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0
γγ
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The π0γγ vertex is used as an explicit example of the subtleties connected with the application
of equation of motion within Chiral Perturbation Theory at the order O(p6).
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1 Introduction

We would like to study the well-known process π0 → γγ in the domain of Chiral Perturbation
theory in the simple case when these two photons are on-shell. This calculation can be performed
in accord with Bijnens’s article [1], i.e. by a direct use of Feynman diagrams or by Gasser and
Leutwyler functional approach [2]. In the first method we have to introduce the wave function
renormalization (which does not appear in the second one). We will briefly summarized this
procedure for the Chiral symmetry group SU(3)R × SU(3)L which is spontaneously broken to
the vector subgroup SU(3)V .

2 Three-flavour case

Lagrangian is in the standard chiral power counting given by

L = L(2) + L(4) + LWZ + L(6) + . . . , (1)

where the chiral invariant terms relevant for our process are given by

L(2) =
F 2

0

4

(

〈DµU †DµU〉 + 〈χ†U + χU †〉
)

(2)

L(4) = L4〈DµU †DµU〉〈χ†U + χU †〉 + L5〈DµU †DµU(χ†U + U †χ)〉 + . . . (3)
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and the Wess-Zumino term which contains the anomaly

LWZ = −NCe

48π2
AµJµ + i

NCe2

24π2
εµναβ∂µAνAαTβ , (4)

where we have used

U = ei
φ

F0 , φ =





π0 + η/
√

3
√

2π+
√

2K+
√

2π− −π0 + η/
√

3
√

2K0
√

2K−
√

2K̄0 −2/
√

3η





Jµ = εµναβTr(QLνLαLβ + QRνRαRβ)

Tβ = Tr(Q2Lβ + Q2Rβ +
1

2
U †QUQLβ +

1

2
UQU †QRβ)

with Lµ = U †∂µU, Rµ = (∂µU)U †. We will not need the explicit form of O(p6) terms.
The wave function renormalization factor Z is the residue of the complete propagator of the

pion field at the physical mass, as a result we get

1

Zπ

= 1 +
1

F 2
0

[

− 2

3
A(m2

π) − 1

3
A(m2

K) + 8L4(2m2
K + m2

π) + 8L5m
2
π

]

, (5)

where

A(m2) ≡
∫

ddl

(2π)d

i

l2 − m2

∣

∣

∣

∣

d→4

= 2m2λ +
m2

16π2
log

m2

µ2
. (6)

The physical decay constant Fπ is defined by means of axial current through

〈Ω|Aa
µ(x)|πb(p)〉 = iδabFπapµe−ip.x (7)

The output of calculation is

Fπ = F0

(

1 +
1

F 2
0

[

−A(m2
π) − 1

2
A(m2

K) + 4L4(2m2
K + m2

π) + 4L5m
2
π

]

)

. (8)

Zπ and Fπ ((5) and (8)) are the basic ingredients needed for calculating any amplitude involving
pions which are governed by Lagrangian (1).

The amplitude for process π → γγ up to next-to-leading order without the O(p6) terms is
simply given by [1]

A(π0 → γ(k)γ(l)) = −NC

3

iα

πFπ

εµναβε∗µ(k)ε∗ν(l)kαlβ , (9)

which differs from the lowest order only by changing F0 to Fπ. We can also see that the possible
O(p6) contributions have to be finite. This confirms explicitly the result which can be obtain di-
rectly using the methods of the heat kernel expansion and dimensional regularization, particulary
the divergent part of the one-loop generating functional relevant for this process is given by

Zπγγ
1-loop = − i

32π2(d − 4)

NcNf

72π2F 2
0

εµναβ∂γFγνFαβ

×
(

〈QUQ∂µU † − QU †Q∂µU〉 − 〈Q2(Rµ + Lµ)〉
)

. (10)



Effective vertex for π0γγ 267

3 Two-flavour case

As we have stated this was a standard calculation in SU(3) case. We would like to turn our
attention to the chiral symmetry SU(2)R × SU(2)L → SU(2)V . For this purpose we can use
already given Lagrangian but now we take U to be a 2 × 2 matrix

U = e
i

φ
F0 , φ =

(

π0
√

2π+
√

2π− −π0

)

(11)

Using simple identities for 2 × 2 matrix one gets for (1)

L′ = L′(2) + L′(4) + L′WZ + L′(6) + . . . (12)

where the forms of L′(2) and L′(WZ) stay unchanged4, whereas chiral invariant O(p4) terms are
reduced to

L′(4) = (2L′
4 + L′

5)〈(dµU †dµU)(χ†U + U †χ)〉 + . . . (13)

The number of O(p4) low energy couplings (LEC) decreases from 10 to 7.
With this input we would obtain (instead of (5), (8) and (9))

1

Z ′
π

= 1 +
1

F 2
0

[

− 2

3
A(m2

π) + 8m2
π(2L′

4 + L′
5)

]

, (14)

F ′
π = F ′

0

(

1 +
1

F 2
0

[

−A(m2
π) + 4m2

π(2L′
4 + L′

5)
]

)

(15)

A′(π0 → γ(k)γ(l)) = −NC

3

iα

πF ′
π

εµναβε∗µ(k)ε∗ν(l)kαlβ . (16)

We have changed the notation of LECs to stress that now we are in different theory, where of
course Li 6= L′

i (renormalized). However, the physical quantities have to stay same and so
F ′

π = Fπ and A′ = A. This can be used for finding the relations between Li and L′
i. We have

also introduced F ′
0 which is the pion decay constant in SU(2) chiral limit, i.e. for mu = md = 0,

ms 6= 0. One can calculate it from (8) to find

F ′
0 = F0

(

1 +
1

F 2
0

[

−1

2
A(msB) + 8L4msB

]

)

(17)

From F ′
π = Fπ we obtain for finite part

4(2L′r
4 + L′r

5) = 4(2Lr
4 + Lr

5) −
1

2

1

32π2
log

m2
K

µ2
− 1

64π2
(18)

and with usual definition Li = Lr
i + Γiλ for infinite part

4(2Γ′
4 + Γ′

5) = −1

2
+ 4(2Γ4 + Γ5) (19)

4This is true for vectorial sources or photons as can be directly check using Kaiser’s WZ Lagrangian [5]
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SU(3) SU(2)

SU(3)-like standard + X standard

π
0

π
0

O(p4) 1

F2
[8L4(2m2

K+m2

π)

+8L5m2

π]
1

F2
8m2

π(2L′

4
+L′

5
) 1

F2
m2

π2X 0

O(p4)

� 3
µ π

0

1

F
[8L4(2m2

K+m2

π)

+8L5m2

π]
1

F
8m2

π(2L′

4
+L′

5
) 1

F
m2

π(l4+X)
1

F
m2

πl4

Fπ

F0(1+ 1

F2
[−Aπ−

AK
2

+4L4(2m2

K+m2

π)

+4L5m2

π])

F ′

0
(1+ 1

F2
[−Aπ

+4m2

π(2L′

4
+L′

5
)])

F ′

0
(1+ 1

F2
[-Aπ+m2

πl4]) F ′

0
(1+ 1

F2
[-Aπ+m2

πl4])

Tab. 1. Recapitulation of calculation of Fπ

For Γ4 = 1
8 , Γ5 = 3

8 we get

4(2Γ′
4 + Γ′

5) = 2. (20)

In order to establish the canonical form of Gasser and Leutwyler SU(2) Lagrangian at O(p4)
order [2], we use the equation of motion, derived from O(p2) Lagrangian

O
(2)
EOM ≡ d2UU † − Ud2U † − χU † + Uχ† +

1

2
〈χU † − Uχ†〉 (21)

and using the integrations by parts and some simple algebra, one can rewrite L′(4) to the equiva-
lent form

L′(4) = (2L′
4 + L′

5)〈dµUdµχ† + dµU †dµχ〉 − 1
4 (2L′

4 + L′
5)〈χ†U + U †χ〉2

− 1

2
(2L′

4 + L′
5)〈O

(2)
EOM(χU † − Uχ†)〉 + . . . (22)

which, of course, reproduce the same result as (14–16). Now we can introduce a new notation

l4 ≡ 4(2L′
4 + L′

5) (23)

so we get

L′(4) = L(4)
can −

1

2

l4
4
〈O(2)

EOM(χU † − Uχ†)〉, (24)

where L(4)
can is the desired canonical form. For further purposes we will set l4 → X in the last

term of (24). The canonical form, up to order O(p4) is simply obtained by setting X = 0. A
review of our calculation, up to now, is summarized in Table 1.

By means of relation (23) we can verify the relation between the standard SU(3) and SU(2)
chiral expansion (cf. (18–20))

lr4 = 4(2Lr
4 + Lr

5) −
1

64π2
log

m2
π

µ2
− 1

64π2
(25)
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and

γ4 = 2 (26)

with the definition li = lri + γiλ.
However, it rests to show, what has allowed us to set X = 0 and so pass over to canonical

form of Lagrangian in (24). Before doing that, let us stress that the physically relevant quantities,
calculated up to order p4, should not depend on the choice of the Lagrangian L(4) (i.e. on the
fact whether we set X = 0 or not) and this is, indeed, the case of Fπ (see Table.1), but for the
amplitude A (which is of order O(p6)) we have in ‘standard + X’ case:

AX (π0 → γ(k)γ(l)) = −NC

3

iα

πFπ

εµναβε∗µ(k)ε∗ν(l)kαlβ

(

1 +
1

F
m2

π(l4 − X)
)

(27)

which is UV -safe, at the level of O(p4) Lagrangians, only if Xdiv = ldiv
4 , e.g. in the case when

we take full form (24). In the standard Leutwyler-Gasser case of SU(2) Lagrangian it follows
that this necessitates the additional (not only finite) term of the O(p6) order. We can naively
provide it using the equation of motion.

4 General case

Formula (24) is a motivation for studying the general case of the supplemental non-canonical
term 〈O(2)

EOMF〉 in the action

S = S(2) + S
(4)
LG +

∫

〈O(2)
EOMF〉 + S(6) + . . . , (28)

where S
(4)
LG is the Leutwyler and Gasser canonical form.

Full equation of motions could be obtained from

OEOM =
4

F 2

(

U
δS

δU
− δS

δU †
U † − 1

2
〈U δS

δU
− δS

δU †
U †〉

)

(29)

which can be decomposed

OEOM = O
(2)
EOM + δO

(4)
EOM + . . . (30)

Naively we set OEOM = 0 and so find

S = S(2) + S
(4)
LG + S(6) −

∫

〈δO(4)F〉 + . . . (31)

However, this application of the equation of motions is not correct and may be dangerous at the
order O(p6) and the correct procedure is the following change of variable

U → e−FU = U +
∞
∑

n=1

δ(n)U with δ(n)U ≡ (−1)n

n!
FnU, (32)

as was pointed out in [3].
We assume F = O(p2) and we get finally
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S′ =S(2) + S
(4)
LG + S(6) −

∫

〈δO(4)
EOMF〉

+
1

2

∫

〈(U δS(2)

δU
+

δS(2)

δU †
U †)F2〉 +

F 2
0

4

∫

〈dµ(U †F)dµ(FU)〉

−
∫∫

(δS(2)

δUkl

δUij

δδ(1)Ukl

δUij

+
δS(2)

δU †
kl

δUij

δδ(1)U †
kl

δUij

+
δS(2)

δUkl

δU †
ij

δδ(1)Ukl

δU †
ij

+
δS(2)

δU †
kl

δU †
ij

δδ(1)U †
kl

δU †
ij

)

+ O(p8) (33)

We can see that this differ from the naive calculation (31) by supplementary terms. However,
this terms (in the second, third and fourth line of (33)) only depend on S (2) and F , so they are of
even intrinsic parity and therefore they do not contribute to the process π0 → γγ.

We confirm a naive prediction of the infinite counterterm of O(p6) order which is

−
∫

〈δO(4)
EOMF〉 −→ Ncα

6π

l4
F 3

0

m2
πεµνρσ∂µAν∂ρAσπ0 (34)

and thus we get finally

ASU(2)(π0 → γ(k)γ(l)) = −NC

3

iα

πFπ

εµναβε∗µ(k)ε∗ν(l)kαlβ (35)

(up to finite O(p6) counterterms).

5 Conclusion

We find there are two types of O(p6) counterterm: first type, which is independent of the form
of O(p4) Lagrangian (see eg. [4]) and the second type, which is dependent, as we have explicitly
showed in the case of π0γγ amplitude. Of course, the physical quantity up to order O(p4) (e.g.
Fπ in our text) stay unchanged.
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