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A progress in constructing renormalization group symmetries by means of a regular approach
is described. A basic sketch of general ideas of the algorithm is followed by several illustra-
tions for solutions of boundary value problems in plasma physics.
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1 Introduction

A method for improving approximate solutions that take advantage of the symmetry of the par-
ticular solution, the so-called Renormalization Group Method (RGM), is known in theoretical
physics since mid-fifties [1]. The essence of this method as used in Quantum Field Theory
(QFT) [2] lies in the group scaling transformation of an independent variable (and, possibly
some parameter) accompanied by the functional transformation of some solution characteristic.
These transformations are used for a successive improvement of a set of approximate solutions
that are expressed in the form of the series in powers of some small parameter. Advances of
RGM in QFT is due to some functional equation that guarantees the existence of the solution
group property and is supposed either to be known or borrowed from some additional physical
assumption.

The speedy proliferation of RGM ideas from QFT to other fields of theoretical physics [3]
is owing to the common to various physical systems the property of Functional Self-similarity
(FS) [4], that makes it possible to apply RGM to different physical models. At the same time
for boundary value problems (b.v.p.) that are based on differential and/or integro-differential
equations a new algorithm was elaborated [5]. This algorithm appeared in some sense close
to RGM in QFT yet it exploited a different, more adequate to mathematical models employed,
method of constructing the solution symmetries. In fact thanks to the new algorithm a notion of
Renormalization Group Symmetry (RGS) came into being. There were two reasons for calling
them Renormalization Group (RG) Symmetries: firstly, from mathematical point of view the
calculational algorithm for these symmetries is very similar to that used in modern group analysis
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and, secondly, they are applied to perturbative theory (PT) solutions with the goal usual to RGM,
i.e. to improve these PT solutions. It was due to utilization of modern group analysis technique
that made it possible the appearance of the regular algorithm of RGS constructing. In this report
I will briefly touch upon the main features, which distinguish this approach from the already
known in theoretical physics, and illustrate this difference by several examples of b.v.p. solutions
in plasma physics.

2 Principal stages in evolution of the algorithm of RGS constructing

The milestones in developing the algorithm of RGS constructing were reported successively on
all RG meetings since 1991 and are shortly listed below:

RG-’91 ⇒ Preliminary results in applying group analysis methods for RGS constructing
• RGS constructing for initial value problem for Burgers equation,
• Utilization of RGS for constructing the plasma permittivity tensor,
• RGS constructing using embedding equations for ordinary differential equations,
• RGS in the problem of the harmonics generation in inhomogeneous plasma

RG-’96 ⇒ RGS constructing scheme and illustrations for b.v.p. in nonlinear optics
• Lie-Bäcklund RGS and exact solutions in nonlinear geometrical optics
• Approximate RGS for the beam self-focusing problem in nonlinear geometrical optics

RG-’99 ⇒ Modern form of the scheme for the RGS constructing and applications and its
relations to other algorithms

• Approximate and exact RGS for the wave beam self-focusing problem, approximate RGS
in two parameters, two-dimensional solution singularity

• Multi-parameter RGS

RG-2002 ⇒ RGS algorithm for physical systems based on nonlocal equations
• Exact and approximate RGS for b.v.p., that are described by integro-differential equations
• RGS for the problem of plasma bunch expansion

The scheme for constructing RGS was already discussed on RG conferences, and particularly
in details on the preceding RG-99 [6]. So here I will only briefly recall the main steps of this
scheme in order to distinguish it from the existing RG methods. Conventionally the scheme for
constructing RGS, depicted on Fig. 1 below, is realized as a sequence of four steps that are:

1) constructing the specific RG manifold

2) calculating the symmetry group that leaves this manifold invariant

3) restricting this manifold to a particular (usually approximate) b.v.p. solution with the goal
to obtain the desired RGS

4) utilizing this RGS to obtain the particular b.v.p. solution
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Fig. 1. The general scheme for RGS constructing.

Let us outline the key points for these steps.
For the first step (I) it is the specific way of involving in group transformations parameters

and/or boundary conditions, that define the particular solution of interest. We suppose that we
know the approximate representation for this solution in the form of a truncated power series
either in small parameter related to boundary (or initial) conditions or in small deviation from
the region boundary where the solution is given. The success of the first step depends on many
factors, namely a) the possibility of expressing boundary conditions as embedding equations or as
additional differential constraints, b) the possibility of introducing perturbation theory parameters
in basic equations, c) the chance to treat the solution in the extended space of independent and
dependent variables, parameters and differential variables, d) the eventuality to make use of small
parameters that differ from that used in PT solution [7]. The particular form in which the first
step, i.e. constructing RG manifold, is realized is mainly dependent on the form of mathematical
model employed and the form of representation of the approximate PT solution.

The second step (II) of the scheme employs the standard techniques of modern group analy-
sis. It is based on regular mathematical methods and uses infinitesimal approach for calculating
symmetry group generators. Here we do not restrict ourselves to “scaling-type” transformations
only, but also allow multi-parameter groups and, moreover, these should not be necessary point
groups. Hence here we extend the notion of RG operator and FS, which traditionally was based
only on one-parameter point groups.

The distinctive feature of the third step (III) is that it demonstrates the difference of the
described approach both from the classical Bogoliubov RGM used in QFT and the standard
group analysis. Indeed, the classical group analysis is typically employed to calculate the general
transformation group for the system of equations “as a whole”, without specifying the form of
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boundary conditions. The group obtained is then used to find optimal system of subalgebras
and construct the related invariant and partial invariant solutions with boundary solutions that
are obtained while treating every particular solution. On the other hand the impossibility to
deduce the exact expressions for β-functions in Bogoliubov RG (see, however, the “Exact RG”
constructing approach [8]), that usually is defined by truncated PT series, is the main obstacle
that makes the RG approach approximate just by its nature.

On the contrary, the procedure of checking invariance condition fulfilled on the third step
(III) for the group generators with the predefined (on the second step (II)) coordinates (or β-
functions in terms of QFT) and in view of the particular b.v.p. solution in the form of truncated PT
series is not subjected to these drawbacks. This procedure solves two problems: firstly, it gives
the specific transformation group that just by the method of its construction leaves the solution
of the b.v.p. with specified boundary conditions invariant. Hence it eliminates the necessity
to investigate all possible invariant solutions with the goal to find the solution with the desired
boundary condition. Secondly, it allows to point the exact (in the framework of the group analysis
scheme) form of the generator that guarantees the transformation of the approximate PT solution
to the exact solution of the b.v.p.

The fourth, last step (IV) looks standard, i.e. it is in the root of a usual procedure of finding
invariant solution for a given set of group generators and has been detailed in various monographs
[9–11].

To distinguish the described approach from mathematical structures employed in theoreti-
cal physics we note that more likely is the common terminological nature of the notions used,
particularly to QFT methods, where the use of a solution symmetry serves as the instrument for
improving perturbative solutions, but the approaches to finding these symmetries are different.
So there is no direct analogy neither to Wilson RG construction used in critical phenomena [12],
nor to approaches, which are applied in the theory of turbulence [13].

To conclude the discussion of the RGS scheme we note that different forms of the RG imple-
mentation, used in theoretical and mathematical physics, namely:

a) Bogoliubov RG in QFT and some other fields of macroscopic physics, where RG symme-
try appears as the exact solution symmetry formulated in terms of intrinsic variables;

b) RG in turbulence and continuous spin-field models, where RGS is the symmetry of some
auxiliary QFT model;

c) Wilson RG in phase transition theory, theory of polymers and percolation, which is based
on Kadanoff-Wilson blocking procedure, and where RG transformation is a transformation
between different auxiliary (specially constructed) models of a given system

is supplemented by one additional type of RG symmetry,

d) RGS for b.v.p. in mathematical physics. Similar to QFT it reflects the invariance property
of the solution with respect to group transformations involving both intrinsic variables,
boundary conditions and parameters though this RGS is constructed in a regular way using
the described algorithm.

This algorithm can be applied to any mathematical model that is based on differential or
integro-differential equations, so I will illustrate the advantages of the method for plasma the-
ory. A large variety of nonlinear processes in plasma physics are described in terms of Vlasov-
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Maxwell equations, i.e. kinetic equations for plasma particles in a self-consistent electromag-
netic field governed by Maxwell equations. This mathematical model is used, for example, to
describe nonlinear propagation and self-focusing of a powerful wave beam in plasma, harmonics
generation process, acceleration of ions in plasma expansion process and so on.

Example I. Harmonics generation process in inhomogeneous plasma.
This example appears to be the first demonstrations of the advantageous use of RG algorithm

for nonlinear physics. The physical problem here is formulated as follows: an inhomogeneous
plasma with a smoothly varying density profile is irradiated by a powerful laser which produces
the incident p-polarized electromagnetic wave. Due to the effect of the linear transformation this
wave creates a strong potential electric field in the vicinity of the plasma resonance where the
wave frequency, ω, coincides with the local electron Langmuir frequency, ωLe. The potential
field generates higher harmonics nω, that are then radiated from plasma. The portion of the laser
incident energy which is re-radiated from plasma via harmonics is defined by laser flux q, the
angle of incidence θ of the p-polarized wave and plasma parameters, namely the temperature
T and the characteristic density inhomogeneity scale L in the vicinity of plasma resonance.
Usually the problem of calculating the harmonics conversion coefficient in solved in the weak
nonlinearity limit, hence the influence of higher harmonics on lower ones is neglected. The
increase of the laser flux density q violates the weak nonlinearity approximation and one is
forced to take into account effects of higher harmonics. The RG algorithm appears to be powerful
enough to meet the challenge.

Let us point to some specific problems that are encountered here while constructing RGS. In
case of the weak electron thermal motion and fixed ions a more simple (as compared to kinetic
one) hydrodynamic model is used to describe electron dynamics. For small values of the angle
of incidence θ � 1 and low plasma density gradients (L → ∞) the influence of the plasma
nonlinearity is mainly in the vicinity of plasma resonance, hence instead of treating the general
system of six plasma collisionless hydrodynamics equations (for three components of electro-
magnetic fields, two components of electron velocity and their density) it appears possible to
use as RG manifold only two equations (for components of the electron velocity and the electric
field along the density gradient). The procedure of restriction of the infinite dimensional group
admitted by this manifold to the approximate solution which is obtained in linear approximation
with respect to the basic system of six equations gives the desired RGS with the group parameter,
∝ √

q, proportional to the amplitude of the incident electromagnetic wave. The electric field
and the electron velocity are invariants of group transformations while the transformation of the
coordinate is related to the structure of the potential electric field near plasma resonance in the
linear approximation.

This example is the distinct illustration of the advantageous use of the approach based on
RG symmetries. First, it is the universality, which manifests itself in the fact that both RGS and
the b.v.p. solution, respectively, can be constructed for various initial conditions that define the
electric field structure near plasma resonance. Second, one can use in the restriction procedure
the PT solution obtained from a more complicated equations as compared to RG manifold. Third,
it is the possibility to improve both RGS and the solution obtained by taking into account the
omitted terms proportional to small parameters such as density gradient and so on.

The main physical results here that gives the RG algorithm is analytical formulas for the non-
linear structure of the electric field near the plasma resonance that enables to calculate harmonics
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spectrum both localized in plasma and radiated in vacuum. The typical analytical dependence of
of the harmonics conversion coefficient Kn has the form [14]:

Kn ∼ qn−1 | K1 + (q/q0)K2 |2 , n > 2 ,

where complex functions Ki depend upon the harmonics number n, the plasma resonance width
∆ and the angle of incidence θ. For q/q0 → 0, that corresponds to the weak nonlinearity limit,
Kn is defined only by the first term ∼ K1 and correlates with the expression, obtained earlier
in perturbative approximation. For strong nonlinearity, when the density flux q is comparable
to the breakdown flux q0 for electron Langmuir oscillations (q0 > q), nonlinear effects yield
a dependence of Kn upon n, ∆ and θ, which differ from that given by the weak nonlinearity
theory. Another significant strong nonlinear effect is the new set of oscillations of Kn, which
appear with the rise in the laser plasma temperature T [15].

Example 2. Nonlinear plasma permittivity and a three-dimensional RGS.
The plasma nonlinear permittivity (NPP) defines the nonlinear current density – the nonlinear

material equation – of the corresponding order l > 1 in powers of the electric field. It is of interest
for investigating nonlinear processes that are treated in terms of the integro-power dependence
of the current density upon the self-consistent electric field, for example, wave-particles scatter-
ing, parametric instabilities, harmonics generation. Usually, NPP for hot plasma is obtained by
iterating Vlasov kinetic equation with respect to self-consistent field, whilst the NPP for cold
plasma follow from the collisionless plasma hydrodynamic equations. For high order nonlin-
earity (l > 4) the procedure of NPP tensor symmetrization in hot plasma appears more tedious
in hot plasma than in cold one. The utilization of the RG approach here establish a one-to-one
correspondence of NPP tensors in hot and cold plasmas for arbitrary order of nonlinearity and
gives an algorithm that enables to restore “hot” tensors from the corresponding “cold” formulas.

The classical Lie algorithm should be modified in this example [16] because RG manifold is
given by equations with nonlocal terms, and this is the first peculiarity of RGS constructing here.
The second is that NPP tensors are defined in (ω, k)-representation and we need to define the
procedure of extension of group generators to Fourier variables [17]. The third peculiarity is that
the RGS obtained is a vector (three-dimensional) group. For example, in non-relativistic plasma
the corresponding RG operator in the space of Fourier variables {ω, k, Ê, B̂, ρ̂, ĵ} (denoted by
“hats”) results from the Galilean group operator

R = k∂ω + ∂v − (1/c)
[

B̂, ∂
Ê

]

+ ρ̂∂
ĵ
.

Here the group parameter v defines the “velocity” of a group of moving particles. The utilization
of the finite transformations in the relation that defines “partial” current density for the given
group of particles and the subsequent “averaging”, i.e. integrating over group parameter with the
“weight” function proportional to the equilibrium particle distribution function f0(p) gives the
desired NPP tensor in hot plasma

εij1...jn
(ω1, k1; . . . ; ωn, kn) =

1

ωω1 . . . ωn

∫

dpf0(p)(ω − kv)(ω1 − k1v) . . . (ωn − knv)

ε̄ab1...bn
(ω1 − k1v, k1; . . . ; ωn − knv, kn)βai(ω, k)βb1j1(ω1, k1)βbnjn

(ωn, kn) ; n > 2;

ω = ω1 + . . . + ωn ; k = k1 + . . . + kn ;

∫

dpf0(p) = 1 , βij(ω, k) = δij +
kivj

ω − kv
.
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Here ε̄ is related to NPP tensor of the cold collisionless plasma without external fields. For
example, for n = 2 it is given by the formula

ε̄isj(ω1 − k1v, k1; ω2 − k2v, k2) = −4πie3ne

2!m2
[(ω − kv)(ω1 − k1v)(ω2 − k2v)]−1 ×

×
(

ki

ω − kv
δjs +

k1s

ω1 − k1v
δij +

k2j

ω2 − k2v
δis

)

,

where e and m denote the charge and mass of plasma electrons with the density ne.
A similar result for the relativistic plasma can be obtained using as a starting point not the

Galilean transformation group but the group of Lorentz transformations.

Example 3. Acceleration of ions and dynamics of the plasma bunch expansion.
This example provides yet another illustration of RG algorithm application to physical sys-

tems based on nonlocal equations. Interest in this problem stems primarily from the need to
better understand the physics of ion acceleration in the interaction of laser light with plasma and
in particular to give a quantitative description of the ion acceleration. The study of ion accel-
eration is among the key problems in various applications of high power lasers, such as laser
fusion, injectors of fast particles, and radioactive sources for apparatuses used in medicine and
nuclear physics. Recent experiments with short-lived (nanosecond) plasmas [18, 19] and thin
foils [20] confirmed the existence of a special expansion regime for small plasma bunches which
is essentially unsteady and is accompanied by the adiabatic cooling of plasma particles.

The investigation of this expansion regime using a phenomenological hydrodynamic the-
ory and numerical modeling recently was supplemented by the exact solution of kinetic equa-
tions [21]. However, this solution was obtained in a particular case of quadratic dependence of
electrostatic potential in spatial coordinate and, accordingly, this imply the same dependence of
plasma particles distribution functions on the coordinate and velocity thus imposing strict limi-
tations on the possible application of these results to analyze experimental data. The utilization
of RGS allows to make the next step in analytical investigation of plasma particles dynamics in
bunch expansion process [22].

Mathematically this problem in one-dimensional (plane) geometry is formulated as the initial
value problem for the system of kinetic equations for particles distribution functions f α of every
sort α with the given initial values fα

0 ,

∂tf
α + v∂xfα + (eα/mα)E∂vfα = 0 , fα

∣

∣

t=0
= fα

0
(x, v) .

Here E is the self-consistent electric field, that obey the Poisson equation in which the charge
density is defined by zero-order moments of the particles distribution functions.

For plasma flows with characteristic scale length for plasma-density variations large com-
pared with a Debye length we use quasi-neutral approximation and set the charge and the current
densities, ρ and j, equal to zero,

ρ ≡
∫

dv
∑

α

eαfα = 0 , j ≡
∫

dv v
∑

α

eαfα = 0 .

The electric field E is then expressed in terms of the moments of the distribution functions. This
simplification of the mathematical model leads to the RG manifold that admits the transformation
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Fig. 2. Ion density distributions in (e,i) plasma (left) and in plasma with protons and Al-ions (right).

group extended (as compared to [23]) by one additional conformal group operator. The restriction
procedure of the group obtained to the approximate solution of the initial value problem at t → 0
gives the desired RG operator that allows to extend this solution to large values of t and obtain
a more general class of solutions to the Cauchy problem for the Vlasov equations in quasi-
neutral approximation. These solutions are valid for arbitrary initial distribution functions of
particles, say, for two-temperature Maxwellian and super-Gaussian initial electron distributions
and Maxwellian ions with different temperatures, densities and masses of ion species. Along
with the plasma particles distribution functions RG approach also gives analytical expressions
for integral characteristics, namely local ion density and ion energy distribution function, that
may be used for analyzing experimental data.

To illustrate the aforesaid on Fig. 2 we present a sketch of the typical ion density dis-
tributions, nq = (nq0/

√
1 + Ω2t2) Nq(χ) for plasma with one and two ion species. Here

χ = Ωx/
√

1 + Ω2t2VTi, VTi is the proton thermal velocity and the frequency Ω is defined
by the ratio of the acoustic speed to the initial size of plasma bunch. The index q points to ions
(q ≡ i) in (e, i) plasma and q = {Al, H} in plasma with two ion species.

The left figure gives the ion density distribution in the two-component (e, i) plasma with dif-
ferent initial electron distribution functions and for Maxwellian ion initial distribution function.
Curve 1 corresponds to super-Gaussian electron distribution, and curves 2 and 3 are related to
two-temperature Maxwellian distribution with hot to cold temperature ratio Th/Te0 = 10 (2),
100 (3) and the relative density nh0/ni0 = 0.1. The dashed curve corresponds to Maxwellian
initial distribution function for electrons. One can see that the presence of hot electrons leads to
enriching of the ion energy spectrum by high-energy ions (the plots N(χ) after the substitution
χ by v/VTi characterize the ion energy spectrum distribution at large t � 1/Ω).

The right figure presents ion density distributions for plasma with two ion species, namely
heavy Al-ions and protons, which form the low-density impurity with the maximum initial rela-
tive density nH0/nAl0 ≈ 0, 00077. It is obvious that even a small amount of light ions impurity
substantially reduces the acceleration of the general body of heavy ions. The results obtained
show promise of clarifying the nature of the ion high-energy spectrum cut-off [18, 19] and to
predict the energy of a given sort of ions in multi-component plasma.

If we do not use the quasi-neutral approximation the initial value problem for plasma bunch
dynamics is solved using the approximate RGS with the electric field amplitude treated as a
small parameter. Here, unlike the quasi-neutral limit the RG manifold is given by the full sys-
tem of Vlasov-Maxwell equations with the material relations that define the charge and current
densities for every sort of particles. The approximate RGS obtained describes the evolution
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Fig. 3. Plasma densities disturbances ∆n (in units of the maximum density nmax) and the electric field
E (in units of 2πenmaxd) versus coordinate x, normalized by the characteristic initial size d of a plasma
bunch.

of particles distribution functions and the electric field on the initial stage of plasma dynamics
when nonlinear oscillations of plasma density are excited. A sketch of the typical plasma den-
sities disturbances ∆n = ne − Zni and the related electrostatic field E space distributions are
presented on Fig. 3 for (e, i) plasma at different moments of time: t = 4/ωLe for the upper
panel and t = 6/ωLe for the lower panel. The initial electron and ion distribution functions
are Maxwellian with Te0/Ti0 = 10 and the initial density space distribution is described by the
Gaussian curve.

3 Conclusion

What are the feasible future trends in evolution of the RG algorithm? First, we may draw our
attention to the problems that have been already investigated by the traditional RG method, say,
in QFT, and try to reformulate them in terms of the new RG algorithm that may give an additional
impulse in overcoming the encountered difficulties. Second, the development of RG approach
will provide a better understanding of the physical meaning of new possible types of the RGS
that lead not to invariant but to partially-invariant solutions, that have not been discussed in RG
application so far. Third, we shall continue developing the algorithm of RGS constructing based
on methods of modern group analysis and enlarge the number of b.v.p. that can be analyzed by
this algorithm. Fourth, the need for RGS in various physical problems may bring to the forefront
new mathematical objects to study with the methods of modern group analysis. For example, the
problem of constructing RGS in the space of distributions is of particular interest.
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