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AGING IN FERROMAGNETIC SYSTEMS AT CRITICALITY
NEAR FOUR DIMENSIONS1
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We report on some results concerning the off-equilibrium response and correlation functions
and the corresponding fluctuation-dissipation ratio for a purely dissipative relaxation of an
O(N) symmetric vector model (Model A) in d dimensions below the upper critical dimen-
sion. The scaling behaviour of these quantities is analyzed and the associated universal func-
tions are given at first order in ε = 4 − d in the high-temperature phase and at criticality.
A non trivial limit of the fluctuation-dissipation ratio is found at criticality.

PACS: 64.60.Ht, 05.40.-a, 75.40.Gb, 05.70.Jk

1 Introduction

It is well known that complex systems such as glasses, spin glasses and generally disordered
systems with quenched disorder show very interesting dynamical behaviours depending on tem-
perature and time–scale ranges [1]. One of the most striking is that of aging, i. e. physical
properties of the system depend on its thermal history. This is mainly due to the fact that the sys-
tem, say, for example, a spin glass at low temperature, does not reach thermal equilibrium even
after a “macroscopic” time has elapsed since the last perturbation on the system. But this kind of
behaviour is not only restricted to disordered systems [2]. Indeed consider a ferromagnetic model
in a disordered state for the initial time t = 0, and quench it to a given temperature T ≥ Tc

4.
During the relaxation a small external field h is applied at x = 0 after a waiting time s. At time t
the order parameter response to h is given by the response function Rx(t, s) = δ〈φx(t)〉/δh(s),
where φ is the order parameter and 〈·〉 stands for the mean over the stochastic dynamics. The
two-time correlation function of order parameter fluctuations is another quantity of interest, given
by Cx(t, s) = 〈φx(t)φ0(s)〉. The time evolution of the system may be characterized by two dif-
ferent regimes: a transient behaviour with off-equilibrium evolution, for t < tR, and a stationary

1Presented by A. G. at 5th Int. Conf. Renormalization Group 2002, Tatranská Štrba (Slovakia), March 2002
2E-mail address: calabres@df.unipi.it
3E-mail address: andrea.gambassi@sns.it
4We are not interested here in the problem of phase ordering dynamics, so we will not discuss the effects of a quench

to T < Tc.
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Model T < Tc T = Tc T > Tc

Random Walka [2] — 1/2 —
Free Gaussian Fielda [2] — 1/2 1
d-dim. Spherical Modela [8] 0 (d − 2)/d† 1
Ising–Glauber Chaina [7] — 1/2 1
2-dim. Ising Modelb [8] 0.26(1)
3-dim. Ising Modelb [8] 0.40

Tab. 1. Values of X
∞ in some models. a Exact solution, b Monte Carlo simulations. † 2 < d < 4.

equilibrium evolution for t > tR, where tR is the relaxation time. In the former a dependence of
the behaviour of the system on initial conditions is expected, while in the latter homogeneity of
time and time reversal symmetry (at least in absence of external fields) are recovered; as a con-
sequence we expect that for tR � s, t, Rx(t, s) = Req

x (t− s), Cx(t, s) = Ceq
x (t− s) where Req

and Ceq are determined by the “equilibrium” dynamics of the system, with a characteristic time
scale diverging at the critical point (critical slowing down). Moreover the fluctuation-dissipation
theorem states that

Req
x (τ) = −

1

T

dCeq
x (τ)

dτ
. (1)

When the system does not reach the equilibrium all the previous functions will depend both
on s (the “age” of the system) and t.

To characterize the distance from equilibrium of an aging system, evolving at a fixed temper-
ature T , the fluctuation-dissipation ratio (FDR) is usually introduced [2]:

Xx(t, s) =
T Rx(t, s)

∂sCx(t, s)
, (2)

In recent years, several works [1–5] have been devoted to the study of the FDR for systems
exhibiting domain growth [6], or for aging systems such as glasses and spin glasses, showing that
in the low-temperature phase X(t, s) turns out to be a non-trivial function of its two arguments.
In particular analytical and numerical studies indicate that the limit

X∞
x=0 = lim

s→∞
lim

t→∞
Xx=0(t, s), (3)

vanishes throughout the low-temperature phase both for glasses and simple ferromagnetic sys-
tems [3].

Only recently [2,7–10] attention has been paid to the FDR, for non-equilibrium, non-disordered,
and unfrustrated systems at criticality. It has been argued that the FDR (3) is a novel universal
quantity of non-equilibrium critical dynamics. The value of X∞

x=0 has been determined for the
models reported in Tab. 1. In all cases X∞

x=0 has values ranging between 0 and 1
2 while for some

urn models a different range has been found [11]. Also the scaling form for Rx=0(t, s) was
rigorously established using conformal invariance [12].

It is easy to realize from the above mentioned works and from models listed in Tab. 1 that
only exact solutions have been analytically determined so far for the FDR, with the drawbacks
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that only simple systems have already been dealt with. In this work we report on our investigation
of the non-equilibrium correlation and response functions and the associated FDR for the O(N)
ferromagnetic model with purely dissipative relaxation dynamics (Model A) both at the critical
point and in the high-temperature phase, using a field-theoretical approach. A more detailed
discussion may be found in Ref. [13].

Let us consider the purely dissipative relaxation dynamics of a N -component field ϕ(x, t)
described by the stochastic Langevin equation

∂tϕ(x, t) = −Ω
δH[ϕ]

δϕ(x, t)
+ ξ(x, t) , (4)

where H[ϕ] is the Landau-Ginzburg Hamiltonian

H[ϕ] =

∫

ddx

[

1

2
(∂ϕ)2 +

1

2
r0ϕ

2 +
1

4!
g0ϕ

4

]

, (5)

Ω the kinetic coefficient, and ξ(x, t) a zero-mean stochastic Gaussian noise with

〈ξi(x, t)ξj (x
′, t′)〉 = 2Ω δ(x− x

′)δ(t − t′)δij . (6)

The equilibrium correlation functions, generated by the Langevin equation (4) and averaged
over the noise ξ, can be obtained by means of the field-theoretical action [14]

S[ϕ, ϕ̃] =

∫

dt

∫

ddx

[

ϕ̃
∂ϕ

∂t
+ Ωϕ̃

δH[ϕ]

δϕ
− ϕ̃Ωϕ̃

]

. (7)

where ϕ̃(x, t) is the response field.
In Ref. [15] this formalism was extended in order to incorporate a macroscopic initial condi-

tion into Eq. (7): one has also to average over the initial configuration ϕ0(x) = ϕ(x, t = 0) with
a weight e−H0[ϕ0] given by

H0[ϕ0] =

∫

ddx
τ0

2
(ϕ0(x) − a(x))2. (8)

This specifies an initial state a(x) with correlations proportional to τ−1
0 . In this way all response

and correlation functions may be obtained, following standard methods [14], by a perturbative
expansion of the functional weight e−(S[ϕ,ϕ̃]+H0[ϕ0]).

1.1 Scaling forms

When a ferromagnetic system is quenched from a disordered initial state to its critical point, the
correlation length grows as t1/z , where z is the dynamical critical exponents. So in momentum
space, applying standard scaling arguments, all the universal functions depend only on the two
products qz t and qz s 5. In particular we expect the scaling forms [8, 12, 15]

Rq(t, s) = q−2+η+z

(

t

s

)θ

FR(Ωqz(t − s), t/s) , (9)

Cq(t, s) = q−2+η

(

t

s

)θ

FC(Ωqz(t − s), t/s) , (10)

5When finite volume effects and a nonvanishing initial magnetization are taken into account, new time scales emerge
in this picture. For an exhaustive analysis see Ref. [16].
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where θ is the initial-slip exponent of response function [15]. The functions FR(y, x) and
FC(y, x) are universal apart from the normalizations for small arguments.

For future reference, let us introduce the ratio

Xq =
ΩRq(t, s)

∂sCq(t, s)
and X∞

q=0 = lim
s→∞

lim
t→∞

Xq=0(t, s) , (11)

whose relation with Xx is discussed in Sec. 3.

1.2 Gaussian FDR

Response and correlation functions are eactly known for the Gaussian Model [15], so that the
FDR can be determined (in [2] the related quantity Xx has been considered, see Sec. 3), finding
the tree-level expression

Xq(t, s)|t.l. =
(

1 + e−2Ω(q2+r0)s + Ωq2τ−1
0 e−2Ω(q2+r0)s

)−1

. (12)

If the theory is off-critical (r0 6= 0) the limit of this ratio for s → ∞ is 1 for all values of q, in
agreement with the idea that in the high-temperature phase all modes have a finite equilibration
time, so that equilibrium is recovered and as a consequence the fluctuation-dissipation theorem
applies. For the critical theory, i.e. r0 ∝ T − Tc = 0, if q 6= 0 the limit ratio is again equal
to one, whereas for q = 0 we have X 0

q=0(t, s) = 1/2. This analysis clearly shows that the only
mode characterized by aging, i.e. that “does not relax” to the equilibrium, is the zero mode in
the critical limit.

2 One-loop FDR

We report here the results for the non-equilibrium response and correlation functions of the model
described in Sec. 1 at one-loop order in an ε = 4 − d expansion. They have been determined
by using the method of renormalized field theory in the minimal subtraction scheme. All details
may be found in Ref. [13]. Introducing

f(v) = 2

[
∫ v

0

dξ ln ξ eξ + (1 − ev) ln v

]

and PN =
N + 2

N + 8
, (13)

we get for the critical theory r0 = 0, at the IR fixed point for the renormalized coupling constant,

FR(y, x) = e−y + O(ε2) , (14)

FC(y, x) = e−y −

[

1 + ε
PN

4
f

(

2y

x − 1

)]

e−y x+1

x−1 + O(ε2) . (15)

Computing the derivative with respect to s of the two-time correlation function and taking its
ratio with the response function we have

X−1
q (s) = 1 + e−2q2s −

PNε

4
e−2q2s

[

e2q2s − 1

q2s
− f(2q2s) + 2f ′(2q2s)

]

+ O(ε2) . (16)
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The limit of the FDR for s → ∞ is equal to 1 for all q 6= 0. Instead for q = 0 we have (using
Eq. (13))

X∞
q=0 =

1

2

(

1 −
ε

4

N + 2

N + 8

)

+ O(ε2) , (17)

which is the result we were interested in. Taking into account the effect of the mass r0 (deviation
from critical temperature), one finds that X∞

q is equal to 1 for all q in the high temperature
phase [13].

3 Discussion

In this work we reported some results for the FDR, as defined in (11), for the N -vector model
with Model A dynamics, both at criticality and in the high-temperature phase. The main result
is that the ratio X∞

q is always 1 unless at criticality for q = 0, when it takes the value given in
Eq. (17).

To compare our result with some particular limit considered in the literature [2,8] we have to
relate X∞

q to the analog in the real x space. The following heuristic argument may be useful to
realize that the two ratios are exactly equal, i.e. X∞

x=0 = X∞
q=0. We may rewrite the FDR in real

x space as a mean value of that in momentum space with a weight given by Rq:

X−1
x=0 ≡

∫

ddq ∂sCq(t, s)

T
∫

ddq Rq(t, s)
=

∫

ddq Rq(t, s)
∂sCq(t,s)
TRq(t,s)

∫

ddq Rq(t, s)
= 〈X−1

q 〉
Rq

. (18)

Now, since we expect Rq ∝ e−q2(t−s), in the limit s, t → ∞ (in the right order) X−1
x=0 will take

contributions only from the q = 0 mode, i.e. apart a normalization, the weight function Rq is a
δ(q).

In the limit N → ∞ Eq. (17) reduces to X∞ = 1/2 − ε/8 + O(ε2) that is the same as
the expansion of the result for the Spherical Model near four dimension (see Tab. 1). Let us
now make a comparison with Monte Carlo results listed in Tab. 1. For N = 1 and ε = 2,
X∞ = 5/12 < 1/2 which is qualitatively in agreement with what has been found for the Ising
model in d = 2. Setting, instead, ε = 1, one obtains 11/24 ∼ 0.46, which is fairly in good
agreement with the result for the Ising Model in d = 3. To have a reliable quantitative prediction
the knowledge of higher loop contributions is required. A two-loop computation improves the
previous estimates [17].

This work may be easily extended to more realistic models than those previously considered
in literature, contributing to the understanding of out-of-equilibrium dynamic phenomena, cur-
rently under intensive investigation, by means of the powerful tools of perturbative field theory.

Acknowledgement: The authors are grateful to S. Caracciolo, H. W. Diehl, A. Pelissetto, E. Vi-
cari for useful discussions.
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