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We review the Batalin-Vilkovisky quantization procedure for Yang-Mills theory on a 2-point
space.

PACS: 11.15.-q

In this talk we give a short summary of [1], where we proposed the quantization of one of the
simplest toy models for noncommutative gauge theories which is (zero dimensional) Yang-Mills
theory on a 2-point space.

Noncommutative geometry constitutes one of the fascinating new concepts in current theo-
retical physics research with many promising applications [2-6].

We quantize the Yang—Mills theory on a 2-point space by applying the standard Batalin—
Vilkovisky method [7,8]. Somewhat surprisingly we find that despite of the model’s original
simplicity the gauge structure reveals infinite reducibility and the gauge fixing is afflicted with
the Gribov [9] problem.

The basic idea of noncommutative geometry is to replace the notion of differential manifolds
and functions by specific noncommutative algebras of functions. Following [10] we define the
Yang-Muills Theory on a 2-point space in terms of the algebra A = C'®C which is represented by
diagonal complex valued 2 x 2 matrices. The differential p-forms are constant, diagonal or offdi-
agonal 2 x 2 matrices, depending on whether p is even or odd, respectively. A nilpotent derivation
a1 + a2 a2 —an

where a=
a1l — a2 a21 + ai2

d acting on 2 x2 matrices isdefinedby da = i <

( Z” 212 ) . ay; € C. The anti-Hermitean 1-forms .4 can be parametrized by
21 22

_( 0 9
A‘(z& 0) (1)

and constitute the gauge fields of the model; here ¢ € C denotes a (constant) scalar field. The
(rigid) gauge transformations of A are defined by
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AV =UtAU + U AU )

with U being a unitary element of the algebra A. It is a constant, diagonal and unitary matrix
which can be parametrized by the diagonal matrix e

U:(e(i)a e%):éé, g:(g‘ g) a,B €R. @)

Due to the nonabelian form of the gauge transformations (2) the U (1) x U (1) gauge model shares
many interesting features with the standard Yang—Mills theory, yet it has no physical space-time
dependence and allows extremely simple calculations.

We define a scalar product for 2 x 2 matrices a, b by (a | b) = tra' b where  denotes taking
the Hermitian conjugate. The curvature F is defined as usual by 7 = d.A + A A and for an
action which is automatically invariant under the gauge transformations (2) one takes

Siny = 5(FIF) = (64 8) +63)°. @

To discuss infinitesimal (zero-stage) gauge transformations we introduce a diagonal infinites-
imal (zero stage) gauge parameter matrix €Y in terms of which U ~ 1 + £%. The infinitesimal
(zero-stage) gauge variation of 4 derives as

00 A = iR°c? where R’ =D; (5)

here the (zero-stage) gauge generator R is defined in terms of the covariant matrix derivative
D, which acting on €Y is given by De? = de? + [ A, £Y].

A gauge symmetry is called irreducible if the (zero stage) gauge generator R does not
possess any zero mode. It is amusing to note that the Yang—Mills theory on the 2-point space
reveals an infinitely reducible gauge symmetry: We observe that D d is vanishing on arbitrary
offdiagonal matrices. Thus there exists a zero mode ¢ for the (zero-stage) gauge generator R°,
such that

R%! =0 where ¢! =R'e] with R'=d. (6)

Here ¢! denotes an offdiagonal, infinitesimal (first-stage) gauge parameter matrix and R! the
corresponding (first-stage) gauge generator. As a matter of fact an infinite tower of (higher-stage)
gauge generators R*®, s = 1,2, 3, - - - with never ending gauge invariances for gauge invariances
is arising: We define R®* =d fors = 1,2, 3, --- so that for each gauge generator there exists an
additional zero mode

R'e2 =0, where
R%3 =0, where

()

due to the nilpotency d? = 0.
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Now we straightforwardly apply the usual field theory Batalin-Vilkovisky (BV) path integral
quantization scheme [7, 8] to the 2-point model: In addition to the original gauge field A = C~{
we introduce ghost fields C¥, oo > s > —1, s > k > —1 with k odd, as well as auxiliary
ghost fields @f 00 > s >0, s>k > 0with k even. Furthermore we add Lagrange multiplier
fields 7%, 00 > s > 1, s > k > 1 with k odd and ¥, c0 > s > 0, s > k > 0 with k even;
finally we introduce antlflelds C’“* ck™. *. The BV-actlon is obtained as

Spy = Sinv+Sauz_<C:11*|DCO >_ Z C_1*|dCé+1>
s=1,3,5,-
Z et ldesh), (8)
s=0,2,4,--

where we denote by S,.... the auxiliary field action

o0

(CF 7% 9)
=k

Souz = i i TEICETY + i

k=0,2,4,--- s=k k=1,3,5,--- s

Gauge fixing conditions similar to the usual Feynman gauge are implemented by introducing the
gauge fixing fermion ¥ = U5 + U

= 5 o sk
o=y > (ekrackt) + e ek

5=0,2,4,--- k=0,2,4,--- k<s

+i(CE [6CK) +i(aCy ekt

SR _
veo= 5o > > (A + kel

5=0,2,4,--- k=0,2,4,--- k<s

L [
+ UC [T ) + iR [ CED) + 5 > Gl (10)
k=0,2,4,---
By & we denote a nilpotent coderivative operator § a = i < @2 =21 A a2 > where
—a11 —a2 —aiz + a2
a = < Z” 312 ) a;; € C. We eliminate the antifields by using the gauge fixing fermion ¥
21 22
via
* ov - oV
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so that the gauge fixed action Sy reads

Sy = va—i<_8|6DC(;1>
—i Y (Chaledcl) + (CoyledCl)
s=1,3,5,--- s=0,2,4,---
+ Y S (iab A + (7F | GectT! + dack)))

k=0,2,4,--- s=k+1, odd

H((i8CF_, — ACFER)| whtLy)

+ Y Yoo (A + (7L (-6t + idCi))
k=0,2,4,--- s=k+2, even
+((8CT_y +idCIIT) 7))

+ Y (@ (=oci) +idCf + 57?,’3».
k=0,2,4,---

We can now eliminate the Lagrange multiplier fields 7% and 7% and arrive at

1 _
Sw—  Suw +5(A[dSA) —i(CY| (6D +d8)C; ")

—1 <ég+1 | (5d+d5)CS_+11>
s=1,3,5,-
+ Z (Coi1 | (8d+dd)Cr)
s=0,2,4,---
—i S S (@21(5d +ds)cktl)
k=0,2,4,--- s=k+1, odd
+ 0> > (CETI(8d +ds)Cli)
k=0,2,4,--- s=k+2, even
 — ,
ty D, (C1(6d +do)City).

k=0,2,4,-

(12)

(13)

All the higher-stage ghost contributions can be integrated away as 6d + dd = 4 - 1 and we

simply obtain

1 _
Su — Sinw + 5(A|d8 A) — i(C7| (8D +dd) ;).

(14)

We summarize that the zero dimensional Yang—Mills theory model on a 2-point space reveals
infinite reducibility; after applying the standard BV-quantization procedure the action finally
contains invertible quadratic parts for the gauge field, as well as for the ghost fields. A closer

inspection [1] shows that the model suffers from a Gribov problem [9].
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We expect that our present investigations will lead to a study of the renormalization effects
at higher orders; it may also be possible to compare the perturbative calculations with explicit
analytic integrations (for related attempts see [11]).

Acknowledgement: The author wishes to thank the organizers for their kind invitation to this
conference.
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