig. 4. The same as Fig. 2 but for o,. We do not
introduce oy, since the results are completely the

same as those for 0.
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is possible to find the optimal number of qubits in ancilla (see Tab. 1), which has to be used to
obtain the optimal fidelity.

4.2 Measurement scenario

The mean fidelity helps us to see, how well we can conserve the information encoded in many-
qubit symmetrized state, but the extraction of the information is problematic. We can, at least for
the o, channel, use the measurement scenario, as described in Ref. [8]. We introduce two states
o' VR
|Zo) = cos §|N;O>+ew sin §|N;1> (14)
/

.y o’ 0
|El> = e sin 5|N,0> — COS §|N71> (]_5)

where 6’ and ¢’ are randomly chosen orientations. Now we can compute a density matrix of a
one-qubit state

o™ = [{Zolp”"[Z0) |- Ino) (no| + [{E1|p”**|E1) . In1) (1] (16)

where |n;) are the same states as (4.2) with N = 1. Now we are able to compute the real
one-qubit state mean fidelity (integrating through angles of the input state AND of the estimated
state) between this density matrix and the input state |)). The result are shown in the Fig. 5.

As we see, the shape of the plot is nearly the same as in the quantum scenario. The differences
between the fidelities for different parameters are much smaller and we lose fidelity even when
no ancilla and no errors are present. This is due to the extraction procedure and shows, that for
detection of the effort of the stabilisation scheme is this fidelity not very suitable.

5 Conclusions

The scenario was as follows: we took an unknown qubit and entangled it with the ancilla of
N — 1 qubits. symmetrisation has been performed with the help of the covariant (input-state
independent) device. In the first case, for N = 2, the obtained density matrix was sent through
a symmetric Pauli channel acting on both qubits. This corresponds to a scenario of sending an
information from one place to another, where someone can, with local measurements, gain the
information back.

In the second case, we sent only one of the qubits through the Pauli channel, the rest was
considered as to be in a perfect store without influence of the environment. This scenario corre-
sponds to an authentification protocol, where we send only one qubit there and back. Again, we
can with local measurements gain the information.

In both cases, after the action of the Pauli channel and before we have made any measure-
ment, we projected the density matrix on the symmetric subspace (since we know, that everything
non-symmetric is an error). The results show us, in which region of parameters it is useful to
make this procedure of symmetrisation (in the first case) or, tell us, how many qubits are optimal
for the ancilla (in the second case). As we see, especially for small values of the probability
of Pauli channel, the optimal number of qubits in both cases is 1, that means the utilization of
ancillas would not help us to protect quantum information. The loss of the fidelity due to the
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N »p Pz | Pz

2 0221010 -

31029044 |0.35
4 || 0.48 | 0.86 | 0.41
51063 - |052
6 || 076 | - | 0.60
7108 | - |0.66
8 109 | - |071

Tab. 1. The fidelity, as a function of p, reaches its maximum for apropriate IV according to the table. That
means, e.g. for p > 0.22 in depolarizing channel the maximum is reached for 2 qubits, for p > 0.29 we
shall use 3 qubits etc. In depolarizing channel we use maximally 8 qubits, in . channel 4 qubits. In o,
channel we never use 2 qubits (it is either better to use 1 or 3), but the maximal number of qubits was not
reached within the searched region.

covariant symmetrisation is bigger than the gain due to the better stability of the symmetrized
system.

We investigated a method for stabilization of quantum information via symmetrisation. Al-
though we found some regions of parameters, where this method is giving interesting results (see
Tab. 1), in general are the outcomes rather negative. The reason is, that it is not possible, for an
unknown input state, to produce a perfect symmetrized state, as it was expected in the method.
Furthermore, in the case where we consider errors acting on the original qubit AND ancilla, the
probability of errors is summing up for all the qubits.
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