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STABILITY OF THE MIXED FIXED POINT OF THE mn-VECTOR MODEL1
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We study the conditions under which the critical behaviour of a three-dimensional mn-vector
model is non-trivial, i. e. its universal characteristics do not belong to an O(m) universality
class. In the calculations we rely on the field-theoretical renormalization group approach in
different regularization schemes. We use adjusted resummation and extended analysis of the
series for renormalization-group functions which are known for the model in high orders of
perturbation theory. As a result we build the regions in m−n plane where non-trivial critical
behaviour is realized.

PACS: 05.50.+q, 64.60.Ak

1 Introduction

The success of the renormalization group (RG) approach in comprehension of the essence of crit-
ical phenomena in condensed matter physics has been well appreciated since seventies. While
developing, the approach required much efforts for elaborating principal methods via scrupulous
study of basic models [1]. Nowadays, attention is paid presumably to advanced applications of
the methods and description of the critical behaviour of realistic models. Speaking the RG lan-
guage, they are characterized by a complicated symmetry of an order parameter. The problem
of universality classes formation and crossovers among them is one of the most important in de-
scription of such models. To solve it, one has to find the conditions under which the complicated
symmetry does impact the model at criticality, so the model is not reduced by fluctuations to a
simpler one and exhibits a non-trivial critical behaviour.

In this report we address the conditions of non-trivial critical behaviour of the mn-vector
model [2]. The model is introduced by a φ4 Hamiltonian:
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where ~φα = (φα,1, φα,2, . . . , φα,m) is a tensor field of the dimension n and m along the first
and the second index; d is the space dimension; u0 and v0 are bare couplings;m2

0
is a bare mass

squared, which is a measure of the temperature distance to the critical point.
The long-distance properties of the model (1) are known to describe critical phenomena in

systems of various microscopic nature. In particular, m = 1 with arbitrary n (m = 1, ∀n)
corresponds to the cubic model [3] which was introduced to account for the reaction of the order
parameter to the magnet’s lattice structure. For m = 2, n = 2 and n = 3, the model describes
structural phase transitions [4]. The essential common trait of these two cases is the restriction
on signs of the couplings: ∀u0, v0 ≥ 0. For the sake of convenience in our further discussion
we will refer to the models (1) with arbitrary m, n but with the fixed sign v0 ≥ 0 as to the
“cubic-like” models.

The model (1) is also exploited to study the critical properties of the weakly diluted quenched
O(m) model [5]. In this case it is considered in a zero limit of the replica index n. The micro-
scopic base of the approach strictly defines u0 > 0, v0 ≤ 0. Again for convenience, we will
refer to the models (1) with arbitrary m, n but with the fixed signs u0 > 0, v0 ≤ 0 as to the
“disordered-like” models.

Finally, it is interesting to note that two φ4 terms of the model (1) become of the same
symmetry and thus should be considered as one term at a unified coupling u0 + v0 at some
values of m, n. Except for the familiar case of n = 1 corresponding to the O(m) model, this
emerges for m = 0 (in the polymer limit) [6] and for m→ ∞ (the spherical model).

All of the mentioned particular cases of the mn model were subjects of separate extensive
studies (see e. g. [7] and references therein). A possibility of crossover from anO(m)-symmetric
universality class to a new one appeared to be the common feature of their critical behaviour. In
particular, the cubic model (m = 1) triggers to a new universality class for n > nc, while for the
random O(m) model (n = 0) this occurs for m < mc. Here, nc and mc stand for the marginal
dimensions of the cubic model and of the random O(m) model.

In this study we want to reveal general restrictions for m, n considered as arbitrary positive
numbers ensuring that the model (1) belongs to a new universality class. To this aim, we apply a
field-theoretical RG technique to the most accurate available expansions for the RG functions of
the model (1) and its special cases. In order to refine the analysis, we exploit adjusted resumma-
tion of the (asymptotic) series under consideration.

2 The treatment

In the field-theoretical RG method the change of the couplings u and v under renormalization is
described by β-functions, while a fixed point (FP) {u∗, v∗} corresponds to their simultaneous
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zero:






βu(u∗, v∗) = u∗ ϕ(u∗, v∗) = 0 ,

βv(u∗, v∗) = v∗ ψ(u∗, v∗) = 0 .
(2)

From the set of solutions of the system (2), only the reachable stable FP corresponds to the
critical point of a system. Such a FP is situated in a region with correct signs of couplings and
possesses stability matrix eigenvalues with positive real parts.

The structure of the β-functions (2) yields a possibility of four FP’s. The first Gaussian point
{u∗ = 0, v∗ = 0} at d < 4 is always unstable and thus is out of physical interest. The points
{u∗ = 0, v∗ 6= 0} and {u∗ 6= 0, v∗ = 0} correspond to the O(mn) and O(m) universality
classes. We will be interested in the stability and accessibility of the mixed FP {u∗ 6= 0, v∗ 6= 0}
ensuring an appearance of a new non-trivial critical behaviour.

It was conjectured by Aharony [3] that the model (1) is described by a mixed FP when for
n > 1 the inequality holds: nc < mn < mcn , where nc and mc are suggested to coincide with
the marginal dimensions of the cubic and of the randomO(m) models. The case n < 1 has been
investigated so far only within the bulk of studies of random models, i. e. for n = 0 (see [7, 8]
for a review). Here, the stability of the mixed FP is governed by mc according to the Harris
criterion [9].

The problem of nc and mc precise determination was a challenge of many studies. In par-
ticular, it has been shown with a rather high accuracy that nc is though very close but definitely
less than 3. The most accurate estimates come from the five-loop series [10] within the minimal
subtraction RG scheme (nc = 2.87± 0.05) [11] and from the six-loop series within the massive
scheme (nc = 2.89 ± 0.04) [11]. The outcome of estimating mc states that it should be close
to 2, however its numerical value remains ambiguous. Calculated so far only within the massive
RG scheme, mc was estimated to be greater than 2: mc = 2.01 [12], mc = 2.07 [13] and less
than 2: mc = 1.942± 0.026 [14].

Let us first focus our attention onmc. It can be reconstituted from any of three conditions: (i)
the coordinate v∗ of the mixed FP changes its sign; (ii) the O(m) FP and mixed FP interchange
their stability; (iii) the heat capacity critical exponent α of the O(m) model equals to zero ( as a
consequence of the Harris criterion). It is straightforward to show that the conditions (i) and (ii)
are equivalent, while the coincidence of (ii) and (iii) follows from the fact, that stability of the
mixed point is governed by the sign of α [3, 15]. We will determine mc from the condition (iii)
which reduces the problem to study of the O(m) model of one coupling.

We will analyze the expansions for mc as they may be obtained in two different renormal-
ization schemes [16]. Starting from the five-loop expansion for the exponent α of the O(m)
model [17] obtained within minimal subtraction scheme [18] we getmc in the form of ε = 4−d-
expansion:

mc = 4 − 4ε+ 4.707199ε2 − 8.727517ε3 + 20.878373ε4. (3)

In the massive scheme [19], the RG series for the O(m) model at d = 3 are known with record
six-loop accuracy [20]. Exploiting the pseudo-ε expansion [21] we get:
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mc = 4 − 8/3τ + 0.766489τ 2 − 0.293632τ3 + 0.193141τ4 − 0.192714τ5. (4)

Here, τ = 1 is the pseudo-ε expansion formal parameter [21].
Since the series appearing in the RG method are known to be asymptotic at best, their analysis

requires an application of special resummation procedures. Results of a detailed analysis of
series (3) and (4) are presented elsewhere [16]. Here, we exploit the pseudo-ε expansion (4) both
because it is obtained in a higher approximation and has better convergence properties (compare
a mere summation of the first terms in ε and τ ). First we present values ofmc as they are obtained
from different [M/N ] Padé-approximants [22] in the form of a Padé-table:



























4 2.4 2.0839 1.9669 1.9398 1.9106

1.3333 1.9287 1 .8799 1.9311 2 .2425 o

2.0998 1.8875 1.9084 1.9085 o o

1.8062 1.9227 1.9085 o o o

1.9993 1.9029 o o o o

1.8066 o o o o o



























. (5)

Here, the symbol o means that the approximant can not be constructed, unrealible results are
written in italic. It is known in Padé-analysis that the main diagonal of the Padé-table and the
nearest to it possess the best convergence. Note that, the six loop approximants [3/2] and [2/3]
as well as the five loop approximant [2/2] give practically the same value of mc. Next we
applied a Padé-Borel-Leroy resummation [23] to the series (4) leading to our final result mc =
1.912± 0.004 [16] in coherence with the estimate mc = 1.942± 0.026 [14].

The result for mc is worth to be compared with the complementary results for nc. Here, one
must treat the complex model (1) of two couplings. In the minimal subtraction scheme nc was
written within the five-loop approximation as an ε-expansion [10]:

nc = 4 − 2ε+ 2.588476ε2 − 5.874312ε3 + 16.827039ε4 . (6)

Based on the six-loop RG functions obtained for the model (1) at m = 1, d = 3 in massive
scheme [24], we have obtained nc as a pseudo-ε expansion [25]:

nc = 4 − 4/3τ + 0.290420τ 2 − 0.189677τ3 + 0.199510τ4 − 0.224652τ5. (7)

Similar as for mc series (4), a simple Padé-analysis of the series (7) allows obtaining a conse-
quence of convergent estimates of nc along the main diagonal of the Padé-table. A refined anal-
ysis of the series (7) by means of the Padé-Borel-Leroy resummation yields nc = 2.862± 0.005
[25]. Within a variety of data (see [25] for a review) this result confirms the general conclusion
nc < 3.

Based on the above analysis we arrive at the diagram 1 (a) of the FPs stability, as it follows
from the Aharony’s conjecture. In the upper left region in Fig. 1 (a) both the O(m) and O(mn)
FPs are stable, their accessibility depends on the initial couplings values. We stress that this
result is valid for the “cubic-like” models ∀u, v ≥ 0.
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Fig. 1. The domains of the FPs stability of the “cubic-like” models {∀u, v ≥ 0} (the left-hand figure) and
those of the “disordered-like” models {u > 0, v ≤ 0} (the right-hand figure). See the text for the whole
description.

Let us pass to the case of “disordered-like” models u > 0, v ≤ 0. It is known, that the
one-loop degeneracy of the β-functions (2) for m = 1, n = 0 leads in particular to the

√
ε-

expansion of random Ising model exponents [5]. Note however, that the one-loop degeneracy is
encountered for a more general relation between m and n:

n =
16(m− 1)

m(m+ 8)
. (8)

The equation (8) is an exact one and governs the stability of the mixed fixed point of the
“disordered-like” models as it is shown in the diagram 1 (b). The nature of the RG flow sce-
nario in the blanc region in the Fig. 1 (b) is rather complicated. There exists a stable FP in
this region, however, being unphysical it is to be eliminated from consideration. An extensive
discussion of this subject will be presented elsewhere.

3 Conclusions

Traditionally, the RG approach is used as a tool for precise computation of universal charac-
teristics of critical behaviour, i. e. critical exponents and amplitudes ratios. However, order
parameters critical dimensions that govern crossovers among different universality classes are
also universal and can be accurately determined within the approach. In this paper we study
the conditions under which the mn vector model (1) at criticality does not belong to spherically
symmetric universality class. We use adjusted resummation and extended analysis of the series
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for RG functions which are known for the model in high orders of perturbation theory [10, 24].
Though the nature of the exploited series is still unknown, our analysis shows that their treat-
ment by means of Padé and Padé-Borel like analysis permits obtaining well convergent results.
Along with the estimates mc = 1.912 ± 0.004, nc = 2.862 ± 0.005 which, according to the
Aharony’s conjecture determine the stability of the mixed FP for n > 1, we obtain the relation
(8) supplementing it for n < 1. A comprehensive analysis of the calculations will be presented
elsewhere.
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