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An introduction to the theory of critical behavior at Lifshitz points is given, and the recent
progress made in applying the field-theoretic renormalization group (RG) approach to φ4 n-
vector models representing universality classes of m-axial Lifshitz points is surveyed. The
origins of the difficulties that had hindered a full two-loop RG analysis near the upper critical
dimension for more than 20 years and produced long-standing contradictory ε-expansion re-
sults are discussed. It is outlined how to cope with them. The pivotal role the considered class
of continuum models might play in a systematic investigation of anisotropic scale invariance
within the context of thermal equilibrium systems is emphasized. This could shed light on the
question of whether anisotropic scale invariance implies an even larger invariance, as recently
claimed in the literature.

PACS: 05.20.-y, 11.10.Kk, 64.60.Ak, 64.60.Fr

1 Preliminary remarks

The aim of this article is to give a brief introduction to the field of critical behavior at Lif-
shitz points [1, 2], and to survey the recent progress that has been made in applying the field-
theoretic renormalization group (RG) approach [3–8]. As is appropriate for a conference on the
topic ‘renormalization group’, I shall assume some basic familiarity of the reader with RG ideas.
However, in view of the mixed background of the participants of the conference, no extensive
knowledge of the relevant condensed matter physics is presupposed.

Since the literature on Lifshitz points—or, more generally, on systems with spatially mod-
ulated phases—is vast, it is impossible to mention or even cite all relevant papers. The paper
is designed to give a reasonably self-contained account of the issues on which we focus, and
to serve as a guide to the literature. The choice of the references has been made accordingly.
There exist extensive review articles [1] and [2], which survey the literature till 1992 and contain
extensive lists of references. The reader may consult these for further information on topics that
had to be left out here.
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2 Introduction and background

2.1 Generic phase diagram with a Lifshitz point

The concept of a Lifshitz point was introduced more than 25 years ago [9]. It is a point in the
phase diagram at which a disordered phase, a spatially homogeneous ordered phase, and a spa-
tially modular ordered phase meet. A typical phase diagram with a Lifshitz point is depicted in
Fig. 1. In the case of a ferromagnet, the disordered and uniform ordered phases are the usual
paramagnetic and ferromagnetic phases. The order of the latter corresponds to an infinite ‘mod-
ulation’ wave-length, i.e., a modulation wave-vector q0 = 0. The transition that occurs upon
crossing the phase boundary between the disordered and the uniform ordered phases is contin-
uous (‘second-order transition’). Thus each point on the line T = Tc(g) separating these two
phases and emerging from the Lifshitz point is a critical point. The variable g is a second (in-
tensive) thermodynamic variable besides temperature T . What it stands for depends on the type
of system considered: In the case of organic crystals like TTF-TCNQ [10, 11], g corresponds
to pressure; in the cases of the much studied magnet MnP [12, 13] and the so-called ANNNI
model [14], which we will both briefly consider below, g stands for the magnetic field compo-
nent perpendicular to the order parameter and a ratio of an antiferromagnetic to a ferromagnetic
interaction coefficient, respectively. The important point to remember is that g does not couple
directly to the order parameter. (If it did, a small change g → g + δg, T → Tc + δT along any
direction in the gT plane—and specifically along Tc(g)— would destroy the critical behavior;
i.e., there would not be a critical line.) For this reason, g is commonly called a nonordering
thermodynamic field.

The term ‘thermodynamic field’ is probably not too familiar among high-energy physicist,
and should by no means be confused with what is meant by a field in field theory. Its usage
was suggested in a seminal paper [15] by Griffiths and Wheeler for intensive thermodynamic

Fig. 1. Schematic phase diagram with a Lifshitz point L. The disordered phase is separated from the uniform
and modulated ordered phases via a critical line. The crossover exponent ϕ is defined via the behavior of
the critical line near L; the wave-vector exponent βq describes how the modulation wave-vector q0 tends
to the value q0,L as L is approached along the critical line between the disordered and modulated ordered
phases.
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variables like T , magnetic field, pressure, and chemical potential that take the same values on
both sides of (in general, first-order) bulk phase transition. Their thermodynamic counterparts
are the densities of extensive variables like the magnetization, energy, and entropy densities that
normally jump at the transition (though not necessarily all of them) since their values in the
respective pure bulk phases differ.

In the modulated ordered phase, the order is characterized by a nonzero modulation wave
vector q0, which varies with T and g. The transition between the disordered and modulated
ordered phase is continuous as well. Hence the Lifshitz point divides the critical line Tc(g) into
two sections. The transition between the homogeneous and modulated ordered phases can be of
first or second order; for models with a scalar order parameter it is generically discontinuous, for
specific models with vector order parameters it is found to be continuous [16].

Let us also note that the modulation wave-vector q0 does not necessarily have to vanish at the
Lifshitz point. To see this, recall that in the case of antiferromagnets, the order parameter which
acquires a nonzero value in the uniform ordered phase is not the magnetization but the staggered
magnetization. If we consider lattice models, this is given by the average of the sum of all spins
on one (up-spin) sublattice minus the sum of those on the other (down-spin) sublattice. Thus the
homogeneous ordered phase does not correspond to a homogeneous magnetization density but
to one modulated with the corresponding nonzero wave-vector at the boundary of the Brillouin
zone. This value of the modulation wave-vector q0 applies in particular to the Lifshitz point, so
q0,L 6= 0. For the sake of simplicity, we shall always use ferromagnetic language in the sequel,
taking q0,L to vanish.

2.2 Critical exponents and continuum models

To reach the Lifshitz point, both the temperature T and the nonordering field g must be fine-
tuned. This tells us that g must correspond to a relevant variable in the RG sense. We denote
the associated crossover exponent as ϕ. It describes the behavior of the critical line Tc(g) in the
vicinity of L: As indicated in Fig. 1, we have

δTc ≡ Tc(g) − TL ∼ |δg|1/ϕ , δg ≡ g − gL . (1)

In order to describe the behavior of the modulation wave-vector near L, one introduces a wave-
vector exponent βq via

δq0 ≡ q0 − q0,L ∼ |δg|βq . (2)

There are further critical exponents that are needed to characterize the critical behavior at Lifshitz
points. We will introduce some of these below.

How a Lifshitz point can occur can be easily understood within Landau theory. Landau
theory leads one to consider the following natural generalization of the usual φ4 model with the
Hamiltonian (Euclidean action)

H =

∫

ddx

{

1

2
(∇⊥φ)2 +

ρ0

2
(∇‖φ)2 +

σ0

2
(4‖φ)2 +

τ0
2

φ2 +
u0

4!
|φ|4

}

. (3)

Here φ = (φα) is an n-component order-parameter field. The d-dimensional position vec-
tor x = (x‖,x⊥) has an m-dimensional ‘parallel’ component x‖ and a (d − m)-dimensional
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‘perpendicular’ one x⊥. The coefficients of the squared gradient terms, and those of the Hamil-
tonian’s other interaction terms, generally depend on the thermodynamic variables T and g. We
have assumed that the squared gradient terms involve just two distinct coefficients, where the
one of (∇⊥φ)2 remains positive and has been transformed to unity by means of an appropriate
choice of the amplitude of φ. Its parallel counterpart, ρ0, is permitted to change sign. To ensure
stability when ρ0 < 0, the term (4‖φ)2 with a positive coefficient σ0 > 0 has been added.
The critical line between the disordered and homogeneously ordered phases is given in Landau
theory by τ0 = 0 with ρ0 > 0. The Lifshitz point is located at τ0 = ρ0 = 0 in this classical
approximation.

Near the Lifshitz point the interaction coefficients can be expanded about T = TL and g =
gL. For the coefficients that remain positive, i.e. u0 and σ0, the expansions may be truncated at
zeroth order, so that u0 and σ0 become independent of T and g. The deviations δτ0 ≡ τ0 − τ0,L

and δσ0 = σ0 − σ0,L change sign at L (where τ0,L and σ0,L vanish in Landau theory); their
expansions must be retained to linear order in T − TL and δg.

3 What is interesting about studying critical behavior at Lifshitz points

One reason for the ongoing interest in critical behavior at Lifshitz points is the wealth of distinct
physical systems with such multi-critical points. They range from magnetic ones [12, 13, 17],
ferroelectric crystals [18], and charge-transfer salts [10, 11] to liquid crystals [19], systems un-
dergoing structural phase transitions [20] or having domain-wall instabilities [21], and the so-
called ANNNI model [14]. Lifshitz points have been discusssed recently even in the context of
superconductors [22] and polymer blends [23].

From a more general perspective, the problem is interesting because it provides well-defined
clear examples of systems exhibiting anisotropic scale invariance (ASI). At conventional criti-
cal points, scaling operators O such as the order parameter φ and the energy density transform
asymptotically as O(`x) = `−∆O O(x) under scale transformations, with a (in general nontriv-
ial) scaling dimension ∆O. In the case of ASI, the position coordinates x, or the position and
time coordinates (in the case of time-dependent phenomena), divide into two (or more) groups,
say x = (x‖,x⊥), that must be scaled with different powers of the scale factor ` to recover
O(x); one has

O(`θx‖, `x⊥) = `−∆O O(x) , (4)

with an anisotropy exponent θ different from unity. That ASI applies at Lifshitz points is evident
from the Hamiltonian (3): The momentum-space two-point vertex function of the free theory
obviously behaves at the Lifshitz point τ0 = ρ0 = 0 as

Γ̃(2)(q‖ = 0, q⊥ → 0) ∼ q2−ηL2

⊥ and Γ̃(2)(q‖ → 0, q⊥ = 0) ∼ q4−ηL4

‖ , (5)

where the analogs ηL2 and ηL4 of the usual correlation exponent η take their mean-field value
zero, but differ from it beyond Landau theory. In terms of these, the anisotropy exponent reads
θ = (2 − ηL2)/(4 − ηL4). The asymptotic validity of ASI means that two distinct correlation
lengths ξ⊥ and ξ‖ are needed to characterize the region within which φ(x) is correlated to φ(0);
these diverge at g = gL as functions of δT = (T − TL)/TL like |δT |−νL2 and |δT |−νL4 with
different exponents νL2 and νL4 = θ νL2, respectively.
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A familiar arena of ASI are dynamic critical phenomena near equilibrium [24, 25]. In
their case the time t and position x must be scaled differently; the analog of Eq. (4) becomes
φ(`x, `zt) = `−∆φ φ(x, t) for the order parameter, and the role of θ is played by the dynamic ex-
ponent z. Their simplifying feature is that detailed balance and fluctuation-dissipation theorems
hold. This entails that the stationary states of the dynamics are guaranteed to be thermal equilib-
rium ones described by an a priori known Hamiltonian. Hence the problem of the steady-state
correlations splits off from the dynamics; all critical exponents of static origin can be determined
without dealing with dynamics, only genuine dynamic properties require the analysis of the dy-
namic field theory.

ASI is abundant in non-equilibrium systems such as driven diffusive systems [26] and surface
growth processes [27], which have attracted considerable attention during the past decade. In
their case detailed balance is not normally valid. Finding the steady-state solutions therefore is a
nontrivial task, requiring the investigation of the long-time limit of the dynamics. This must be
solved before the ASI of the steady-state correlations can be investigated.

Two features make critical behavior at m-axial Lifshitz points a very attractive stage for the
study of ASI: (i) One can stay entirely within the realm of equilibrium statistical physics, and (ii)
the class of models (3) involves a parameter,m, that can be varied. Some time ago Henkel [28,29]
argued that ASI should imply additional invariances, just as scale and rotational invariance in
local field theories lead to the larger symmetry group of conformal transformations [30–32]. He
made predictions for the form of the scaling function of the pair correlation function at criticality,
which are in conformity with analytic results for certain spherical models [33]. Recent Monte
Carlo results for an equilibrium [34] and non-equilibrium systems [35] appear to support these
claims. Yet the general validity of such additional invariances has not been shown, nor is there
a good understanding of their origin or the conditions under which they hold. For example,
in Ref. [28] the assumption that the anisotropy exponent takes the rational values θ = 2/℘,
℘ ∈ N, is needed to ensure that the considered sub-algebra closes. However, in the case of the
uniaxial Lifshitz point in d = 3 dimensions studied by means of simulations [34], this condition
is unlikely to be fulfilled since the ε expansion [5, 6] reveals that θ differs from 1/2 at order ε2,
although the d = 3 estimate θ ' 0.487 it yields for m = n = 1 is pretty close to it. Building
on the field-theoretic analysis described in Refs. [5] and [6], and outlined below, one should be
able to clarify whether the suggested ‘generalized conformal invariance’ and the predicted form
of two-point scaling functions hold indeed.

Before turning to the RG analysis of the models (3), let us discuss two examples of systems
with a Lifshitz point.

4 Two examples of systems with Lifshitz points: the ANNNI model and MnP

We begin with the axial-next-nearest-neighborIsing (ANNNI) model, defined through the Hamil-
tonian

HANNNI = − J0

kBT

∑

i,δ⊥

si si+δ⊥ − J1

kBT

∑

i,δ‖

si si+δ‖ − J2

kBT

∑

i,δ′
‖

si si+δ′
‖
, (6)

where si ± 1 are Ising spins residing on the sites i of the cubic lattice illustrated in Fig. 2. Here
δ‖ and δ′‖ are nearest-neighbor (nn) and next-nearest-neighbor (nnn) displacements along one
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Fig. 2. ANNNI model. Along one axis the spins are coupled via ferromagnetic nearest-neighbor bonds of
strength J1 and antiferromagnetic axial next-nearest neighbor bonds of strength |J2| ≡ −J2. Along the
other directions there are only ferromagnetic nearest-neighbor interactions of strength J0.

Fig. 3. Phase diagram of the three-dimensional ANNNI model, taken from Ref. [2] (with permission kindly
granted by its author); to illustrate the ordering in the (2,2) phase the inset with the arrows has been added.
L is a uniaxial Lifshitz point.

axis, while δ⊥ denote nn displacements along any of the other (perpendicular) directions. The
nn couplings are ferromagnetic, J0 > 0, J1 > 0; the nnn bond is antiferromagnetic, J2 < 0.

The phase diagram of the three-dimensional ANNNI model is depicted in Fig. 3. Obviously,
the nonordering field g here translates into the ratio κ = −J2/J1. The phase labeled (2,2), also
called 〈2〉 structure, corresponds to an antiferromagnetic ordering of the kind indicated by the
arrows in the inset. The region marked ‘modulated’ actually has considerably more structure:
From the multi-phase point kBT/J1 = 0, κ = 1/2, commensurate phases of type 〈3〉 and
〈2p3〉, p = 1, 2, . . . ,∞, split off. Here 〈3〉 denotes a periodic layer sequence of 3-bands, while
〈2p3〉 signifies a periodic layer sequence of p 2-bands followed by a 3-band, where a k-band
means that the magnetization has the same sign in k successive layers. Though interesting, these
details cannot be expounded here because they are off our main topic. They can be found in the
literature [2, 14]. The essential point for us to note is that L is a uniaxial (m = 1) Lifshitz point.
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Fig. 4. Phase diagram of MnP for a magnetic field parallel to the
�

axis, according to Refs. [12] and [13].

It has been repeatedly studied via Monte Carlo simulations to determine the values of the critical
exponents for the case m = n = 1, d = 3 [34, 36–38].

An experimentally much studied system is the orthorhombic metallic compound MnP [12,
13, 39]. Its phase diagram differs, depending on whether the magnetic field H is directed along
the a, b, or c crystal axis. Both for H‖a and H‖b a uniaxial Lifshitz point is found, but not for
H‖c. The phase diagram of Ref. [12] for the case H‖b is reproduced in Fig. 4 (with permission
kindly granted by the first author, Y. Shapira ). The magnetic field component H · b plays the
role of the thermodynamic field g. In the phase labeled ‘para’ the magnetic moments (‘spins’)
s(x) are aligned along the H ∝ b direction. In the ‘ferro’ phase the magnetization m = 〈s〉 has
a component along the c axis and hence is tilted with respect to b. The component c · s plays the
role of the order parameter; since a is a very hard axis, s ·a can be ignored [39]. In the fan phase
the spins rotate in the bc plane (but make no full turn as in the screw phase ‘SCR’ not considered
here); there is modulated order with a modulation wave-vector q0 ∝ a. The ferro-fan transition
is first order. The meeting point of the para, ferro, and fan phases is an m = n = 1 Lifshitz
point.

5 Dimensionality expansions and renormalization group analysis

Setting ρ0 = τ0 = 0 in the Hamiltonian (3), we see that q⊥ scales as q2‖ at the Lifshitz point of

the Gaussian (u0=0) theory. By dimensional analysis we have [x⊥] = µ−1, [x‖] = σ
1/4
0 µ−1/2,

[τ0] = µ2, [ρ0] = σ
1/2
0 µ, and [u0] = σ

m/4
0 µε with ε ≡ d∗(m) − d, where

d∗(m) = 4 +
m

2
, m ≤ 8 . (7)

From the given engineering dimensions we can read off how the interaction coefficients transform
under the scale transformation µ → µ`. The coupling constant u0 becomes marginal at d =
d∗(m), the upper critical dimension (UCD). Note that m = 8 implies d∗ = m = 8; i.e., this
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Fig. 5. md plane with the line of upper critical dimensions d∗(m). For further explanations see main text.

is the case of the isotropic Lifshitz point in which only the parallel components of position and
momentum remain.

One can analytically continue the parallel and perpendicular momentum integrals in their
respective dimensions m and d − m, and hence take those as continuously varying. Ideally
one would like to determine the expansions in m and d −m of the critical exponents and other
universal quantities about any point of the line d∗(m). The situation is illustrated in Fig. 5. The
point (m, d) = (0, 4) marks the UCD of the standard (isotropic) |φ|4 model; analyzing it via the
conventional ε = 4 − d expansion means to move away from this point along the path indicated
by ⇓. More generally, ε expansions at fixed m correspond to paths parallel to the d-axis. How
to reach the physically interesting point (1, 3) along such a path is indicated. In the case of the
isotropic (m=d) Lifshitz point, things are different: The conventional expansion in ε8 ≡ 8 − d
is along the diagonal m = d [8, 9].

We must also keep in mind an obvious condition points (m, d) to which extrapolations make
sense must satisfy: d must be larger than d∗(m,n), the lower critical dimension (LCD) below
which a Lifshitz—or, if m = 0, a critical—point cannot occur. Since the LCD of the Ising model
with short-range interactions is d∗(0, 1) = 1, we clearly must have d > 1. In the n > 1 case
with the continuous O(n) symmetry, familiar spin-wave arguments and an analysis based on an
adequate nonlinear sigma model [40] show that the ordered phase becomes thermally unstable at
any T > 0 if d ≤ d

O(n)
∗ (m) ≡ 2 + m

2 (cf. Fig. 5).

The existence of a Lifshitz point with 0 < m < 8 also requires that the modulated ordered
phase be thermally stable. In the critical region of this phase, fluctuations of the Fourier com-
ponents φ

q
of the order parameter with wave-vectors q ' ±q0 are dominant. As pointed out

in Ref. [41], one therefore expects that an n-component system with a helical structure behaves
critically as a 2n-component φ4 model whose φ4 terms are O(n) but not O(2n) symmetric.
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Specifically for n = 1, one arrives at an anisotropic two-component model. It has (besides
others) an O(2) symmetric fixed point that is believed to be stable [41]. This suggests that the
long-range order (LRO) of the modulated phase should be destroyed in d ≤ 2 dimensions by
thermal fluctuations at any temperature T > 0. Furthermore, if the presumed isotropy of the
Hamiltonian (3) in the parallel subspace can indeed be taken for granted, one can exploit the in-
variance under arbitrary rotations along the lines of Mermin and Wagner [42] to show the absence
of a helical phase with orientational LRO for m ≤ d ≤ m+ 1 [43, 44].3

The goal of expanding in m and d about a general point on the line d∗(m) was envisaged
already in Ref. [9]. Yet its realization turned out to be extremely difficult. Computing the ε ex-
pansions of the critical exponents for general values of m to first order in ε is easy. Their O(ε)
coefficients are independent ofm, and essentially determined by combinatorial factors. (The op-
erator product expansion is structurally similar to the one that applies to the standard |φ|4 theory.
Upon generalizing Cardy’s analysis in Ref. [45] to the m > 0 case, one can determine these
coefficients without having to work out the Feynman diagrams in detail.) The real challenges
start at order ε2.

The first results to order ε2 for generalmwere given in 1977 by Mukamel [46]. The ε2 term of
ηL2 he determined by means of Wilson’s momentum-shell integration method was independent
of m, that of ηL4 differed from it by a simple m-dependent factor. He also computed βq to
O(ε2) for m < 6. For m = 1, these results were confirmed by Hornreich and Bruce [47].
Utilizing also Wilson’s technique, Sak and Grest [48] did an independent calculation; because
of the severe technical difficulties they encountered for general m they confined themselves to
m = 2 andm = 6. Their results are at variance with Mukamel’s; in particular, the ε2 coefficients
of ηL2(m,n) for m = 2 and m = 6 are not equal, and hence not m-independent.

The application of modern field-theory RG approaches to the problem began in 1998. Mer-
gulhão and Carneiro formulated normalization conditions and derived RG equations for the
renormalized theory [3]. In a subsequent paper [4], they reproduced Sak and Grest’s results
for ηL2 and ηL4 with m = 2 and m = 6, and performed a two-loop calculation for these two
values ofm. They fixed the perpendicular dimension d−m at d∗(2)−2 = 3 and d∗(6)−6 = 1,
taking the parallel one as 2 − ε‖ and 6 − ε‖, respectively. The respective paths starting from the
points (m, d) = (2, 5) and (6, 7) are indicated in Fig. 5.

In two recent papers [5, 6] Shpot and myself have been able to perform a full two-loop cal-
culation for general m ∈ (0, 8) and to determine the ε expansions of all critical, crossover,
wave-vector, and correction-to-scaling (Wegner) exponents to O(ε2). The results are analytical
except that the two-loop terms of the required renormalization functions and the series expansion
coefficients of the exponents’ ε2 terms involve four well-defined single integrals jφ(m), jσ(m),
jρ(m), and Ju(m) which for general m we have not been able to evaluate analytically, though
for the special valuesm = 0, 2, 6, and 8. For other values ofm theses integrals can be computed
numerically, as we did for m = 1, 2, . . . , 7.

These results stand a number of nontrivial checks. First of all, they reduce to the well-known
results for the standard |φ|4 model in the limit m → 0.4 Second, the analytical results they

3In Ref. [44] the fact that the one-loop shift of Tc(g) on the helicoidal section of the critical line diverges in the
infrared if m ≤ d ≤ m + 1 is interpreted as signaling the absence of helical LRO. However, this property alone is not
sufficient to rule out LRO: The corresponding shift of Tc of the standard one-component φ4 model is infrared divergent
for d ≤ 2. Nevertheless, the d = 2 Ising model has a ferromagnetic low-temperature phase.

4More precisely, this applies to quantities retaining their physically significance for m = 0, like ηL2(m=0) ≡ η
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yield for m = 2 and m = 6 are consistent with and extend those of Sak and Grest [48] and
of Mergulhão and Carneiro [4]. [The original O(ε2) results of Ref. [4] for νL2(m=2, 6) and
νL4(m=2, 6) disagreed with ours but become identical to those upon elimination of two minor
computational errors.] The isotropic case m = d provides a third, highly nontrivial, check. To
see this, note that the ε expansions of the critical exponents λ = ηL4, . . . is of the form

λ(n,m, d)|d=d∗(m)−ε = λ0 + λ1(n) ε+ λ2(n,m) ε2 + O(ε3) , (8)

i.e., the m-dependence starts at order ε2. To compare with the ε8 ≡ 8 − d expansion for the
isotropic case, we set m = d = 8 − ε8 (which gives ε = ε8/2) in Eq. (8). Hence the expansions
of the critical exponents λ of the isotropic Lifshitz point to quadratic order in ε8 should result
from the right-hand side via the replacements ε → ε8/2 and λ2(n,m) → λ2(n, 8−). The so-
obtained ε8 expansions of the exponents λ = ηL4(n, d, d), νL4(n, d, d), ϕ(n, d, d), βq(n, d, d),
and the correction-to-scaling exponentωL4(n, d, d) have been verified by means of a direct field-
theoretic investigation of the m = d case [8]. Yet, there is one group of authors [49] who
obtained—and still favor—results at variance with ours in Refs. [5,6]; their findings and criticism
have been refuted in Refs. [7, 8].

The origin of the technical difficulties which had prevented two-loop calculations for so long
and caused the mentioned long-standing controversies can be traced back to the difficult form of
the free propagator G(x) at the Lifshitz point τ0 = ρ0 = 0. In the isotropic cases m = 0 and
m = d, G(x) is a simple power of x. However, for general m (and σ0 = 1) it becomes

G(x‖,x⊥) =

∫

q

eiq·x

q4‖ + q2⊥
= x−2+ε

⊥ Φm,d

(

x‖ x
−1/2
⊥

)

, (9)

where Φm,d are extremely complicated scaling functions of the form

Φm,d(υ) = C(1)
m,ε 1F2

(

1− ε

2
;
1

2
,
2+m

4
;
υ4

64

)

− C(2)
m,ε υ

2
1F2

(

3

2
− ε

2
;
3

2
, 1+

m

4
;
υ4

64

)

. (10)

The latter are generalizations of generalized hypergeometric functions known as Fox-Wright 1ψ1

functions [5,6]. They have asymptotic expansions in powers of υ−4. On the line d∗(m) they can
be expressed in terms of modified Struve and Bessel functions. The cases m = 2 and m = 6
are special in that remarkable simplifications occur: The asymptotic expansions of Φ2,5 and
Φ6,7 truncate at zeroth or first order in υ−4, respectively, and these functions reduce to a simple
exponential and a similar elementary function, respectively. This is what makes the calculation
analytically feasible for m = 2, 6.

To set up the RG for general m and d = d∗(m) − ε, one can introduce a renormalized field
φren and renormalized coefficients σ, τ , ρ, and u via

φ = Z
1/2
φ φren , σ0 = Zσ σ , δτ0 = µ2Zτ τ ,

δρ0 σ
−1/2
0 = µZρρ , u0 σ

−m/4
0 = µεZuu , (11)

and νL2(m=0) ≡ ν. The series expansion coefficients of other exponents that are not required (nor have a known
immediate physical meaning) in the m = 0 theory, such as ηL4(m), may nevertheless have finite m → 0 limits [6, 8].
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and determine the renormalization factors by minimal subtraction of poles. The residues of the
Zs at two-loop order can be either analytically calculated or expressed in terms of single integrals
whose integrands involve scaling functions such as Φm,d∗(m).

Let us illustrate this by means of the example of the two-loop graph , which is
∝ G(x)3 in position space. To determine the Laurent expansion of this distribution, we apply
it to a test function f(x‖,x⊥), substituting Eq. (9) for G(x) and making the variable transfor-
mation x‖ → υ = x‖/

√
x⊥. One is led to an integral of the form

∫ ∞

0
dx⊥ x

2ε−3
⊥ gε,m(x⊥) =

(4ε)−1g′′0,m(0) + O(ε0). Upon evaluating this one sees that G(x)3 has poles ∝ 42
‖ δ(x)/ε and

∝ 4⊥ δ(x)/ε whose residues are proportional to
∫ ∞

0

dυ υm+3 Φm,d∗(υ)3 and
∫ ∞

0

dυ υm−1 Φm,d∗(υ)3 , (12)

respectively. Up to a simple factor given in Eq. (46) of Ref. [6], these are the integrals jσ(m)
and jφ(m). The other integrals jσ(m) and Ju(m) are of a similar nature but involve besides
Φm,d∗ further scaling functions of the free theory like the one pertaining to the convolution
(∇‖G ∗ ∇‖G)(x) [= line with an insertion of (∇‖φ)2].

The RG equations implied by the reparametrizations (11) and the µ-invariance of the bare
theory can be exploited in a familiar manner to derive the scaling properties of correlation and
vertex functions. For details the reader is referred to the original papers [5, 6], where the ε
expansions of the exponents are also utilized to obtain estimates for the numerical values of the
critical exponents in the physical interesting cases with d = 3. The resulting values agree, in
particular, remarkably well with the results of a very recent Monte Carlo investigation [34] of
the ANNNI model, but also with some (though not all) experimental results and other theoretical
estimates.

So far we assumed perfect isotropy of the derivative terms of the Hamiltonian (3) in x‖-
space. This is unrealistic in the case of lattice systems. Unless there is only one parallel direction
(m = 1) or none, we should allow for a more general q4

‖ term, making the replacement

(4‖φ)2 → wa T
a
ijkl (∂i∂jφ)∂k∂lφ = (4‖φ)2 + w

m
∑

i=1

(∂2
i φ)2 + . . . (13)

in H, where T a
ijkl are the respective fourth-rank tensors compatible with the symmetry of the

system. In the case of cubic symmetry, the only other term on the right-hand side besides the
symmetric (first) contribution is the second one. To order ε2, the dimensionless variable w is
found to be relevant at the isotropic w = 0 fixed point (the coefficient of the ε2 term of its RG
eigenexponent is positive) [50]. Unfortunately, the RG analysis for generalw 6= 0 that is required
to decide whether a new fixed point exists to which the flow leads is rather complicated and still
remains to be completed.

6 Concluding remarks

Almost 25 years after the discovery of Lifshitz points and the introduction of the continuum mod-
els (3), systematic field-theoretic RG analyses beyond one-loop order of the universality classes
these models represent have finally become feasible. This could open the way to accurate quanti-
tative field-theory investigations and detailed comparisons with experimental results. Hopefully,
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this will also trigger further experimental work on the critical behavior at Lifshitz points. On
the theoretical side, the progress reported here in applying the field-theoretic RG to the study of
continuum models like (3) could lead to further insights regarding the question as to whether and
under what conditions anisotropic scale invariance implies additional symmetries.
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