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ON THE CRITICAL BEHAVIOUR OF THREE-DIMENSIONAL MAGNETIC
SYSTEMS WITH EXTENDED IMPURITIES1
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We investigate the critical properties of d = 3-dimensional magnetic systems with quenched
defects, correlated in εd dimensions (which can be considered as the dimensionality of the
defects) and randomly distributed in the remaining d − εd dimensions. Our renormalization
group (RG) calculations are performed in the minimal subtraction scheme. We analyze the
2-loop RG functions for different fixed values of the parameter εd. To this end, we apply
the Chisholm-Borel resummation technique and report the numerical values of the critical
exponents for the new universality class.

PACS: 61.43.-j, 64.60.Ak, 75.10.Hk

The effect of weak quenched point-like disorder on the critical behaviour of magnetic systems
is predicted by the Harris criterion [1]: only if the critical exponent αp of the pure (undiluted)
system is positive, i.e. the heat capacity diverges at the critical point, disorder changes the critical
exponents. Only the pure Ising model is characterized by a value of αp > 0 and thus is affected
by point-like weak disorder at criticality.

Systems with so-called “extended” (macroscopic) defects are not covered by the original
Harris criterion and have attracted much interest [2–11]. Dorogovtsev [2] proposed the model
of a d-dimensional m-component spin system with quenched random nonmagnetic impurities,
that are strongly correlated in εd dimensions and randomly distributed over the remaining d− εd

dimensions. Such a system is no longer isotropic; the idea of two different correlation lengths
naturally arises since the system is expected to behave differently along the directions “parallel”
to the εd-dimensional impurity and along the “perpendicular” directions. The case εd = 0 is
associated with point-like defects, and extended parallel linear (planar) defects are related to the
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Fig. 1. The phase diagram of the critical behaviour of 3-dimensional m-component magnetic systems in
different regions of the m, εd-plane. The solid line is obtained by substituting into (1) the 6-loop results [12]
for the critical exponents of pure m-vector magnet. The dashed line shows our present results, obtained in
2-loop approximation.

cases εd = 1(2). This model is valid for low densities of defects. A double expansion in both
ε = 4− d, εd was suggested and renormalization group (RG) functions were calculated to order
ε, εd [2]. These calculations were extended to the second order in Ref. [3]. It was argued, that the
Harris criterion is modified in the presence of extended impurities: the randomness is relevant, if

εd > −αp/νp, (1)

where αp, νp are the exponents of the pure system. Taking the best known estimates from the
6-loop d = 3 RG expansion [12], one finds that disorder with extended defects is relevant for
d = 3 over a wider range of m than point defect disorder with a lower marginal value of εd as
shown in figure 1.

Although Ref. [3] reports the RG functions with two loop accuracy a numerical analysis is
provided only to order ε, εd. For the special case of d = 3 and εd = 1, corresponding to linear
defects the critical exponents were calculated to the second order of an expansion in ε and εd, and
Padé-like approximants were used to give numerical estimations [4]. In our present approach we
explore a wider region of the phase diagram shown in figure 1 and apply resummation schemes
that may be expected to give more reliable numerical results.

Another class of extended-defect systems are those with cubic anisotropy [5]. Here, one con-
siders εd as a non-negative real number to include cases where complex random defect systems
can be reduced to extended defect systems, i.e. εd is treated as an effective fractal dimension.

A related model with long-range-correlated quenched disorder, which is characterized by
a correlation function with a power law decay g(r) ∼ r−a with distance r, has been proposed
in [6]. The influence of this type of disorder on the properties of various systems was investigated
in recent numerical [7] and analytic [8] studies. A model that combines features of both extended
defects and long range correlation was studied in [10].

Although systems with extended quenched defects are subject of a number of studies, the
critical behaviour of 3-dimensional magnets of this type has not been completely clarified. In
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particular, the RG series are known to be asymptotic at best and the application of appropriate
resummation techniques is needed to extract reliable numerical estimates from the series [13].

For our present study of the critical behaviour of the 3-dimensional m-component magnetic
systems with εd-dimensional extended defects, we make use of the RG functions in 2-loop ap-
proximation as derived in Refs. [3, 4]. The model of the m-vector magnet in this context is
described by the Hamiltonian [2]:

H =

∫

ddx

[

1

2
((µ2

0 + V (x))~φ2(x) + (∇⊥
~φ(x))2 + α0(∇||

~φ(x))2 +
u0

4!
(~φ2(x))2

]

, (2)

here, ~φ is an m-component vector field: ~φ = {φ1 · · ·φm}, µ0 and u0 are the bare mass and
the coupling of the magnetic model, and V (x) represents the impurity potential. The impurity-
probability distribution is defined to yield:

〈〈V (x)〉〉 = 0, 〈〈V (x)V (y)〉〉 = −v0δ
d−εd(x⊥ − y⊥). (3)

Here, 〈〈...〉〉 denotes the average over the potential distribution; the positive constant −v0 is
proportional to both the concentration of impurities and the strength of their potential. The
impurities are envisaged as εd-dimensional objects, each extending throughout the system along
the coordinate directions symbolized as x||, whereas in the remaining d−εd dimensions denoted
by x⊥ they are randomly distributed. One assumes, that the linear size of the defects X|| is much
greater than the spin-correlation length and that the linear separation X⊥ between the defects,
corresponds to a defect concentration well below the percolation limit. The anisotropy constant
α0 takes into account that the extended defects make the space coordinate anisotropic. As noted
in [2] the correlation of the order parameter in two points x and x

′ depends on the direction of the
vector x − x

′, due to the anisotropy. As a result, parallel and transverse components of the pair
correlation function and the correlation length, and corresponding exponents η||, η⊥, ν||, and ν⊥
have to be introduced. The magnetic susceptibility of the system, and hence the critical exponent
γ, is isotropic. The anisotropic exponents obey new scaling relations; we will turn to this fact
below.

Applying the replica method to average the free energy over the random potential distribution,
leads to the effective Hamiltonian [2]:

H =

n
∑

α=1

∫

ddx

[

1

2
[µ2

0
~φ2

α(x) + (∇⊥
~φα(x))2 + α0(∇||

~φα(x))2] +
u0

4!
(~φ2

α(x))2
]

+
v0

2

n
∑

α,β=1

∫

ddx

∫

ddy δd−εd(x⊥ − y⊥)~φ2
α(x)~φ2

β(y). (4)

Here, Greek indices denote symmetric replicas and the replica limit n → 0 is implied.
To describe the long-distance properties of the model (4) near the second order phase tran-

sition, the field-theoretical RG method is used. The change of the couplings u0, v0 → u, v un-
der renormalization defines a flow in parametric space, governed by corresponding β-functions.
The fixed points u∗, v∗ of this flow are given by the solutions of the system of equations:
βu(u∗, v∗) = 0, βv(u

∗, v∗) = 0. The stable fixed point is defined as the fixed point, where the
stability matrix Bij = ∂βui

/∂uj , possesses eigenvalues with positive real parts. The accessible
stable fixed point corresponds to the critical point of the system. At this point, the perpendicular
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m = 1 m = 2 m = 3
εd u∗ v∗ u∗ v∗ u∗ v∗

0 1.5772 -0.2416 1.1415 0 1.0016 0
0.1 1.7640 -0.4187 1.1688 -0.0372 1.0016 0
0.2 1.9169 -0.5635 1.2713 -0.1857 1.0016 0
0.3 2.0478 -0.6859 1.3509 -0.3117 1.0467 -0.1028
0.4 2.1633 -0.7919 1.4145 -0.4195 1.0908 -0.2186
0.5 2.2671 -0.8853 1.4665 -0.5125 1.1238 -0.3188
0.6 2.3619 -0.9688 1.5096 -0.5932 1.1486 -0.4053
0.7 2.4493 -1.0445 1.5457 -0.6635 1.1672 -0.4799
0.8 2.5306 -1.1131 1.5763 -0.7249 1.1812 -0.5440
0.9 2.6067 -1.1762 1.6025 -0.7788 1.1917 -0.5991
1.0 2.6783 -1.2343 1.6249 -0.8261 1.1995 -0.6461
1.1 2.7466 -1.2896 1.6443 -0.8675 1.2053 -0.6858

Tab. 1. Coordinates of stable fixed points of RG equations for magnetic systems with extended defects
obtained by Chisholm-Borel resummation in 3d scheme.

components of the critical exponents η⊥, ν⊥ and the parallel component ν|| are defined by ap-
propriate RG functions (see [2], [3] for details). Other critical exponents can be obtained from
the scaling relations [2]:

γ = (2 − η⊥)ν⊥ = (2 − η||)ν||; α = 2 − (d − εd)ν⊥ − εdν||. (5)

In order to derive the quantitative characteristics of the critical behaviour of magnetic systems
with extended impurities, we analyze the 2-loop RG functions, obtained in [3, 4] in the minimal
subtraction scheme. The minimally subtracted RG flow with one parameter ε (εd = 0) has
only trivial (engeneering) dimension dependence and can be evaluated for fixed ε = 1 [14]. We
propose to extend this approach to the RG flow of the present model, i.e. to treat it directly at d =
3 (ε = 1) and for different fixed values of the (fractal) defect dimensionality εd. The expansions
for the RG functions have the form of divergent series with zero radius of convergence, familiar
to the theory of critical phenomena [13]. We obtain our results by a two-variable Chisholm-
Borel resummation technique [15, 16]. It has shown its efficiency in the analysis of the RG
expansions for models with point-like disorder [16, 17]. We present the values of the stable
fixed point coordinates and the critical exponents of the 3-dimensional m-component magnetic
systems with extended impurities at m = 1; 2; 3 in Tables 1 and 2.

Let us draw some conclusions from the results shown. As mentioned above, the case εd = 0
describes point-like quenched disorder and the well known results are reproduced: for m = 1 this
type of disorder is relevant according to the Harris criterion and the corresponding random fixed
point (u 6= 0, v 6= 0) is stable. Increasing the parameter εd leads to a shift of the stable fixed point
value. For m = 2; 3 the situation differs. Here, point-like disorder is irrelevant, and the pure fixed
point is stable, whereas the random fixed point lies in an unphysical region and is unstable. With
the increase of εd at some marginal value εmarg

d the random fixed point moves to the physical
region and becomes stable. This corresponds to crossover to a new universality class. Note, that
the relation ν|| > ν⊥ holds for every εd and m. The extended defects cut interacting paths of
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m = 1 m = 2 m = 3
εd ν|| ν⊥ γ ν|| ν⊥ γ ν|| ν⊥ γ
0 – 0.665 1.308 – 0.684 1.344 – 0.720 1.411

0.1 0.714 0.680 1.338 0.691 0.688 1.352 0.720 0.720 1.411
0.2 0.741 0.692 1.362 0.719 0.705 1.386 0.720 0.720 1.411
0.3 0.765 0.702 1.384 0.744 0.718 1.414 0.740 0.732 1.438
0.4 0.786 0.712 1.402 0.766 0.730 1.439 0.763 0.746 1.467
0.5 0.805 0.720 1.419 0.785 0.739 1.460 0.784 0.757 1.493
0.6 0.822 0.727 1.434 0.802 0.747 1.479 0.801 0.766 1.515
0.7 0.838 0.733 1.448 0.818 0.754 1.495 0.817 0.773 1.533
0.8 0.853 0.739 1.460 0.831 0.760 1.509 0.831 0.779 1.549
0.9 0.867 0.745 1.472 0.843 0.765 1.522 0.842 0.783 1.562
1.0 0.880 0.750 1.483 0.854 0.769 1.532 0.852 0.787 1.573
1.1 0.892 0.754 1.493 0.863 0.773 1.542 0.860 0.789 1.581

1.0 [4] 0.84 0.67 1.34 0.60 0.56 1.13 0.66 0.61 1.24

Tab. 2. Critical exponents of magnetic systems with extended defects obtained by Chisholm-Borel resum-
mation in 3d scheme. For comparison the last line shows the results of Ref. [4].

spins perpendicular to the extended-defect direction, so in the parallel direction the fluctuations
are stronger and the correlation length more sharply diverges.

The marginal value of εmarg

d , at which the crossover to the random fixed point occurs is
shown in Figure 1 by a dashed line. Note, that in the first order of ε, εd-expansion the disorder is
relevant for every m < 4 and positive εd [3].

Another interesting question concerns existence of an upper critical value for the defect
dimensionality εd. This question has not raised in previous works, where the double ε, εd-
expansion was exploited. In our analysis, increasing εd leads to the appearance of poles in
the Chisholm approximants for εd > 1 making impossible a definite answer about the presence
and stability of the fixed points for high εd. However, interpreting εd as a fractal dimensional-
ity of defects, it is clear that it can not exceed the dimension of the embedding space (d = 3).
Moreover, physically one may expect that extended defects of large dimension (e.g., planar de-
fects with εd = 2) will divide the system into non-interacting regions and thus prevent it from
ferromagnetic ordering.

The numbers given in Table 2 provide numerical estimations for the critical exponents of the
3-dimensional m-component magnetic systems in the presence of extended defects with (fractal)
dimensionality εd. Unfortunately, we have not come across any Monte Carlo investigation of
the model [18]. The only numerical results for the exponents of the model (4) were obtained
so far for εd = 1 using the Padé-analysis [4], they are shown in the last line of Table 2. We
note however, that our present resummation technique has shown its efficiency and accuracy in
studies of models with point-like structural disorder [17] and is generally known to provide more
reliable data as compared to the simple Padé-analysis.
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