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We review the Batalin-Vilkovisky quantization procedure for Yang-Mills theory on a 2-point
space.

PACS: 11.15.-q

In this talk we give a short summary of [1], where we proposed the quantization of one of the
simplest toy models for noncommutative gauge theories which is (zero dimensional) Yang–Mills
theory on a 2-point space.

Noncommutative geometry constitutes one of the fascinating new concepts in current theo-
retical physics research with many promising applications [2–6].

We quantize the Yang–Mills theory on a 2-point space by applying the standard Batalin–
Vilkovisky method [7, 8]. Somewhat surprisingly we find that despite of the model’s original
simplicity the gauge structure reveals infinite reducibility and the gauge fixing is afflicted with
the Gribov [9] problem.

The basic idea of noncommutative geometry is to replace the notion of differential manifolds
and functions by specific noncommutative algebras of functions. Following [10] we define the
Yang–Mills Theory on a 2-point space in terms of the algebra A = C⊕C which is represented by
diagonal complex valued 2×2 matrices. The differential p-forms are constant, diagonal or offdi-
agonal 2×2 matrices, depending on whether p is even or odd, respectively. A nilpotent derivation

d acting on 2×2 matrices is defined by d a = i

(

a21 + a12 a22 − a11

a11 − a22 a21 + a12

)

where a =
(

a11 a12

a21 a22

)

, aij ∈ C. The anti-Hermitean 1-forms A can be parametrized by

A =

(

0 iφ

iφ̄ 0

)

(1)

and constitute the gauge fields of the model; here φ ∈ C denotes a (constant) scalar field. The
(rigid) gauge transformations of A are defined by
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AU = U−1AU + U−1
dU (2)

with U being a unitary element of the algebra A. It is a constant, diagonal and unitary matrix
which can be parametrized by the diagonal matrix ε

U =

(

eiα 0
0 eiβ

)

= eiε, ε =

(

α 0
0 β

)

α, β ∈ R. (3)

Due to the nonabelian form of the gauge transformations (2) the U(1)×U(1) gauge model shares
many interesting features with the standard Yang–Mills theory, yet it has no physical space-time
dependence and allows extremely simple calculations.

We define a scalar product for 2× 2 matrices a, b by 〈a | b〉 = tr a† b where † denotes taking
the Hermitian conjugate. The curvature F is defined as usual by F = dA + AA and for an
action which is automatically invariant under the gauge transformations (2) one takes

Sinv =
1

2
〈F|F〉 =

(

(φ + φ̄) + φ φ̄
)2

. (4)

To discuss infinitesimal (zero-stage) gauge transformations we introduce a diagonal infinites-
imal (zero stage) gauge parameter matrix ε0

e in terms of which U ' 1 + ε0
e. The infinitesimal

(zero-stage) gauge variation of A derives as

δε0
e

A = iR0 ε0
e where R

0 = D; (5)

here the (zero-stage) gauge generator R
0 is defined in terms of the covariant matrix derivative

D, which acting on ε0
e is given by Dε0

e = dε0
e + [A, ε0

e].
A gauge symmetry is called irreducible if the (zero stage) gauge generator R

0 does not
possess any zero mode. It is amusing to note that the Yang–Mills theory on the 2-point space
reveals an infinitely reducible gauge symmetry: We observe that Dd is vanishing on arbitrary
offdiagonal matrices. Thus there exists a zero mode ε1

e for the (zero-stage) gauge generator R
0,

such that

R
0ε1

e = 0 where ε1
e = R

1ε1
o with R

1 = d. (6)

Here ε1
o denotes an offdiagonal, infinitesimal (first-stage) gauge parameter matrix and R

1 the
corresponding (first-stage) gauge generator. As a matter of fact an infinite tower of (higher-stage)
gauge generators R

s, s = 1, 2, 3, · · · with never ending gauge invariances for gauge invariances
is arising: We define R

s = d for s = 1, 2, 3, · · · so that for each gauge generator there exists an
additional zero mode

R
1ε2

o = 0, where ε2
o = R

2ε2
e

R
2ε3

e = 0, where ε3
e = R

3ε3
o

· · · · · · (7)

due to the nilpotency d
2 = 0.
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Now we straightforwardly apply the usual field theory Batalin-Vilkovisky (BV) path integral
quantization scheme [7, 8] to the 2-point model: In addition to the original gauge field A ≡ C−1

−1

we introduce ghost fields Ck
s , ∞ ≥ s ≥ −1, s ≥ k ≥ −1 with k odd, as well as auxiliary

ghost fields C̄k
s , ∞ ≥ s ≥ 0, s ≥ k ≥ 0 with k even. Furthermore we add Lagrange multiplier

fields πk
s , ∞ ≥ s ≥ 1, s ≥ k ≥ 1 with k odd and π̄k

s , ∞ ≥ s ≥ 0, s ≥ k ≥ 0 with k even;
finally we introduce antifields Ck

s

∗
, C̄k

s

∗
. The BV-action is obtained as

SBV = Sinv + Saux − 〈C−1
−1

∗
|D C−1

0 〉 −

∞
∑

s=1,3,5,···

〈C−1
s

∗
|d C−1

s+1〉

− i

∞
∑

s=0,2,4,···

〈C−1
s

∗
|d C−1

s+1〉, (8)

where we denote by Saux the auxiliary field action

Saux =

∞
∑

k=0,2,4,···

∞
∑

s=k

〈π̄k
s |C̄

k
s

∗
〉 +

∞
∑

k=1,3,5,···

∞
∑

s=k

〈Ck
s

∗
|πk

s 〉. (9)

Gauge fixing conditions similar to the usual Feynman gauge are implemented by introducing the
gauge fixing fermion Ψ = Ψδ + Ψπ

Ψδ =

∞
∑

s=0,2,4,···

∑

k=0,2,4,··· k≤s

(

−〈C̄k
s | δCk−1

s−1 〉 + 〈δC̄
k

s+1 | C
k+1
s+2 〉

+ i〈C̄k
s+1 | δC

k−1
s 〉 + i〈δC̄

k

s | C
k+1
s+1 〉

)

,

Ψπ =
1

2

∞
∑

s=0,2,4,···

∑

k=0,2,4,··· k<s

(

〈C̄k
s |πk+1

s 〉 + 〈π̄k
s | Ck+1

s 〉

+ i〈C̄k
s+1 |π

k+1
s+1 〉 + i〈π̄k

s+1 | C
k+1
s+1 〉

)

+
1

2

∞
∑

k=0,2,4,···

〈C̄k
k | π̄k

k 〉. (10)

By δ we denote a nilpotent coderivative operator δ a = i

(

a12 − a21 −a11 − a22

−a11 − a22 −a12 + a21

)

where

a =

(

a11 a12

a21 a22

)

, aij ∈ C. We eliminate the antifields by using the gauge fixing fermion Ψ

via

〈Ck
s

∗
| =

∂Ψ

∂|Ck
s 〉

, |C̄k
s

∗
〉 =

∂Ψ

∂〈C̄k
s |

, (11)
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so that the gauge fixed action SΨ reads

SΨ = Sinv − i〈C̄0
0 | δD C−1

0 〉

− i

∞
∑

s=1,3,5,···

〈C̄0
s+1 | δd C−1

s+1〉 +

∞
∑

s=0,2,4,···

〈C̄0
s+1 | δd C−1

s+1〉

+

∞
∑

k=0,2,4,···

∞
∑

s=k+1, odd

(

i〈π̄k
s |πk+1

s 〉 + 〈π̄k
s | (iδCk−1

s−1 + dCk+1
s+1 )〉

+〈(iδC̄k
s−1 − dC̄k+2

s+1 )|πk+1
s 〉

)

+
∞
∑

k=0,2,4,···

∞
∑

s=k+2, even

(

〈π̄k
s |πk+1

s 〉 + 〈π̄k
s | (−δCk−1

s−1 + idCk+1
s+1 )〉

+〈(δC̄k
s−1 + idC̄k+2

s+1 )|πk+1
s 〉

)

+
∞
∑

k=0,2,4,···

〈π̄k
k | (−δCk−1

k−1
+ idCk+1

k+1
+

1

2
π̄k

k )〉. (12)

We can now eliminate the Lagrange multiplier fields πk
s and π̄k

s and arrive at

SΨ −→ Sinv +
1

2
〈A |dδ A〉 − i〈C̄0

0 | (δD + dδ) C−1
0 〉

− i

∞
∑

s=1,3,5,···

〈C̄0
s+1 | (δd + dδ) C−1

s+1〉

+

∞
∑

s=0,2,4,···

〈C̄0
s+1 | (δd + dδ) C−1

s+1〉

− i

∞
∑

k=0,2,4,···

∞
∑

s=k+1, odd

〈C̄k+2
s+1 | (δd + dδ) Ck+1

s+1 〉

+

∞
∑

k=0,2,4,···

∞
∑

s=k+2, even

〈C̄k+2
s+1 | (δd + dδ) Ck+1

s+1 〉

+
1

2

∞
∑

k=0,2,4,···

〈Ck+1

k+1
| (δd + dδ) Ck+1

k+1
〉. (13)

All the higher-stage ghost contributions can be integrated away as δd + dδ = 4 · 1 and we
simply obtain

SΨ −→ Sinv +
1

2
〈A |dδ A〉 − i〈C̄0

0 | (δD + dδ) C−1
0 〉. (14)

We summarize that the zero dimensional Yang–Mills theory model on a 2-point space reveals
infinite reducibility; after applying the standard BV-quantization procedure the action finally
contains invertible quadratic parts for the gauge field, as well as for the ghost fields. A closer
inspection [1] shows that the model suffers from a Gribov problem [9].
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We expect that our present investigations will lead to a study of the renormalization effects
at higher orders; it may also be possible to compare the perturbative calculations with explicit
analytic integrations (for related attempts see [11]).

Acknowledgement: The author wishes to thank the organizers for their kind invitation to this
conference.
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