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RENORMALIZATION FLOW FROM UV TO IR DEGREES OF FREEDOM1
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Within the framework of exact renormalization group flow equations, a scale-dependent trans-
formation of the field variables provides for a continuous translation of UV to IR degrees of
freedom. Using the gauged Nambu-Jona-Lasinio model as an example, this translation results
in a construction of partial bosonization at all scales. A fixed-point structure arises which
makes it possible to distinguish between fundamental-particle and bound-state behavior of
the scalar fields.

PACS: 11.10.Hi

1 Introduction

For an investigation of a system of interacting quantum fields, it is mandatory to identify the
“true” degrees of freedom of the system. As we know from many physical systems such as
QCD, or the plethora of condensed-matter systems, the nature of these degrees of freedom of
one and the same system can be very different at different momentum (or length) scales. Of
course, the first physical task is the identification of these relevant degrees of freedom at the
various scales. Simplicity can be an appropriate criterion for this, in particular, simplicity of the
effective action governing these degrees of freedom.

Whereas quantum field theory is usually defined in terms of a functional integral over quan-
tum fluctuations of those field variables that correspond to the degrees of freedom in the ultravi-
olet (UV), we are often interested in the properties of the system in the infrared (IR). In some but
rare instances, we know not only the true degrees of freedom at these different scales, but also
the formal translation prescription of one set of variables into the other in terms of a discrete inte-
gral transformation. An example is given by the Nambu-Jona-Lasinio (NJL) model [1] in which
self-interacting fermions (UV variables; “quarks”) can be translated into an equivalent system of
(pseudo-)scalar bosons (IR variables; “mesons”) with Yukawa couplings to the fermions. This

1Presented by H. G. at 5th Int. Conf. Renormalization Group 2002, Tatranská Štrba (Slovakia), March 2002
2E-mail address: holger.gies@cern.ch
3E-mail address: C.Wetterich@thphys.uni-heidelberg.de

0323-0465/02 c© Institute of Physics, SAS, Bratislava, Slovakia 215



216 H. Gies, Ch. Wetterich

is done by means of a Hubbard-Stratonovich transformation, also called partial bosonization. A
purely bosonic theory can then be obtained by integrating out the fermions.

Integrating out the fermions at once leads, however, to highly nonlocal effective bosonic
interactions. This problem can be avoided by integrating out the short distance fluctuations
stepwise by means of the renormalization group. In this context, a continuous translation from
multifermion to bosonic interactions would be physically more appealing, since it would reflect
the continuous transition from the ultraviolet to the infrared more naturally. Furthermore, phases
in which different degrees of freedom coexist could be described more accurately.

In the following, we will report on a new approach which is capable of describing such a
continuous translation. The approach is based on an exact renormalization group flow equation
for the effective average action [2] allowing for a scale-dependent transformation of the field
variables [3].4 In order to keep this short presentation as transparent as possible, we will discuss
our approach by way of example, focussing on the gauged version of the NJL model which shares
many similarities with, e.g., building blocks of the standard model.

We shall consider the gauged NJL model for one fermion flavor in its simplest version char-
acterized by two couplings in the UV: the gauge coupling e of the fermions to an abelian gauge
field ∼ ψ̄A/ψ, and the chirally invariant four-fermion self-interaction in the (pseudo-)scalar chan-
nel ∼ ψ̄RψLψ̄LψR with coupling λNJL. Depending on the values of these couplings, the gauged
NJL model interpolates between the pure NJL model entailing chiral-symmetry breaking (χSB)
for strong λNJL coupling and (massless) QED for weak λNJL; for simplicity, the gauge coupling
is always assumed to be weak in the present work. The physical properties and corresponding
degrees of freedom in the infrared depend crucially on λNJL: we expect fermion condensates
and bosonic excitations on top of the condensate in the case of strong coupling, but bound states
such as positronium at weak coupling. We shall demonstrate that our flow equation describes
these features in a unified manner. The question as to whether the fields behave like fundamental
particles or bound states thereby receives a scale-dependent answer; in particular, this behavior
can be related to a new infrared fixed-point structure with interesting physical implications.

2 Fundamental particles versus bound states

Let us study the scale-dependent effective action Γk for the abelian gauged NJL model (Nf = 1)
including the scalars arising from bosonization in the following simple truncation,

Γk =

∫

d4x

{

ψ̄i∂/ψ + 2λ̄σ,k ψ̄RψLψ̄LψR − eψ̄A/ψ +
1

4
FµνFµν

+Zφ,k∂µφ
∗∂µφ+ m̄2

k φ
∗φ+ h̄k(ψ̄RψLφ− ψ̄LψRφ

∗)

}

,

where we take over the conventions from [3]. Beyond the kinetic terms, we focus on the fermion
self-interaction ∼ λ̄σ,k, the scalar mass ∼ m̄2

k, and the Yukawa coupling between the fermions
and the scalars ∼ h̄k. In the framework of exact renormalization group (RG) equations, the
infrared scale k divides the quantum fluctuations into modes with momenta k < p < Λ that have
been integrated out, so that Γk governs the dynamics of those modes with momenta p < k which

4For an earlier approach, see [4]. A general account of field transformations within flow equations has been given
in [5].
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still have to be integrated out in order to arrive at the full quantum effective action Γk→0. The RG
flow of Γk to the quantum effective action is described by a functional differential equation [2]
which we solve within the truncation given by Eq. (1). The flow is initiated at the UV cutoff Λ,
which in our case also serves as the bosonization scale, and we fix the couplings according to

λNJL =
1

2

h̄2
Λ

m̄2
Λ

, λ̄σ,Λ = 0, Zφ,Λ = 0. (1)

In other words, all fermion self-interactions are put into the Yukawa interaction h̄k and the scalar
mass m̄2

k at the bosonization scale Λ, and the standard form of the gauged NJL model in a purely
fermionic language could be recovered by performing the Gaussian integration over the scalar
field.

Concentrating on the flow of the couplings m̄2

k, h̄k, λ̄σ,k, we find5 (∂t ≡ k(d/dk)):

∂tm̄
2

k =
k2

8π2
h̄2

k,

∂th̄k = −
1

2π2
e2 h̄k + O(λ̄σ,k), (2)

∂tλ̄σ,k = −
9

8π2k2
e4 +

1

32π2Z2
φ,kk

2

3 +
m̄2

k

Zφ,kk2

(1 +
m̄2

k

Zφ,kk2 )3
h̄4

k + O(λ̄σ,k).

We observe that, although the four-fermion interaction has been bosonized to zero at Λ, λ̄σ,Λ = 0,
integrating out quantum fluctuations reintroduces four-fermion interactions again owing to the
RHS of the last equation; for instance, the first term ∼ e4 arises from gauge boson exchange.
Bosonization in the standard approach is obviously complete only at Λ. However, guided by
the demand for simplicity of the effective action at any scale k, we would like to get rid of the
fermion self-interaction at all scales, i.e., re-bosonize under the flow. Here the idea is to employ
a flow equation for a scale-dependent effective action Γk[φk], where the scalar field variable φk

is allowed to vary during the flow; this flow equation is derived in [3], and can be written in a
simple form as

∂tΓk[φk ] = ∂tΓk[φk ]
∣

∣

φk
+

∫

q

(

δΓk

δφk(q)
∂tφk(q) +

δΓk

δφ∗k(q)
∂tφ

∗
k(q)

)

, (3)

where the notation omits the remaining fermion and gauge fields for simplicity. The first term
on the RHS is nothing but the flow equation for fixed variables evaluated at fixed φk instead of
φ = φΛ. The second term reflects the flow of the variables. In the present case, we may choose

∂tφk(q) = −(ψ̄LψR)(q) ∂tαk, ∂tφ
∗
k(q) = (ψ̄RψL)(−q) ∂tαk, (4)

5The numerical coefficients on the RHS’s of Eqs. (2) depend on the implementation of the IR cutoff procedure at the
scale k and on the choice of the Fierz decomposition of the four-fermion interactions. For the former point, we use a
linear cutoff function [6] (see also D.F. Litim’s contribution to this volume). For the latter, we choose a (S − P ), (V )
decomposition, but display only the (pseudo-)scalar channels here; the vectors are discussed in [3]. Furthermore, we
work in the Feynman gauge.
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∂tε̃k

ε̃∗1 ε̃∗2

ε̃k

Fig. 1. Schematic plot of the fixed-point structure of the ε̃k flow equation after fermion-boson translation.
Arrows indicate the flow towards the infrared, k → 0.

where the transformation parameter αk(q) is an a priori arbitrary function. Projecting Eq. (3)
onto our truncation (1), we arrive at modified flows for the couplings (the equation for m̄2

k re-
mains unmodified):

∂th̄k = ∂th̄k

∣

∣

φk
+m̄2

k ∂tαk, (5)

∂tλ̄σ,k = ∂tλ̄σ,k

∣

∣

φk
− h̄k ∂tαk.

We can now obtain bosonization at all scales, λ̄σ,k = 0, if we adjust αk in such a way that the
RHS of the ∂tλ̄σ,k equation equals zero for all k. This, of course, affects the flow of the Yukawa
coupling h̄k. The physical effect can best be elucidated with the aid of the convenient coupling

ε̃k :=
m̄2

k

k2h̄2

k

and its RG flow:

∂tε̃k = −2ε̃k +
1

8π2
+
e2

π2
ε̃k +

9e4

4π2
ε̃2k −

1

16π2

ε2k(3 + εk)

(1 + εk)3
, (6)

where we also abbreviated εk :=
m̄2

k

Zφ,kk2 . A schematic plot of ∂tε̃k is displayed in Fig. 1 where
the occurence of two fixed points is visible (note that all qualitative features discussed here are
insensitive to the last term of Eq. (6)). The first fixed point ε̃∗1 is infrared unstable and corresponds
to the inverse critical λNJL coupling. Starting with an initial value of 0 < ε̃Λ < ε̃∗1 (strong
coupling), the flow of the scalar mass-to-Yukawa-coupling ratio will be dominated by the first
two terms in the flow equation (6) ∼ −2ε̃k +1/(8π2). This is a typical flow of a theory involving
a “fundamental” scalar with Yukawa coupling to a fermion sector. Moreover, we will end in a
phase with (dynamical) chiral symmetry breaking, since ε̃ ∼ m̄2

k is driven to negative values.
On the other hand, if we start with ε̃Λ > ε̃∗1, the flow will necessarily be attracted towards the

second infrared-stable fixed point ε̃∗2. There will be no dynamical symmetry breaking, since the
mass remains positive. The effective four-fermion interaction corresponding to the second fixed
point reads: λ∗σ = 1

2k2 ε̃∗
2

≈ 9

16π2

e4

k2 , which coincides with the perturbative value of massless
QED. We conclude that the second fixed point characterizes massless QED. The scalar field
shows a typical bound-state behavior with mass and couplings expressed by e and k. A more
detailed analysis reveals that the scalar field corresponds to positronium at this fixed point [3].

Our interpretation is that the “range of relevance” of these two fixed points tells us whether
the scalar appears as a “fundamental” or a “composite” particle, corresponding to the state of the
system being governed by ε̃∗1 or ε̃∗2, respectively.
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Fig. 2. Flows of εk, hk in the symmetric phase according to Eqs. (8) for the initial values εΛ = 10
6 ,

ε̃Λ = 0.17 > ε̃∗1 , e = 1, Qσ = −0.1 (t = ln k/Λ).

3 Physics at the bound-state fixed point

The bound-state fixed point ε̃∗2 shows further interesting physical properties. In order to unveil
them, we have to include momentum dependences of the couplings; in particular, we study the
momentum dependence of λ̄σ,k in the s channel. Then we can generalize the fermion-to-boson
translation (4),

∂tφk(q) = −(ψ̄LψR)(q) ∂tαk(q) + φk(q) ∂tβk(q), (7)

(and similarly for φ∗) with another a priori arbitrary function βk(q). Now we can fix αk(q)
and βk(q) in such a way that λ̄σ,k(s) vanishes simultaneously for all s and k and that h̄k

becomes momentum-independent. Defining the dimensionless renormalized couplings εk =

m̄2
k/(Zφ,kk

2), hk = h̄k Z
−1/2

φ,k , this procedure leads us to the final flow equations [3],

∂tεk = −2εk +
h2

k

8π2
−
εk(εk + 1)

h2

k

(

9e4

4π2
−

h4
k

16π2

3 + εk
(1 + εk)3

)

(

1 + (1 + εk)Qσ

)

,

∂thk = −
e2

2π2
hk −

2εk + 1 + (1 + εk)2Qσ

hk

(

9e4

8π2
−

h4

k

32π2

3 + εk
(1 + εk)3

)

. (8)

Using ε̃k = εk/h
2

k, Eq. (6) can be rediscovered from Eqs. (8). Defining ∆λ̄σ,k := λ̄σ,k(k2) −
λ̄σ,k(0), the quantity Qσ ≡ ∂t∆λ̄σ,k/∂tλ̄σ,k(0) measures the suppression of λ̄σ,k(s) for large
external momenta. Without an explicit computation, we may conclude that this suppression
implies Qσ < 0 in agreement with unitarity (e.g., Qσ ' −0.1). In Fig. 2, a numerical solution
of Eqs. (8) is presented in which we release the system at Λ at ε̃Λ > ε̃∗1, so that it approaches ε̃∗2
in the IR.

We observe that both hk and εk approach fixed points in the IR. (For analytical results for the
fixed points, see [3].) In particular, this implies that the scalar mass term m2

k = εkk
2 decreases

with k2 in the symmetric phase. This is clearly a nonstandard running of a scalar particle mass.
As a consequence, a large scale separation Λ � k gives rise to a large mass scale separation
mΛ � mk without any fine-tuning of the initial parameters.
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4 Conclusions and Outlook

Within the framework of exact renormalization group flow equations for the effective average ac-
tion, a scale-dependent transformation of the field variables provides for a continuous translation
of UV to IR degrees of freedom. This concept is able to realize the physical criterion of desired
simplicity of the effective action. Using the gauged NJL model as an example, this translation
can be regarded as partial bosonization at all scales. Here we identified an infrared fixed-point
structure which can be associated with a bound-state behavior. One main result is that the RG
flow of the scalar mass at the bound-state fixed point is “natural” in ’t Hooft’s sense so that no
fine-tuning problem arises if we want to have small masses at scales far below the UV cutoff
k � Λ.

It should be interesting to see if this possibility of a naturally small scalar mass is applicable
for the gauge hierarchy problem of the standard model. For this purpose, a mechanism has to
be identified that causes the system to flow into the phase with spontaneous symmetry breaking
after it has spent some “RG time” at the bound-state fixed point. Phrased differently, the bound-
state fixed point has to disappear in the deep IR. Taking a first glance at Eq. (6), or its immediate
nonabelian generalization for SU(Nc) gauge groups (here we use the Landau gauge),

∂tε̃k = −

(

2 −
3C2

4π2
gk

2

)

ε̃+
Nc

8π2
+

9

8π2

C2

Nc

(

C2 −
1

2Nc

)

gk
4 ε̃2 + O(ε2), (9)

where gk is the running gauge coupling and C2 = (N2
c − 1)/(2Nc), we find that the parabola

depicted in Fig. 1 is lifted and the fixed points vanish for large gauge coupling. In this case, the
system would finally run into the χSB phase once the gauge coupling has grown large enough.
The question as to whether this mechanism can successfully be applied to a sector of the standard
model is currently under investigation.
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