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The functional renormalization group method is used to take into account the vacuum po-
larization around localized bound states generated by external potential. The application to
Atomic Physics leads to improved Hartree-Fock and Kohn-Sham equations in a systematic
manner within the framework of the Density Functional Theory. Another application to Con-
densed Matter Physics consists of an algorithm to compute quenched averages with or without
Coulomb interaction in a non-perturbative manner.

PACS: 31.15.-p, 72.10.-d

1 Introduction

The renormalization group will be used in this talk as an algorithm to solve strongly coupled
quantum field theories without any intention to gain insight into the scale dependence of the
dynamics. We shall study the system of non-relativistic electrons propagating in the presence
of static external potential. We consider non-relativistic systems because the comparison with
experiment is more direct than in the relativistic domain. The common challenge in both regimes
is to trace the polarization effects in the vacuum, i.e. the particle-hole or the particle-anti particle
fluctuations in the non-relativistic or relativistic region, respectively.

We shall consider two different cases. First, the electrons will be placed in an external local-
ized field and one finds a problem with inhomogeneous ground state, characteristic of Atomic
Physics. Second, we assume the presence of a static random external impurity potential which
obeys a Gaussian probability distribution and we introduce a scheme to compute the quenched
averages of kinetic transport coefficients in a translation invariant manner. The common technics
applied is a generalization of the functional renormalization group [1] where the role of the run-
ning cut-off is played by an arbitrary control parameter which generates differentiable changes
in the dynamics.
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2 Renormalization in the internal space

The degrees of freedom are eliminated successively in the renormalization group method, for
instance the Kadanoff-Wilson blocking strategy orders the modes according to their scales in
the external space, i.e. in the the space-time (energy-momentum). One may construct a blocking
procedure where the blocking proceeds in an order determined by a scale in the internal space, the
space of the field amplitude. A well known example is the Callan-Symanzik equation where the
fluctuations with larger and larger amplitudes are taken into account as the mass of the particles
is lowered.

It is easy to generalize this scheme for any parameter in the dynamics by means of functional
techniques [2]. In fact, let us suppose that the dynamics contains a control parameter A\ and the
generator functional T, [4] for the connected Green functions of a scalar field ¢ is given by

cEWAl] _ /D[(b]e%(sx[chj-cﬁ) 1)

where f - g = fl J29z, fl = [d'xz and S,[¢] is the action. The evolution equation
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is valid without assuming the existence of any small parameter. The way this equation is obtanied
is reminescent of the derivation of the Schwinger-Dyson equations except that the latter contains
the complete action and the former the suppression controling part, 9.Sx, only. It is worthwhile
noting that this relation appears to be such a functional generalization of the Hellman-Feynman
theorem corresponding the Hamiltonian H [3],

O\NE\ = (EX|OXHA|Ey), EXE\) = Hy|Ey), 3)

for time dependent processes and general matrix elements which remains compatible with ap-
proximations one employs to solve the functional differential equation (2) in restricted functional
spaces.

In the examples presented here the electric charge and the average strength of the impurity
field fluctuations will be chosen as control parameters. The corresponding evolution equations
will be written for a local functional, the effective action for the density and the current. The
effective action of the physical system can be obtained by integrating these equations from an
artificial perturbative initial condition imposed at weak Coulomb interaction and disorder into
the physical regime.

Similar schemes could be constructed by means of the more traditional renormalization group
method, based on the external space. But the present version has the following two advantages.
First, it preserves gauge invariance, an important feature in the computation of the electric con-
ductivity. Second, it avoids the artificial discontinuities during the evolution which may occur
when the saddle point structure is changed by the running cut-off [4].
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3 Density Functional Theory

The density functional theory [5, 6] is a powerful method to describe bound states induced by ex-
ternal potential. The quantity of central importance is the density functional, E,,[p], the ground
state energy when the the density is constrained to be p. According to the the Hohenberg-Kohn
theorems the ground state energy of the original problem is the minimum of the density func-
tional, E,, = E,.[psr]. The shortcoming of the traditional approach is its phenomenological
nature, the lack of a constructive definition of the density functional. We propose that the ef-
fective action I'[p] for the density p [7] provides a clear and generally applicable definition of
the density functional. Furthermore, the internal space renormalization group method leads to a
systematical approximation scheme which turns the phenomenological knowledge about correla-
tions into an improvement of the approximation by choosing the ansatz for I'[p] in an appropriate
manner [8].
The generator functional for the connected Green function is defined as

r = / D[u] D[] D[y |er ¥ (¢ T rertonie) vamondn, (4)

where ¢ and u denote the electron and the temporal photon fields, respectively, j, . stands for
the electric density (o« = 0) and current (o = 1, 2, 3),
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is the inverse of the non-interacting electron propagator in the presence of an external potential
Vezt and chemical potential . We shall consider the density Green functions and use oz = 0
only in this section. The Legendre transform of the Wo], the effective action I'[p] for the
density p reaches its minimum at the ground state density, 5E, = I'[p,.], and will serve as the
density functional. The effective action is first obtained for imaginary time, at finite temperature,
T = 1/4, and the projection onto the ground state is achieved by taking the zero temperature
limit 3 — oco. After the rescaling e — e of the electric charge one can derive the evolution

equation
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where [ = [dx = [d*z. The second equation shows that the evolution equation simply
follows the change of the Coulomb energy according to the Hellman-Feynman theorem.

The initial condition for the effective action is imposed at weak Coulomb interaction, \g = 0,
where we find in the leading order perturbation expansion for spinless electrons

F[p]:%(p*p*)@_l-(p*p*)*p-i-ﬁc[p] ()

with C[p] = —TrlogG=! + 1 Trlog D! 4+ O(e?) + O(p*). The leading order particle-hole
propagator G, , = —G G, is Used to obtain the one-loop improved version, G = [G~! +
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e?/A]~1, D = [-A + ¢2G]~" denotes the photon propagator and p*, = —G. .. By minimizing
the effective action one recovers the Hartree-Fock energy functional in O(e?). The non-classical
nature of the exchange contribution to the interaction is reflected in the fact that it arises from the
photon fluctuation determinant, the term T log D 1.

The evolution equation (6) should be projected into a restricted functional space in order to
make it more manageable. For this end we introduce the multi-local truncation scheme for the
effective action. The free k-local cluster approximation, f, corresponds to the functional form
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ck, can be written in the same manner except that the functions I";;1>-~7'* are parameterized. The

interactive electron field operator is assumed to be of the form ¢ x = 3, ¢, ¥, x, and the
propagator will be written as
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fort < t’ leaving ¥y, x, E, and g, ,,(t) as parameters.
We introduce a local density-dependent self-energy, o(z, p..), in the photon propagator and
assume the form

1
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which is a f, ansatz with infinitely many higher order constrained clusters arising from the pho-
ton fluctuation determinant. The corresponding evolution equation, considered at the minimum
of the effective action,

e >‘262 * 5 5C[pgr]
Pgr<1+G' A>'<P g~5—p>, (12)
can be written in a variational form as
SH[Y™, U, E, p] _ OH[Y*, VU, B, p] _ OH[V*, Y, E, p] 0, (12
o o oV, x o OF, _
X lp=pgr ’ lp=pgr lp=pgr

after the appropriate choice of the constant C[0]. A generalized HF functional
H[W*, 0, B, p] = H [0, 0, B] + HO[0™, W]+ HPM U7, W, o] + HI[, W, p],  (13)

was introduced here which is the sum of the one-particle, exchange, direct and interaction pieces,

N 2
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n=1 X
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The variational form (12) has the following remarkable features. The generalized Hartree-Fock
functional includes higher order radiative corrections which involve time-dependent, dynamical
quantities. Furthermore, it shows that the evolution, imposed at the ground state where the
effective action is the best approximated, automatically involves an optimization with respect to
the choice of the quasi-particles, the wave functions W, in the electron field operator.

We shall consider two simple approximation schemes for the evolution equation (12): In a
¢ truncation we keep the O(e?) and O(p?) perturbative effective action and recover the usual
Hartree-Fock equations for the single particle wave functions W,, and energies £,,. Another fic,
approximation scheme is where one keeps the local potential U (p) arbitrary but sets v = 0. It is
important to realize that the transformation

HPM W, W, )

HE[w*, U]

U(z,p) = Uz, p) +n(z,p), olz,p) = o(z,p)+ Din(w, p) (15)

leaves the effective action invariant. As pointed out above the photon fluctuation determinant
gives the exchange contribution and is density independent. But the transformation (15) can be
used to trade a possible, non-perturbative density-dependent photon self-energy term o into a
local potential U. The result is a generalization of the Kohn-Sham scheme [6], namely Egs. (12)
applied for the functional

His[U*, U, B, p] = H"[U*, U, E] + HR [V, U, p] + Hi [T, T, ], (16)
where
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The ground state energy is determined by the differential equation
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together with the initial condition U = 0 and contains the exchange term.
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4 Quenched averages

The impurities represent a challenge in Condensed Matter Physics since they appear to be static
from the point of view of the measurements and are distributed randomly. The usual way to take
them into account is to average the connected Green functions, the logarithm of the partition
function over the impurity distributions [9]. This average can be obtained either by analytical
continuation in the number of replicas [10], or by the introduction of fictious particles related to
the real ones by super-transformations [11] or by using the Keldysh contour in computing loop-
integrals [12]. The functional renormalization group idea offers an alternative algorithm to com-
pute quenched averages which goes further than these methods in being fully non-perturbative
and in allowing annealed interactions [13]. For the sake of simplicity we constrain the present
discussion to the non-interacting case only.

Consider the generator functional for the connected Green functions of the density and cur-
rent, introduced in Eq. (4), and write its quenched average as

o] = J Dlvle” 2 J. vinVL[gO J;v, O1,.. ]
fD[v]e 29 Jx 7%

(20)

The Legendre transform of TW[o], the effective action I'[], satisfies the evolution equation

2 —1
ot =4 [ |50 , (21)
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where the parameter A was introduced by making the rescaling ¢ — ¢\ and the notation of
multiple-index («, ¢, x) is used.

The gradient expansion ansatz for the functionals I'[p] seems natural when the kinetic trans-
port coefficient are sought,
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The T" coefficients are functions of the control parameter A and the density po and have been
computed in the leading order of the perturbation expansion in g. Such an approximation is
reliable for weak disorder, k = gm2/27rh3pp < 1. Some combinations of the I'-functions
appear in the Kubo formula, e.g. the electric conductivity, o, = 4, ,e?9,1*%/(I'*%)?, the
diffusion constant, D = 9,..I'" /(T'**)?, and the quantities I'** and I'** = 78500 give the density
and current susceptibilities, respectively
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When the vertex corrections are ignored then the evolution equation can be written as
oI = 0 for T'=0,I'"% 0,I°,
o\’
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It is easy to see that the integration of these equations resums all correlation insertion of the
particle-hole loop diagram in the given truncation of the gradient expansion, in particular the
maximally crossed diagrams which are responsible for the cooperon pole needed for non-vanishing
conductivity [14].

The terms 0(850) of the evolution equations correspond to a formal diffusion process on the
plane (po, g) considered as space-time. One can verify that the remaining terms which contain
poago generate similar spread, as well. The diffusion constant in the p-space, the integral on
the right hand sides, is small at the initial condition for strong disorder and becomes large for
weak disorder. According to the numerical solution of the evolution equations the spread of the
I"-functions is such that the conductivity decreases as the strength of the disorder is increased for
weak disorder, as expected from weak localization.

The localization transition should occur when some or all O(9?) terms of the effective action
are vanishing. In fact, according to the Kubo formulae the mobility is proportional to certain
O(6?) terms in the effective action. Another reasoning is to recall the reduction formulae for a
single particle which gives the scattering amplitudes in terms of the residuum of the connected
propagator on the mass shell. It remains to be seen by detailed numerical studies of the evolution
equation in 3 dimensions whether the po-dependence of the integrals on the right hand sides
provides such a self-acceleration of the diffusion process in the pg-space which cancels some
I'-functions at finite value of g.

We note finally that there is a formal analogy between localization and the phenomenon of
the quark confinement. According to the haaron-model of the QCD vacuum the quark propagator
is O(p—*) and the quark confinement appears as a localization in the space-time [15].

5 Summary

Two applications of the internal space renormalization group were given demonstrating the pos-
sibility of a new, systematical non-perturbative method to tackle the bound state problem at least
when the bound state formation is triggered by an external potential.
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This method is in its infancy and the outline of its formal structure is sketched only. But we
believe that it can provide an accuracy and flexibility superior to other procedures when formal
computer algebra and numerical integration are combined in deriving and solving the evolution
equation in a sufficiently rich functional space.
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