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1 Introduction

Recently, the application of the renormalization group methods in study of the Casimir energy
effects for various situations attracted an attention of community [1]. The calculations of the
Casimir energy for quantized fields under nontrivial boundary conditions encounter a number
of difficulties (for the most recent review on the Casimir energy see ref. [2]). A majority of
them are connected with ambiguities in results obtained by means of different regularization
and renormalization methods. One of the physically interesting problems is the dependence of
the (renormalized) energy from an additional mass parameter, which emerges inevitably in any
regularization scheme. For example, in the widely used ζ-function regularization approach the
one-loop vacuum energy for a fermion field may be defined as

εf = −KD

(

ζ ′f (0) − ζf (0)ln
m

µ

)

, (1)

where KD is the constant depending on the space-time dimension, m is the fermion field mass,
and the arbitrary energy scale µ must be introduced in order to restore the correct dimension of
the corresponding zeta-functions [3], which are defined as

ζf (s) = µ2s
∑

n

ω−s
n , (2)
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where ωn are the energy eigenvalues. Whatever renormalization procedure one applies, the finite
part of the energy would contain a µ-dependent contribution. Of course, there are several situa-
tions, for which ζ(0) = 0 and this dependence is obviously cancelled due to some geometrical,
or other, features of the given configuration. However, it would be very useful and interesting to
investigate more general case.

In the present paper we consider the renormalization of the Casimir energy from the point of
view of the convenient quantum field theory, and assume that variations of the mass scale µ must
not produce any change of the physically observable quantities. This requirement naturally leads
to a sort of the renormalization group equation, the solution of which allows to conclude that
some of the parameters of the “classical” mass formula have to be considered as running con-
stants. This may be important, e. g., in some phenomenological applications, such as the quark
bag models where the Casimir energy yields a nontrivial contribution to the mass of hadron, since
it may provide a deeper understanding of relations between fundamental and effective theories
of the hadronic structure.

2 (1+1)-Dimensional MIT Bag Model with Massive Fermions

For our purposes, it would be enough to use the following form of the ζ-regularized ground state
energy of the confined fermion field:

E = −
∑

ωn → Ereg(µ, ε) = −µε
∑

ω1−ε
n . (3)

The presence of a fermion mass may lead, in general, to some new effects compared to the
massless case, and contains additional divergences that have to be subtracted. Consider in detail
the (1+1)-dimensional MIT bag model with the massive fermions [4]. The Lagrangian of this
system

LMIT = iψ̄γ∂ψ − θ(|x| < R)
(

mψ̄ψ +B
)

− θ(|x| > R)Mψ̄ψ , (4)

where θ(x) is the usual θ-function, describes (in the limit for the external mass M → ∞) the
fermion field ψ(x) confined to the segment [−R,R] under the (1+1)-dimensional boundary con-
dition:

(±iγ1 + 1)ψ(±R) = 0 . (5)

The exact spectrum of the elementary fermionic excitations reads:

ωn =

√

( π

2R
n+

π

4R

)2

+m2 . (6)

In this simple case we don’t need to use the heat-kernel expansion (see, e.g., 2,3) since the spec-
trum of eigenvalues is known explicitly. Here we will be interesting only in the small mass m
limit, so we drop out all terms of the order m4 and higher, what corresponds to the expansion in
vicinity of the chiral limit [4]. Then the eigenvalues ωn can be written as

ωn = Ω1n+ Ω0 +
m2

2 (Ω1n+ Ω0)
+O(m4) , (7)
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where

Ω1 =
π

2R
, Ω0 =

π

4R
. (8)

In order to analyze the singularities in the Casimir energy, we use the expansion for n > 0:

ωn = Ω1n+ Ω0 +
Ω−1

n
+O(n−2) , (9)

where Ω−1 = m2R/π, and assume the lowest quark state with ω0 = Ω0 + 2Ω−1 to be filled.
It can be shown, that the ζ-regularized sum (1) reads:

Ereg = −Ω−1

(

1

ε
+ γE

)

+
Ω1

12
+

Ω0

2
+

Ω2

0

2Ω1

+ Ω−1

(

ln
Ω1

µ
+ 1

)

, (10)

where γE = 0.5772... is the Euler constant. It’s interesting to note, that the regularization by
the exponential cutoff gives the equivalent result up to additional power-law divergences [6].
These divergences are a generic feature of the regularization schemes which use an ultra-violet
cutoff, and, in contrast, never emerge in schemes without it, such as dimensional and ζ-function
regularization.

The divergent part of (10) can be extracted in the form:

Ediv = −
m2R

π

(

1

ε
+ γE − ln

π

8
.

)

(11)

We include in Ediv the pole ε−1 as well as the transcendent numbers γE and lnπ
8

in analogy to
the widely used modified minimal subtraction scheme in quantum field theory, but we should
mention that this analogy is only formal one, since (11) has nothing to do with the singularities
appearing in the conventional field theory since it depends on the geometrical parameter R. The
removing of divergent part in (10) is performed by the absorption of Ediv (11) into the definition
of the “classical” bag constant B, which is introduced in the mass formula and characterizes
the energy excess inside the bag volume as compared to the energy of nonperturbative vacuum
outside [4].

The finite energy of our bag with one fermion on the lowest energy level is

E(R, µ) = 2B0R+
11π

48R
+

3m2R

π
−
m2R

π
lnµR , (12)

where B0 is the renormalized bag constant. This quantity, being a physical observable, should
not depend on a choice of arbitrary scale µ. Then the condition of the renormalization invariance
has to be imposed on it, what yields

µ
d

dµ
E(B0(µ), µ) = 2RγB −

m2R

π
= 0 , (13)

where

γB = µ
d

dµ
B0(µ) . (14)
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The solution of this equation can be written as

B0(µ) = B0(µ0) +
m2

2π
ln
µ

µ0

, (15)

where the valueB0(µ0) gives the boundary condition for the solution of the differential equation
(13). It may seem that the running parameterB0(µ) depend on both the initial valueB0(µ0) and
µ0 itself, but indeed it must not depend on the starting point. Then it’s convenient to express the
running constant in terms of a single variable:

ΛMIT = µ0 exp

[

−
2π

m2
B0(µ0)

]

, (16)

and write

B0(µ) =
m2

2π
ln

µ

ΛMIT

. (17)

The scale ΛMIT appears to be an analogue of the scale ΛQCD in the Quantum Chromodynamics.
One can easily check that the total bag energyE(B0(µ), µ) is independent on choice of the points
µ and µ0.

The actual size of the bag can be found from the equation which determines the energy
minimum:

∂E

∂R
= 0 . (18)

Then, the radius R0 obeys the relation

11π

48R2
0

= 2

(

B0 +
m2

π

)

−
m2

π
lnµR0 . (19)

Taking into account the formula (17) for the running constant B0(µ), one finds the following
relation between the fundamental scale ΛMIT and the bag’s radius:

ΛMIT = R−1

0
exp

[

2 −
11

48

(

π

mR0

)2
]

. (20)

Therefore, we find that in the renormalization group improved version of the (1+1)D MIT bag
model, which takes into account the renormalized fermion ground state energy, the “bag con-
stant” should be considered as a running parameter, and the value of the bag energy as well as
it’s radius are determined by the single (except of the current quark mass m) dimensional pa-
rameter ΛMIT which plays a role of the fundamental energy scale, similar to ΛQCD. Note, that
the relation (16) can be considered as an improvement of the straightforward identification of the
scale µ and ΛMIT proposed in the first paper indicated in ref. [5]. It is clear, that in more com-
plicated situations, for example, in (3+1)-dimensional MIT bag model with a larger amount of
coupling constants, the results of the renormalization group analysis would be rather nontrivial.
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3 Conclusion

We have considered the consequences of the renormalization invariance condition in the Casimir
energy calculations on the simple example related to the quark bag models. It is shown that the
value of the bag mass is controlled by the fundamental energy scale analogous to ΛQCD, while
the “bag constant” becomes the running parameter. The effects of the renormalization invariance
in more realistic models—such as (3+1)-dimensional chiral hybrid quark bags, will be studied in
future.
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