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RENORMALIZATION GROUP APPROACH AND UNIVERSALITY CLASSES
FOR 3D SPIN GLASS MODELS1
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A Renormalization Group approach to disordered spin systems is presented, based on a real
space coarse graining of the overlap distribution. Universality classes are defined through
generalized disorder distribution, thus including a large set of models such as Ising ferro-
magnet, Gaussian and Z2 spin glasses, fully frustrated models. The relations between Z2

gauge models and spin glasses find a natural framework within this context. The approach is
supported by Monte Carlo renormalization group computations in three dimensions. Precise
estimates of the critical temperature and indexes in the difficult 3D case are also obtained with
moderate computer time.

PACS: 75.10.Nr, 05.10.Cc

1 The spin glass model and the overlap field

The present work is based on paper [1]. Let σx be Ising spins located at the sites of a d-
dimensional cubic lattice Λ, with L points on each side (x ∈ Λ ⊂ Z

d). The typical spin glass
model of Edwards and Anderson [2] is defined by the following Hamiltonian

H(J, σ) = −
∑

〈x, y〉
Jxyσxσy ; (1)

Where the sum is over couples of neighboring sites, and the quenched disordered interactions
Jxy are random variables. We will denote by E the expectation on J variables, and define
E(Jxy) = 0, E(J2

xy) = 1. We will usually assume periodic boundary conditions. The
Boltzmann–Gibbs measure on the spin variables will be denoted by angular brackets 〈·〉. Ex-
pectation on the disorder is taken only after Boltzmann averages are calculated, and the thermo-
dynamic limit for the appropriate quantities is eventually taken afterwords. Define the overlap
field, q(a,b)

x = σ
(a)
x σ

(b)
x ∈ Z2, where the replicas σ(a), a = 1, . . . , s are independently and

identically distributed according the Boltzmann measure previously defined. The probability
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distribution of the overlap fields, µ, can be implicitly defined through the overlap expectations,
involving both the thermal average and the average E over disorder. For any smooth function F
define

〈〈F
(

q(12)x , q(23)y , . . .
)

〉〉 = E
[

〈F
(

σ(1)
x σ(2)

x , σ(2)
y σ(3)

y , . . .
)

〉
]

, (2)

where expectation with respect to the µ distribution is denoted by 〈〈·〉〉. All physical observables
can be expressed in terms of overlap observables, so that the full physical meaning of these
models is contained in the overlap probability measure. Let us introduce the total overlap (or
simply “overlap”), q(a,b) =

∑

x q
(a,b)
x /|Λ|. Another interesting observable is the two points,

connected correlation function of the overlap field, C(r) =
∑

x〈〈q
(1,2)
x q

(1,2)
x+r 〉〉c/|Λ|.

2 A renormalization group for spin glass models

As is well known, the total overlap is the order parameter of the model. In the high temperature
phase, including the critical point, it should be zero in probability in the infinite volume limit,
while in the low temperature phase it is expected to fluctuate [3, 4]. Therefore, the critical point
can be characterized by a divergence of the correlation length associated toC(r). For this reason,
it is natural to define the Renormalization Group transformation [5, 6] on the overlap field. In
the following we will consider only two replicas, and omit the replica indexes on the overlap
variables. Let Bn

y ⊂ Λ be the cube of side n, centered on y, and Λn ⊂ Z
d a cubic lattice of side

L/n. Introduce on Λn the new random field

qn
x = (Rρ,nq)x = n−ρd/2

∑

x′∈Bn

nx

qx′ , (3)

where 1 ≤ ρ < 2. The probability distribution of the coarse-grained overlap field is, thus, given
by

µρ,n(qn) = (Rρ,nµ)(qn) =
∑

{q}
µ(q)

∏

x∈Λn

δ(qn
x , (Rρ,nq)x), (4)

where δ(a, b) is 1 for a = b and zero otherwise. The sum on the r.h.s. runs over all the 2|Λ| con-
figurations of the overlap field. The transformation has the semi-group property Rρ,n1

Rρ,n2
=

Rρ,n1n2
. The renormalization group (RG) transformation is naturally defined on the probability

distribution of the overlap field. For the purpose of calculations this distribution is well char-
acterized by the expectations of a set of (translation-invariant) observables. It is the approach
that has been followed in this work. However, the question may be raised of how to express
such a distribution in terms of physically meaningful parameters. It is clear that the traditional
exponential form, exp(−H), has no physical relevance, due to the involved definition of the
overlap field distribution in the original model. To state the question in a different way: which
additional interactions between the microscopic variables are raised as a result of the RG trans-
formation ? The following parameterization was fruitfully used in [7]. The Hamiltonian, given
by (1), is kept fixed, while the disorder is distributed according to a general Z2 gauge action:
ρK(J) = exp (

∑

iKiWi(J)), where the Ki ∈ R are parameters and the Wi’s are Wilson’s
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loops, i.e., products of J’s along closed paths. Then, the overlap field distribution, µ(K), is
defined, depending on the set of parametersK’s. We will discuss it in more detail in section 3 of
this paper.

To carry out useful RG calculations an approximation scheme must be chosen. In this work
we have used the Monte Carlo approach, for which the main approximation is the use of a finite
lattice. The basic effect is that of neglecting the influence of distant regions of the lattice on each
other in the calculation of µρ,n(qn) from µ(q). Bell and Wilson [8] underline that “the validity
of the approximation rests on the same foundation as the renormalization group as a whole”.
The main source of systematic errors comes from the fact that on the small lattice Λn only a
few correlation functions are defined, i.e., only fairly simple forms are possible for µρ,n. This is
known as the truncation error.

An important characteristic of the linear RG transformation defined in (3–4) is the depen-
dence on the parameter ρ. The full RG equations lead to a fixed point of the transformation
only for a certain value of this parameter, but in the finite-lattice approximation the value is not
unique, and the critical exponents will depend on the particular choice of the parameter [8]. The
traditional recipe for MCRG calculations on Ising-like models consists in a non-linear transfor-
mation with majority rule (see for instance [9, 10]). Because of the Z2 symmetry of the overlap
field, one can apply it to spin glasses. In the present work, however, we have adopted a different
strategy [7, 11]. Consider the linear transformation (3–4). Because of the Z2 symmetry, some
properties of the renormalized distribution µρ,n do not depend on ρ. The overlap field may be
decomposed as a product of two random fields, qn

x = sn
xξ

n
x , where sn

x ∈ Z2, and ξn
x ∈ R is

non-negative. Let the corresponding distribution be µ̂(s, ξ) = µ(q). Upon integration of the ξ
field, one obtains the following distribution for the field s:

ψn(s) =

∫

(
∏

xdξx) µ̂ρ,n(s, ξ) =
∑

{q}
µρ,n(q)

∏

x∈Λn

δ(sn
x , sign(qx)). (5)

This defines the linear application Θ of the distributions of real random fields on the distributions
of Z2 random fields, i.e., ψ = Θµ. Clearly, ψn will not depend on the renormalization parameter
ρ, as a rescaling of the overlap field would affect only the ξ variables. Then, looking at the
distribution ψn we may observe the RG flow of the linear transformation (3–4).

Notice that ψn is very different from the distribution obtained through a non-linear trans-
formation with majority rule. Indeed, for k iterations, we would have R̃m = (ΘRr)

k (where
m = rk), while ψn = ΘRn. Moreover, the fact that the distribution ψn is defined for any integer
n, and not only for integer powers of r, will be a great advantage in the study of spin glasses,
as Monte Carlo computations are feasible only for very small lattice sizes. One may question
whether this coarse-grained characterization of the RG flow, and of the fixed point, keeps suf-
ficient details to discern physical informations. In the cases presented hereafter the answer is
positive, whithin statistical errors. The basin of attraction of a fixed point is defined as the set
of overlap field distributions µc such that ψc

n ≡ ΘRnµ
c → ψ∗ for n → ∞. The critical expo-

nents may be computed, with the traditional techniques, from the dependence of ψn on the initial
distribution µ in the vicinity of the critical surface.
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3 Spin models with quenched gauge-field interactions

Consider the E-A spin Hamiltonian (1), and assume the quenched interactions are distributed
according to a general, gauge-invariant distribution function. Expectation with respect to this
distribution will be denoted by EK . A fairly large set of models may be defined in this way,
including, for instance, the Gaussian and the Z2 E.-A. models. For the sake of simplicity consider
the following disorder distribution:

ρK(J) = CK eK3

�
α

2α , Jxy = ±1, (6)

where CK ∈ R is a normalization constant, and the symbol 2 denotes the plaquette terms
of the kind Jx,yJy,zJz,wJw,x. Considering the disorder variables only, this is the well known
pure gauge Z2 model [12]. Let us denote by wγ the product of the J’s along a closed path
γ, wγ =

∏

γ Jxy =
∏

α∈S 2α, where S is a surface bounded by γ. Two canonical asymptotic
regimes may be distinguished: a weak decrease regime, characterized byE(wγ) ≈ e−L; a strong
decrease regime, where E(wγ) ≈ e−A. L and A denote the perimeter of γ and the area of the
surface S. In various models a transition from the strong to the weak decrease is observed as
the average plaquette increases. The model (6), in 3 dimensions, exhibits a continuous phase
transition at K3 = Kc

3 ' 0.7613. The corresponding order parameter is the square Polyakov
loop, p2 = (p2

1 + p2
2 + p2

3)/3, where pi is the average Wilson loop along a path that closes it-
self exploiting the periodicity of the b.c.’s in direction i. The quantity E(wγ) is relevant for the
spin system associated to the gauge field [13], as it is related to the average frustration f on the
range γ, according to fγ = (1 − E(wγ))/2. The qualitative behaviour of the associated spin
system is expected to be as follows [7]. In the limit K3 → +(−)∞ the Ising (fully frustrated)
model is obtained, provided p1 = p2 = p3 = 1. For −Kc < K3 < Kc the disorder is in
the confined phase, characterized by strong decrease regime. The average plaquette is approxi-
mated by EK3

(2) ≈ K3, except in the region very close to the transition. However, frustration
decreases rapidly to 1/2 for increasing range. Spin glass behaviour is expected. In the range
Kc < K3 < +∞ the disorder is in the deconfined phase and weak decrease regime applies:
frustration effects are very small locally (EK3

(2) ≈ 1) and increase weakly at long range. The
spin system is expected to be ferromagnetic. These different qualitative regimes should corre-
spond to different universality classes of the spin system, that will be characterized in terms of
different fixed points.

4 Monte Carlo Renormalization Group

We have exploited the RG approach introduced so far to analyze the critical point of the gener-
alized Z2 spin glass in dimension d = 3, at K3 = 0, 0.3, 0.8. We have performed dynamical
Monte Carlo computations, employing Parallel Tempering algorithm (MC-PT) and the technique
of multi-spin coding. We have chosen to analyze the system down to a temperature T ≈ 0.9Tc,
in order to distinguish also from an eventual merging of the curves characterizing a Kosterlitz-
Thouless critical point. Due to the very long computer time required to reach ergodicity at these
temperatures, and the ordinary computational resources employed (mainly 8 PCs, with AMD
K7 cpu at 550MHz), we have been limited to lattice sizes ≤ 163. This strongly affects the
precision of the results. Nevertheless, the estimates obtained for Tc and ν are competitive with
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K3 L2 vs. L1 Tc ν

0 12 vs. 8 1.225 (10) 1.89 (9)
16 vs. 8 1.221 (12) 1.96 (12)
16 vs. 12 1.215 (25) 2.11 (34)

0.3 12 vs. 8 1.693 (35) 1.86 (20)
16 vs. 8 1.655 (24) 1.95 (15)
16 vs. 12 1.61 (8) 2.2 (8)

0.8 12 vs. 8 4.483 (1) 0.659 (1)
16 vs. 8 4.481 (1) 0.661 (2)
16 vs. 12 4.479 (3) 0.663 (3)

Tab. 1. Estimates of the critical temperature (Tc) and the critical index ν.

those obtained with different techniques based on finite size scaling on much larger lattices and
employing dedicated machines or supercomputers [14, 15] Thermalization and ergodicity were
tested for each J sample by two traditional criteria [16]: the distribution of the total overlap must
be even, and the time spent by the MC-PT run at each temperature must be approximately the
same [1]. This last criteria was fulfilled within a factor 2 by the 66% of the runs, and within a
factor 4 by the 97%. We have chosen to simulate lattices of side L = 8, 12, 16, performing the
largest possible RG step, n = 4, 6, 8, respectively. Thus, we considered a small renormalized
lattice of constant side L′ = 2. This has been done in order to minimize the transient effects
due to irrelevant couplings, and to enhance the flow in the relevant direction. At K3 = 0 we
ran 36096, 14016 and 3296 samples, respectively; at K3 = 0.3 the number of samples is 4824,
2944, 1664, while at K3 = 0.8 we ran 4000, 2368 and 320 samples.

To characterize the distribution ψn, we have measured the following observables:

A1 = 1
3|Λ′|

∑

x,l:|l|=1〈〈sxsx+l〉〉 A4 = 〈〈S2〉〉

A2 = 1
3|Λ′|

∑

x,l:|l|=
√

2〈〈sxsx+l〉〉 A5 = 〈〈S4〉〉

A3 = 1
3|Λ′|

∑′
x,y,z,w〈〈sxsyszsw〉〉 A6 = 〈〈(0.4 + S2)−1〉〉

(7)

where S = |Λ′|−1
∑

x sx, and the sum in A3 runs over the 4-uples of sites located on plaque-
ttes. Notice that observable A6 is sensible to the small values of S, on the opposite of A4 and
A5. Moreover, we have explicitly measured the β derivative of each observable, calculating the
connected correlation function with the Hamiltonian.

The critical temperature is estimated as the temperature where the values do not depend
on the lattice size, i.e., do not depend on the RG parameter n. Unfortunately, a 23 lattice is
far too small to measure the effect of irrelevant perturbations and estimate the matrix of the
linearized RG transformation. Thus, the critical index ν has been estimated with the simple
formula: ν−1 = (lnL1/L2)

−1 ln(∂βA(Tc;L1)/∂βA(Tc;L2)). The results are shown in Tab. 1.
The statistical errors were computed applying the Jackknife method. We notice that the spin

models corresponding to K3 = 0 and K3 = 0.3 exhibit the same critical index ν, though the Tc

turns out to be quite different, because of the different values of the average frustration (f = 0.5
and 0.35, respectively). On the other side, the model at K3 = 0.8 reveals a very different
critical behaviour. The RG approach to criticality provides a direct method to check universality
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K3 T A1 A2 A3 A4 A5 A6

0 Tc(12, 8) 0.647(6) 0.580(8) 0.520(7) 0.653(7) 0.570(8) 1.143(10)
Tc(16, 8) 0.650(7) 0.583(9) 0.523(8) 0.656(8) 0.573(9) 1.139(11)
Tc(16, 12) 0.656(18) 0.589(23) 0.528(20) 0.660(19) 0.578(21) 1.133(27)

0.3 Tc(12, 8) 0.670(18) 0.605(22) 0.542(21) 0.675(18) 0.594(20) 1.112(26)
Tc(16, 8) 0.688(14) 0.625(17) 0.565(15) 0.691(13) 0.513(15) 1.091(17)
Tc(16, 12) 0.72(5) 0.66(6) 0.61(6) 0.72(5) 0.65(6) 1.05(7)

0.8 Tc(12, 8) 0.3429(14) 0.2920(15) 0.1840(11) 0.3969(13) 0.2805(13) 1.5103(21)
Tc(16, 8) 0.3505(12) 0.2990(13) 0.1924(11) 0.4032(11) 0.2877(11) 1.5012(19)
Tc(16, 12) 0.369(5) 0.316(5) 0.213(4) 0.419(4) 0.305(5) 1.479(7)

Tab. 2. Characterization of the fixed point. The observables A1, . . . , A6 were computed at the critical
temperature Tc(L1, L2), corresponding to the point where the measures on lattices L1 and L2 match.

of the critical point. We measured the values of observables A1, . . . , A6 at the critical point.
That gives a characterization of the fixed point distribution. Therefore, we can observe directly
the universality classes to which the models belong, without relying on the phenomenological
comparison of the critical indexes. The results, listed in Tab. 2, confirm the expected picture.
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