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We consider the infrared quasi fixed point solutions of the one-loop renormalization group
equations for the Yukawa couplings and soft supersymmetry breaking parameters in the Next-
to-Minimal Supersymmetric Standard Model. Taking as input the top-quark and Z-boson
masses, the values of the gauge coupling constants and the infrared quasi fixed points for
Yukawa couplings and the soft parameters, the mass of the lightest Higgs boson is discussed.

PACS: 14.80.Cp

1 Introduction

Over the last ten years supersymmetric extensions of the Standard Model (SM) were the most
promising theories at high energies. One of the simplest supersymmetric extension of the SM
is Next-to-Minimal Supersymmetric Standard Model (NMSSM) [1, 2] (also called (M+1)SSM)
which is defined by the introduction of a gauge singlet superfield Y to the Minimal Supersymmet-
ric Standard Model (MSSM) and besides additional discrete Z3 symmetry of the superpotential
W is assumed to avoid the problematic so-called µ term µH1H2 in the superpotential of the
MSSM, where H1 and H2 are Higgs SU(2) doublet superfields. Thus, the superpotential of the
NMSSM is given as (apart from the Yukawa terms related to the quarks and leptons)

W = λH1H2Y +
1

3
λ′Y 3 + ... (1)

Here λ and λ′ are corresponding Yukawa coupling constants. In this case, µ term is generated
in the process of the electroweak symmetry breaking, when the scalar component of Y obtains
a vacuum expectation value (vev) y = 〈Y 〉, and the effective µ term is defined as µH1H2 ≡
λyH1H2 with µ ≡ λy.
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When making predictions in the framework of a supersymmetric extension of the Standard
Model, and the NMSSM is not an exception, one encounters parameter freedom which is mainly
due to the so-called soft supersymmetry breaking terms [3]. A large number of free parameters
decrease the predictive power of a theory. A common way to reduce this freedom is to make
some assumptions at a high energy scale (for example, at the grand unification (GUT) scale or
at the Planck scale). Then, treating the parameters of the model as a running variables and using
the corresponding renormalization group equations (RGEs), one can derive their values at an
interesting low-energy scale.

The usual assumption, which drastically reduce the parameter freedom, is the universality of
soft-breaking terms at high energy. In the framework of the NMSSM and within a supergravity
induced supersymmetry breaking mechanism universality leads at low energy to a softly broken
supersymmetric theory which depends on the following set of free parameters: a common scalar
mass m0, a common gaugino mass m1/2, a common trilinear scalar coupling A, and Yukawa
couplings λ and λ′.

It is also possible to reduce the remaining freedom by using the so-called infrared quasi-fixed
points (IRQFPs) of the RGEs [4]. These IRQFP solutions of the RGEs were widely studied and
used in the analysis of the MSSM (see [5, 6] and references therein), the NMSSM [7] and the
so-called modified NMSSM [8].

In what follows we adopt the strategy based on the IRQFP behavior (also known as the
strong Yukawa coupling limit) and apply it in making prediction for the lightest Higgs boson in
the NMSSM in the regime with small tanβ ≡ v2/v1 ∼ 1 (the ratio of the vevs of the Higgs
fields). In this special case, the IRQFP behavior is the most natural and probable.

2 Infrared Quasi-Fixed Points and RGEs

It is convenient to explain the IRQFP behavior using the simple example of the one-loop RGE
for the top-quark Yukawa coupling in the MSSM with the small tan β (see for example [6]). In
this case we have an exact solution [9] and the infrared behavior can be investigated in details [6].
The solution has the following form

Yt(t) =
Y0E(t)

1 + 6Y0F (t)
, (2)

where Yt = h2
t /(4π)2 (ht is top-quark Yukawa coupling), Y0 = Yt(0), and E(t), F (t) are some

functions of the scale parameter t = log M 2
GUT /Q2, MGUT = 2 ·1016 GeV is the scale of grand

unification and Q is running mass scale. In the limit of large initial conditions Y0 → ∞ one
can write Yt(t) → YFP = E(t)/(6F (t)), where the initial condition disappeared completely.
Thus, for the large enough initial values, in practise Y0 > 2, the low-energy value of Yt is weakly
dependent on them.

On the other hand, the well-known relation between the running top-quark mass mt, corre-
sponding Yukawa coupling ht and parameter sin β:

mt = htv sin β, (3)

where v is vev: v2 = v2
1 + v2

2 = (174.1GeV )2, dictates us that in the case with small tan β ∼ 1
to have correct top-quark mass the top-quark Yukawa coupling must be near its IRQFP [6].
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Fig. 1. The IRQFP behavior for ρi = Yi/α̃3, i = t, λ as functions of α3. The value α3 ≈ 0.042
corresponds to the GUT scale, and the value α3 ≈ 0.12 corresponds to the electroweak scale.

The same situation is also held in the NMSSM with small tan β. The system of one-loop
RGEs for the gauge and the Yukawa couplings has now the following form [2]:

dα̃i

dt
= −biα̃

2
i , (4)

dYt

dt
= −Yt(6Yt + Yλ − 16

3
α̃3 − 3α̃2 −

13

15
α̃1) , (5)

dYλ

dt
= −Yλ(3Yt + 4Yλ + 2Yλ′ − 3α̃2 −

3

5
α̃1) , (6)

dYλ′

dt
= −6Yλ′(Yλ + Yλ′ ) , (7)

where α̃i = αi/(4π) = g2
i /(4π)2 for i = 1, 2, 3 are the electroweak and strong gauge coupling

constants; b1 = 33/5, b2 = 1, b3 = −3, Yλ = λ2/(4π)2 and Yλ′ = λ′2/(4π)2. The boton-quark
and τ -lepton Yukawa coupling constants Yb, Yτ are omitted, because they are negligibly small at
tanβ ∼ 1.

In Fig. 1 and 2 the numerical solutions of the RGEs are shown for a wide range of initial
values of Yt(MGUT ) = Yλ(MGUT ) = Yλ′ (MGUT ) from the interval [0.2, 5]. As one can see
from these figures, there is a strong restriction on all the Yukawa couplings at the electroweak
scale. In Fig. 2 is also shown, as an example of behavior of the soft supersymmetry breaking
parameter, the infrared behavior of the trilinear soft parameter At. In this manner, it is possible
to analyse the infrared behavior of all soft supersymmetry breaking parameters (see for example
[7]). This analysis strongly reduces the parameter space at the electroweak scale. Thus, using
the IRQFP behavior of the parameters of the model rapidly increases the predictive power of the
theory. In the next section we will use the infrared behavior of the parameters of the model for
calculation of the lightest Higgs boson mass.
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Fig. 2. The IRQFP behavior for ρλ′ = Yλ′/α̃3 and for the trilinear soft parameter ρAt
= At/M3 as

functions of α3 (M3 represents the gluino mass). The value α3 ≈ 0.042 corresponds to the GUT scale, and
the value α3 ≈ 0.12 corresponds to the electroweak scale.

3 Mass of the Lightest Higgs Boson

In this section we use previously obtained IRQFP behavior for computation of the lightest Higgs
boson.

In the NMSSM the Higgs sector consists of seven physical states: three neutral CP-even
scalars (one of them is the lightest higgs boson h), two neutral CP-odd scalars and one complex
charged Higgs scalar. In what follows we will pay attention only to the lightest CP-even Higgs
boson mass.

First, we describe our strategy. As input parameters we take the known values of the top-
quark pole mass, mpole

t ≈ 174 ± 5 GeV, the experimental values of the gauge couplings [10]
α3 = 0.120 ± 0.005, α2 = 0.034, α1 = 0.017, the sum of Higgs vevs squared v2 = v2

1 +
v2
2 = (174.1GeV )2 and previously derived fixed-point values for the Yukawa couplings and

supersymmetry breaking parameters.
It is important to stress that there is a serious problem in the NMSSM related to the minimiza-

tion of the corresponding potential. In what follows we will not attack this nontrivial task, rather
we will suppose that the minima of the potential exist without proof. Our aim is to determine
possible values of the lightest Higgs boson mass.

At the tree level the mass of the lightest Higgs boson h is given by the following expres-
sion [11]

m2
h ≤ M2

Z(cos2 2β +
2λ2

g2
1 + g2

2

sin2 2β) , (8)

where MZ denotes the mass of Z boson and g1, g2 are the gauge couplings of the electroweak
interactions. However, loop correction to the effective interaction potential of the Higgs fields
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Fig. 3. (Left) The mass of the lightest Higgs boson, h, as a function of MSUSY [GeV]. Central curve
corresponds to the ”central” values of the parameters of the model. Upper and lower curves describe the
influence of the parameter deviation from the central values on the mass of the Higgs boson. (Right)
Dependence of the lightest Higgs boson mass on the Yukawa couplings λ and λ′ for central values of
parameters of the model and for MSUSY = 1TeV .

from the t-quark and its superpartners play a very significant role (see for example [12] for one
and two loop corrections). In Fig. 3 is shown the dependence of the mass of the lightest Higgs
boson as a function of MSUSY =

√
m̃1m̃2, where m̃1 and m̃2 are masses of the stops (the

superpartners of top, see for example [6]). The central values of the parameters are defined as
follows (universality is assumed):ρ0 = 5, ρA0 = 0, m2

0/m1/2 = 1 and we allow the parameters
to move in the following intervals: ρ0 ∈ [2, 25], ρA0 ∈ [−3, 3] and m2

0/m2

1/2
∈ [0.25, 4] (details

see in Ref. [6]). For a typical value of MSUSY = 1TeV we find the following prediction for the
lightest Higgs boson mass:

mh = 121+1.8+1.3
−3.0−1.3 ± 5GeV. (9)

The first uncertainty is connected with the Yukawa couplings, the second with the soft parameters
and the last is due to the experimental uncertainty in the top-quark mass.

4 Conclusion

We have analyzed the fixed point behavior of the parameters of the NMSSM in the small tan β
scenario. These fixed points were used to make predictions for the mass of the lightest Higgs
boson. Our main conclusion is that the present experimental dada (mh > 113.4 GeV [13]) do
not exclude the NMSSM as the model relevant in the Universe.
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ence for kind hospitality.



258 S. Codoban, M. Jurcisin

References

[1] P. Fayet: Nucl. Phys. B 90 (1975) 104,
H. P. Nilles, M. Srednicki, D. Wyler: Phys. Lett. B 120 (1983) 346,
J. M. Frere, D. R. T. Jones, S. Raby: Nucl. Phys. B 222 (1983) 11

[2] J. P. Derendinger, C. A. Savoy: Nucl. Phys. B 237 (1984) 307

[3] L. Girardello, M. T. Grisaru: Nucl. Phys. B 194 (1982) 65

[4] C. T. Hill: Phys. Rev. D 24 (1981) 691,
C. T. Hill, C. N. Leung, S. Rao: Nucl. Phys. B 262 (1985) 517

[5] M. Carena, C. E. M. Wagner: Nucl. Phys. B 452 (1995) 45,
M. Lanzagorta, G. G. Ross: Phys. Lett. B 349 (1995) 319,
P. M. Ferreira, I. Jack, D. R. T. Jones: Phys. Lett. B 357 (1995) 359,
S. A. Abel, B. C. Allanach: Phys. Lett. B 415 (1997) 371,
S. Codoban, M. Jurcisin, D. I. Kazakov: Phys. Lett. B 477 (2000) 223,
S. Codoban, D. I. Kazakov: Eur. Phys. J. C 13 (2000) 671

[6] G. K. Yeghiyan, M. Jurcisin, D. I. Kazakov: Mod. Phys. Lett. A 14 (1999) 601

[7] R. B. Nevzorov, M. A. Trusov: Phys. Atom. Nucl. 64 (2001) 1513,
R. B. Nevzorov, M. A. Trusov: Phys. Atom. Nucl. 64 (2001) 1299

[8] R. B. Nevzorov, M. A. Trusov: J. Exp. Theor. Phys. 91 (2000) 1079,
R. B. Nevzorov, K. A. Ter-Martirosyan, M. A. Trusov: Phys. Atom. Nucl. 65 (2002) 285

[9] L. E. Ibanez, C. Lopez: Phys. Lett. B 126 (1983) 54,
Nucl. Phys. B 233 (1984) 511,
Nucl. Phys. B 256 (1985) 218

[10] Review of Particles Properties: Eur. Phys. J. C 3 (1998)

[11] L. Durand, J. L. Lopez: Phys. Lett. B 217 (1989) 463,
L. Dress: Int. J. Mod. Phys. A 4 (1989) 3635

[12] T. Elliott, S. F. King, P. L. White: Phys. Rev. D 49 (1994) 2435,
Phys. Lett. B 314 (1993) 56,
U. Ellwanger: Phys. Lett. B 303 (1993) 271,
R. Hempfling, A. H. Hoang: Phys. Lett. B 331 (1994) 99,
M. Carena, M. Quiros, C. E. M. Wagner: Nucl. Phys. B 461 (1996) 407

[13] P. Igo-Kemenes: Proceedings of the 30th International Conference on High Energy Physics ICHEP
2000, Japan, Osaka, July 27-August 2 2000, 133


