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LARGE ORDER ASYMPTOTICS AND CONVERGENT PERTURBATION THEORY
FOR CRITICAL INDICES OF THE φ4 MODEL IN 4 − ε EXPANSION1
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Large order asymptotic behaviour of renormalization constants in the minimal subtraction
scheme for the φ4 (4 − ε) theory is discussed. Well-known results of the asymptotic 4 − ε

expansion of critical indices are shown to be far from the large order asymptotic value. A
convergent series for the model φ4 (4 − ε) is then considered. Radius of convergence of the
series for Green functions and for renormalisation group functions is studied. The results
of the convergent expansion of critical indices in the 4 − ε scheme are revalued using the
knowledge of large order asymptotics. Specific features of this procedure are discussed.

PACS: 64.60.Fr, 11.10.Hi, 05.70.Jk

1 Introduction

Calculation of critical indices is usually based on a certain asymptotic expansion. To obtain
reliable results a resummation procedure is necessary. To this end the Borel-Leroy transform
in fixed dimension [1, 2] or in ε expansion [2–4], the simple Padé-Borel method [5] as well as
self-similar exponential approximants [6] have been used. But divergent series can produce an
arbitrary result. Thus some additional information about the series is needed.

When a convergent series is considered, additional information can also improve the result.
The knowledge about location and character of singularity of the function investigated or about
the large order asymptotic behaviour of the expansion may be used to accelerate convergence of
the series. In this report we will discuss a resummation of the 4 − ε expansion of critical indices
for the φ4 theory with help of the large order asymptotics.
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2 Large order asymptotics of renormalization constants

Large order asymptotic behaviour of the O(n) symmetric φ4 theory is well known. The N-th or-
der term of the standard expansion for an arbitrary function F in the theory with the renormalized
action

SR(φ, g) =
1

2
Z2

φ∂iφα∂iφα +
1

2
Z2

φZττφ2 +
1

4!
Z4

φZggµε(φ2)2 (1)

behaves at large N as ( [7–9])

F (N) ≈ NNe−NaNN bF cF . (2)

The notation F (N) for the N -th order coefficient of the expansion of the function F will be used
henceforth. Working within the minimal subtraction (MS) scheme in the 4−ε expansion we have
corrected the result (2). Namely, analysing the limits N → ∞ and ε → 0 in more detail, we have
obtained a more accurate estimate for the amplitudes cF of the renormalization constants [10].
According to the results of Ref. [7] the asymptotic expression (2) for the β function coincides
practically with the exact result for N = 3, but the asymptotics of [7] for N = 4, 5 are larger
than the exact value. Contrary to these conclusions, we have shown that the asymptotics (2)
for the renormalization constants (and for the critical indices) are much smaller than the exact
ones [11]. For example, [Z

(5)
g ]asymp ≈ .01[Z

(5)
g ] for n = 1, where [Zi] is the residue of Zi

regarded a function of complex ε. We have predicted that only starting from 10 - 15-th order the
perturbation expansion could be near to the asymptotic value. Due to this fact we can state that
the Borel transform of the 5 known terms of the ε expansion has no theoretical ground.

Nevertheless, we propose extrapolation expressions for the unknown terms in the expansions
of renormalization constants Z in the following form [10]:

[Z̄(N)
g ]asymp = [Z(N)

g ]asymp

(

1 +
c̄g

N

)

, c̄g =
5[Z

(5)
g ]

[Z
(5)
g ]asymp

− 5

[Z̄
(N)
φ ]asymp = [Z

(N)
φ ]asymp

(

1 +
c̄φ

N

)

, c̄φ =
5[Z

(5)
φ ]

[Z
(5)
φ ]asymp

− 5. (3)

These expressions contain an additional correction of the 1/N type normalized by direct com-
parison of the asymptotic value (2) for N = 5 with the exact one. In (3),

[Z(N)
g ]asymp = (−1)NCgN

NN
7+n

2 e−N , [Z
(N)
φ ]asymp = (−1)NCφNNN

3+n

2 e−N (4)

Cg = − 864π2+n/2Det

n(n + 2)Γ(n/2)
exp

(

n + 8

6

[

Ψ(1) − ln(π) − 2

])

,

Cφ = −6π2+n/2Det

nΓ(n/2)
exp

(

n + 8

6

[

Ψ(1) − ln(π) − 2

])

, (5)
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Det = 2(7−4n)/235n/2π−(5+n)/25−5/2e−4(n+2)/3−7(n+8)/18−R/12+(n+8)(Ψ(1)+2−ln(π))/6,

R := −
∞
∑

l=2

∞
∑

p=3

(l + 1)(l + 2)(2l + 3)

p(l + 1)p(l + 2)p

(

6p + 2p(n − 1)

)

(6)

Here, Ψ is the logarithmic derivative of the Γ function. Using similar expressions normalized
with help of the 4-th exact term of the renormalization constant expansions, we could find the
5-th order term and estimate the accuracy of such calculation as at least 80%. Besides, we hope
that the expressions (3) can give us a reliable estimate for more than 5 orders of the expansions
of Z’s.

3 Convergent expansion for critical exponents

We will use the knowledge of large order asymptotics to improve initially convergent series for
critical exponents. In Ref. [12] a new approach was suggested to calculate critical indices. It
was based on the modified expansion for the O(n)-symmetric φ4 model [13] which leads to
convergent series. The standard action S = S1 +S2 with S1 =

∫

dx(∂φ)2/2, S2 = g
∫

dxφ4/4!
was cast in the form S = S0 + SI , where S0 = S1 + aS2

1 and SI = ζ(S2 − aS2
1). Here, a is an

arbitrary constant and ζ is a new expansion parameter. The model coincides with the initial one
at the ’physical’ value of ζ: ζph = 1. It was stated in Ref. [13] that the ζ expansion is convergent
for ζ ≤ ζc = 1, when

a ≥ g

64π2
= amin. (7)

In the framework of the ζ expansion the renormalized 2k point Green function can be written as
an integral with respect to an additional variable σ as:

GR
2k =

1√
π

∫

dσe−σ2

∫

Dφ
φ(x1)...φ(x2k)

(1 + 2iσ
√

a(1 − ζ))k
Z̃−2k

φ

× exp

(

−1

2
∂φ∂φ − ζgZ̃gµ

εφ4

4!(1 + 2iσ
√

a(1 − ζ))2

)

. (8)

Here, g is the renormalized charge, µ is the renormalization mass, Zi(g), and Z̃i = Zi(gζ/(1 +
+ 2iσ

√

a(1 − ζ) )2) are the renormalization constants in the usual perturbation theory. This
representation allows to construct the Feynman graphs in the usual manner. Due to the integration
with respect to σ every diagram acquires an additional factor [13]:

Uj(a) = 1/
√

π

∫

dσ exp(−σ2)/(1 + 2iσ
√

a)j

=

∫ ∞

0

dttj−1exp(−t − at2)/(j − 1)! (9)

The basic renormalisation group (RG) equation for the Green functions (8) was derived in Ref.
[12] in the form

DRGGR
2k ≡ [µ∂µ + β∂g + β2∂

2
g + ... + γ]GR

2k = 0, (10)
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where γ and all β functions depend on the parameters g, ζ, a and k. Using the MS scheme one
can write for the RG functions in D = 4 − ε dimensional space (n = 1, k = 1) the expressions

γ = − 2

U1(a(1 − ζ))
g∂g

∑

l=0

glζl[Z
(l)
φ ]U2l+1(a(1 − ζ)), (11)

β = −εg +
1

U3(a(1 − ζ))
g∂g

∑

l=0

glζl

(

[Z(l)
g ] − 2[Z

(l)
φ ]

)

U2l+3(a(1 − ζ)) − γg

≡ −εg + β(g)g (12)

It was shown that Eq. (10) governs the large-scale asymptotic behavior of the model. Critical
exponents are related to the anomalous dimensions in the usual way [9]: η = γ(g∗)/k, and
1/ν = 2 − γτ (g∗) + kη [ γτ is determined by equation (10) for the Green functions with the
insertion of the composite operator φ2 ]. Here g∗ is the fixed point determined by the usual
equation β(g∗) = 0, or

ε = β̄(g∗). (13)

In Ref. [12] it was demonstrated that it is possible to solve Eq. (13) iteratively to calculate g∗ in
the form of a double expansion in ε and ζ. As a result, the exponents η and ν were calculated
for n = 1, k = 1, a = 0.134 at the physical values ζ = ε = 1 (see the table). The columns
correspond to expansion order taken into account. Exponents marked by ε are the results of the
usual ε expansion, which are quoted for comparison.

Exponent 1 2 3 4 5
η 0 0.02553 0.04342 0.039745 0.039741
ηε 0 0.01852 0.03721 0.02888 0.05454
ν 0.621 0.671 0.663 0.674 0.651
νε 0.583 0.627 0.607 0.678 0.461

Estimates based on the Borel transform of ε expansion are η = 0.0360 ± 0.0050 [2], η =
0.035 ± 0.002 [3], ν = 0.6290 ± 0.0025 [2], ν = 0.628 ± 0.001 [3]. A typical lattice result is
ν = 0.6305± 0.0015 [9]. Thus, in spite of convergence of the ζ expansions, the accuracy of the
results of [12] is lower than in case of estimates based on Borel transforms. This is why we will
improve the convergent expansion using the large order asymptotics.

4 Large order asymptotics for the convergent perturbation expansion

In Ref. [13] it was stated that instanton analysis could not be used for the investigation of the
convergent ζ-expansion of Green functions. Using more sophisticated examination, the radius of
convergence was estimated as ζc = 1.

Contrary to this, we confirm the adequacy of instanton approach here. Indeed, let us deter-
mine the N -th order of ζ expansion by

G
(N)
2k =

∮

dζ

ζN+1
G2k ,
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where G2k is given by (8). A subsequent steepest descent approach in the variables σ, ζ and φ
leads to an instanton and stationary point (for n = 1)

φs =
√

Nφ0

(

2σ0

√

a(1 − ζs)√
ζsg

− i

6
√

ζsgN
+ O(

1

N
)

)

,

where

φ0 =
4
√

3

y

1

1 + (x − x0)2/y2
,

with arbitrary x0, y, and

ζs = ζ̄c

(

1 +
7

6
√

aN
+ O(

1

N
)

)

, ζ̄c =
1

1 − g/(64π2a)

σs =
√

Nσ0, σ0 =

√

ζ̄c

√

g

64π2a
+

ζ̄c√
N

568aπ2 + 3g

96πa
√

g
+ O(

1

N
).

The instanton analysis results in the following behavior for the N -th order of the ζ-expansion of
the 2k point Green function:

G
(N)
2k ∼ Nαζ̄N

c e−
√

N

a (14)

with some α.
Contrary to [13] we have obtained a radius of convergence ζ̄c which tends to infinity as

a → amin. We consider the unrenormalized Green function in D = 4 dimensional space only,
but this is not essential for the treatment of the radius of convergence. The same result (14) can
be obtained directly by the method proposed in [13]. In such a case the instanton φc ∼ N1/4.
Thus, the instanton does exist.

For usual divergent series of ε expansions the large order asymptotics of Green functions
characterise unambiguously the asymptotics of RG functions. In the case of convergent series the
situation is more difficult. Namely, the denominators of the expressions (11), (12): Ui(a(1− ζ))
(i = 1, 3) have the radius of convergence equal to 1. Therefore, the large order asymptotics of
the ζ expansion of these functions

U
(N)
i (a(1 − ζ)) ≈ N i/2−1e−

√
N/a+1/(8a)a1−i/Γ(i)

have a non-trivial influence on the asymptotic behaviour of β and γ functions.

5 Character of singularity of the convergent expansion for critical indices

In addition to ζc problem we have some difficulties with double ζ, ε expansion of indices as we
try to find the fixed point g∗ of (13). The iteration solution g∗(ε, ζ) of the equation (13) has a
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Fig. 1. The value of the index η and the index ν as a function of perturbation order number N taken into
account.

new singularity at the point εm bounded by the nearest to zero extremum of the β̄ in the complex
plane g. Namely, the point gm given by

εm = β̄(gm, ζ), ∂gβ̄(gm) = 0 (15)

results in the singularity g∗ ∼
√

ε − εm.
To calculate εm the second equation (15) has to be solved in a form of a ζ expansion. Unfor-

tunately, our calculation shows that the five known terms of the expansion of β̄ are not sufficient
for a reliable determination of gm. If the extrapolation expressions (3) are used within the Padé
approximant approach, then there is a whole set of conjugate points gm. It is very difficult to
find a suitable ’mapping’ to exclude these singularities. Moreover, the corresponding minimal
value of εm turns out to be very small (∼ .02) that decreases the radius of convergence in ε of
our double expansion. Thus the method to be used is to consider the variables g, ζ instead of ε,
ζ. A similar approach leads to a good result in the Kraichnan model, where a convergent series
is dealt with as well [14].

Calculating g∗ directly from the equation (13) for ε = 1 we were able to obtain five orders of
the ζ expansion for critical indices (for n = 1, ζph = 1):

Exponent 1 2 3 4 5
η 0 .021 0.023 0.027 0.029
g∗/(16π2) 0.96 0.86 0.65 0.61 0.57
ν 0.612 0.650 0.638 0.641 0.640
g∗/(16π2) 1.38 1.17 0.84 0.75 0.68

The exponent η was calculated for the value a = .14, the exponent ν for a = .17 which
lead to the best rate of series convergence. Note that g∗ obtained ensures the convergence of
the ζ series in both cases. However, using the extrapolation expressions (3) for unknown terms
of the expansions of the renormalisation constants Z, we obtained the results shown in Fig.
1 demonstrating the failure of the usual extrapolation procedure in the calculation of critical
indices.
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To improve the convergence of the ζ series we can investigate the large order asymptotics of
the functions (11), (12). Denominators of these expressions have essential singularities of the
type U1(a(1 − ζ), U3(a(1 − ζ) that must be extracted. It is convenient to introduce δZ

(N)
φ ≡

[Z
(N)
φ ] − [Z̄

(N)
φ ]asymp. Let us rewrite the asymptotic expression (4) of the renormalization con-

stant Zφ in the equivalent form

[Z̄
(N)
φ ]asymp = Cφ(−1)NN2 (2N)!

4N
√

2N !
(1 +

cφ

N
).

Here, the constant cφ can be found in a way similar to c̄φ in (3) by comparison of [Z̄
(5)
φ ]asymp

with the exact expression [Z
(5)
φ ].

Then substituting [Z̄
(5)
φ ]asymp into (11) and re-expanding it in ζ one can write γ in the form

γ = −2

5
∑

j=1

j(gζ)j

(16π2)j

U2j+1(a(1 − ζ))δZ
(j)
φ

U1(a(1 − ζ))
−

√
2Cφ

U1(a(1 − ζ))
×

×

(

−
(gζ)3

(64π2)3
6!U7 +

(gζ)2

(64π2)2
4!(3 + cφ)U5 −

(gζ)

(64π2)
2!(1 + cφ)U3

)

. (16)

Here, the omitted for brevity argument of the Ui functions is a(1− ζ)+gζ/64π2. Thus, we have
investigated not only the location of ζc and ζ̄c, but also the character of the singularities of the ζ
expansion of the γ function.

In analogy with (16) we obtain for the β function

β =

5
∑

j=1

j
(gζ)j

(16π2)j

U2j+3(a(1 − ζ))(δZ
(j)
g − 2δZ

(j)
φ )

U3(a(1 − ζ))
+

Cg

25/2U3(a(1 − ζ))
×

×

(

− (gζ)3

(64π2)3
8!U9 +

(gζ)2

(64π2)2
6!(3 + cg)U7 −

(gζ)

(64π2)
4!(1 + cg)U5

)

− γ (17)

The expressions (16), (17) are physically meaningful at ζ = 1. Solving numerically Eq. (13)
with β from (17) and substituting the value g∗ = 0.382 obtained in γ (16) we obtain η = 0.0236.
Taking into account the ε expansion up to fourth order one obtains similarly η4 = 0.0241.

An analogous procedure for the index ν leads to ν = 0.580, (ν4 = 0.624). These results
are the best we can obtain from the ε expansion in the convergent scheme using all available
information about the large order behaviour.

It is worthwhile noting that the accuracy of our results is similar to the accuracy of the ap-
proximation (3) determined by the rate with which asymptotics of renormalization constants tend
to the exact value. Thus, we conclude that the accuracy of the ε expansion resummation with help
of the Borel transformation is lower than commonly quoted.
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