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In the frame of the hyperspherical formalism, the electromagnetic properties of 3He are inves-
tigated for values of high momentum transfer up to 32 fm−2. Calculations of electromagnetic
form factors have been performed for momentum transfer up to 22 fm−2 and 32 fm−2 for the
charge and magnetic form factors, respectively. The charge radii (rms) for 3He are also cal-
culated. Gaussian shaped spin-isospin potentials are used in generating complete mixed and
mixed symmetric wave functions to be used in the form factors calculations. Contributions of
partial waves are also taken into account. The present calculations are in good agreement with
the experimental high momentum transfer measurements as well as the previous calculations
using variational and Faddeev methods including the meson exchange current contributions.

PACS: 21.30.+y, 21.40.+d, 27.10.+h

1 Introduction

The three body nuclear systems are shown very interesting to investigate due to the fact that it is
the simplest non trivial nucleus that can be investigated by exact theoretical methods. The trinu-
cleon system was studied applying different methods, using the nucleon-nucleon realistic forces
as the basic input. The ability to predict the three body properties (such as binding energy, charge
and magnetic form factors) gives strong indications on the ability of the considered nuclear force
or the applied method of calculations. The produced current by the mesons exchanged between
the nucleons strongly affect the electromagnetic properties of the trinucleon system. Therefore,
investigating the electromagnetic form factors of 3He nucleus provides us with interesting and
useful information about the nucleonic and non nucleonic degrees of freedom of the complex
nuclear systems. Experimental measurements of the 3He magnetic form factors were performed
[1] up to q2 = 10 fm−2, and then [2] to q2 = 30 fm−2 to give a minimum at q2 = 15.0 fm−2.
Therefore the experimental data on the 3He magnetic form factors are available [2,3] for momen-
tum transfer up to q2 = 30 fm −2. Experimental data [4] on the 3He charge form factors are also
available for momentum transfer up to 20 fm−2. In the trinucleon system, the three body wave
functions obtained with Reid or Hamada Johnston potentials and variational calculations in har-
monic oscillator have yielded magnetic form factors minima in the neighborhood of q2 = 14.0
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fm−2. In the impulse approximation calculations [3], a minimum is obtained at q2 = 8.0 fm−2

for the 3He magnetic form factors which is too far from the experimental value minimum. Fad-
deev equations were solved using truncated Reid potentials to give a value of about 17.0 fm−2 for
the 3He magnetic form factor minimum. Different calculation were performed [5–7] in studying
the charge form factors of 3He. Variational calculations [5] were performed using Hamada John-
ston and Reid potential to give a charge form factor minimum at 13 fm−2. Their wave function
includes the symmetric, anti-symmetric and mixed symmetric states. A very complete variational
calculations [6] were performed using Reid potential obtaining a charge form factor minimum
at 12.6 fm−2 and rms radius value of 2.06 fm. Faddeev equations were solved in configuration
space [7] using Reid potentials and including the symmetric, anti-symmetric and mixed symmet-
ric states obtaining a charge form factor minimum at 14.6 fm−2 and rms radius value of 1.9 fm.
With these theoretical calculations, the electromagnetic properties of the trinucleon system were
investigated using different methods and different two nucleon potentials [9–14]. In a previous
work [8], we have calculated the trinucleon magnetic form factors using Faddeev method with
realistic two body potentials. The obtained results were in a good agreement with the experimen-
tal values. It is the purpose of the present work to calculate the electromagnetic form factors and
rms radii for 3He nucleus in the frame of the hyperspherical formalism using realistic two body
spin-isospin potentials of different shapes and different soft cores.

In the hyperspherical formalism [14,15], the trinucleon system is described in the Jacobian
coordinates and then the system is expressed in terms of the hyperspherical coordinates. The
kinetic energy operator of the three-nucleon system can be given in terms of the hyperspherical
coordinates. The total trinucleon wave function in hyperspherical coordinates is expanded in
a complete set of symmetrized angular eigen functions at the surface of a hypersphere. Then,
the Schrodinger equation of the trinucleon system is transformed into an infinite set of coupled
second order differential equations. The two-body central potentials are expanded in partial wave
composition giving partial potentials. In case of symmetric or mixed symmetric states, the two-
nucleon interaction V (rij) is half of the sum or the difference of the triplet and singlet even
central potentials. Therefore, the coupling coefficients have been deduced [15] explicitly which
are geometrical ones and independent on the interactions. The different properties of the 3He
nucleus were studied [16,17] in the frame of the hyperspherical formalism.

It is the purpose of our present work, to calculate the 3He electromagnetic form factors fol-
lowing the hyperspherical formalism. The charge and magnetic form factors are evaluated using
a hyperradial 3He wave function obtained from spin-isospin two-nucleon potentials. Different
spin-isospin two-nucleon interactions of the Gaussian form with soft cores are used [19,20]. The
mixed symmetry contributions to the form factor are taken into account. We notice that in case
of the potential in which the triplet and singlet even parts are equal, the mixed symmetry con-
tribution vanishes. In Section 2, the different forms of the charge and magnetic form factors
of the 3He nucleus are given using the hyperspherical treatment. In Section 3, the numerical
calculations and results are introduced. Discussion and conclusions are given in Section 4.

2 Electromagnetic form factors

The three nucleons are considered in the limit of the non relativistic case which are taken to
contribute without mutual interference or distortions. Then, the magnetic moment density and
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electric charge density operators for the trinucleon system in momentum space are given as [8]
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where σ(i) and τ(i) are the spin and isospin operators which operate on the spin and isospin
nucleon states respectively while µp, fp

mg(ch)(q) and µn, fn
mg(ch)(q) are the static magnetic mo-

ments and magnetic (charge) form factors, for the proton and neutron, respectively. These form
factors are the Fourier transforms of the normalized nucleon form factors f p
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mg(ch)(x̄ − r̄i), which are functions of r̄i and x̄ being the coordinates of the nucleon i and the
center of mass, respectively. Therefore, the trinucleon magnetic and charge form factors can be
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where µ(Tz) is the magnetic moment of the trinucleon system and Tz is the third component
of the three nucleon system isospin which equals to 1/2 for the 3He nucleus and −1/2 for the
3H nucleus. Introducing the scalar GS

M(E)(q) and vector GV
M(E)(q) nucleon magnetic (electric)

form factors in equation (3) and (4), then the trinucleon magnetic form factors can be given as
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where the scalar and vector nucleon magnetic form factors are given as
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The scalar and vector nucleon charge form factor are given as
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The anti-symmetric normalized wave function ψ of the S- and D-state components [16], are
used in equations (5) and (6) to give the magnetic and charge form factors as
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where ` takes the value 0 for the central force term (S-state), and the value 2 for the tensor force
term (D-state). R stands for the S, S’ and D states, so that F `

R(q) represents the different form
factors standing for the different contributions of the symmetric (S), mixed symmetric (S’) and
the D-states. In case of central force contribution where ` = 0, the form factors F `

R(q) are
expressed as [15]
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where UR
2K(ρ) and UR

2K′(ρ) are the hyperradial wave functions. The geometrical coefficients
〈K|K ′|K ′′〉 appearing in equation (13) couple the set of coupled equations with the main one
for which K = 0 for each component of the central component of the two-body potentials.
Explicit expressions for these coefficients are given in Ref. [16]. The summation indices K, K ′,
and K ′′ in equation (13) satisfy the following condition:

|K −K ′| ≤ K ′′ ≤ K +K ′ , and K +K ′ +K ′′ ≡ even .

According to these conditions, the symmetric S-state form factor contributions are given as [12]
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with q′ = q/
√

3 and J2K(q′ρ) is the normal spherical Bessel function. It should be pointed out
that we have neglected the cross-terms between the U2K(ρ) functions for which K 6= 0. Also,
the mixed symmetric (S’) form factor contributions are given to the first order approximation as

FM (q) =
√

2F0,2(q) . (17)
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Potential ai bi
a1 a2 a3 b1 b2 b3

Volkov [19] t 144.86 -83.34 – 0.82 1.6 –
s 144.86 -83.34 – 0.82 1.6 –

Peries [21] t 509.00 -182.2 – 0.7 1.41 –
s 509.00 -182.2 – 0.7 1.41 –

V X [20] t 130.00 -110.0 – 0.8 1.5 –
s 130.00 -65.30 – 0.8 1.5 –

Tab. 1. Parameters of the Gaussian two-body potentials of the form V
t(s)(r) =

3�

i=1

a
t(s)
i e−(r/b

t(s)
i

)2

Potential Volkov Peries V X Experiment

rms(3He) [fm] 1.720 1.780 1.825 1.82

Tab. 2. Calculated values of the rms (charge radii) for the 3He nucleus using different Gaussian shape
potentials

3 Numerical calculations and results

In the present calculations, the hyperspherical formalism is used to get hyperradial wave func-
tions to be used in generating the electromagnetic form factors of the 3He nucleus. The sym-
metric (S) state hyperradial wave function which has the dominant contribution to charge and
magnetic form factor is considered. The mixed symmetric (S’) which is responsible for the dif-
ference between the 3H and 3He nuclei is also considered in this study. Accordingly, the mixed
symmetric as well as the completely symmetric contributions to the 3He form factors have been
separately calculated. The form factors FS(q) and FM (q) are calculated using equations (14)
and (17) with the understanding that the mixed symmetric magnetic form factor FM (q) vanishes
and equal zero when the triplet and singlet even parts of the two-body potentials are equal. In
these calculations, spin-isospin dependent two-nucleon potentials of Gaussian shape are used
and expressed as [19–21]

V t(s)(r) =

3
∑

i=1

a
t(s)
i exp

[

−(r/b
t(s)
i )2

]

(18)

where at(s)
i corresponds to the strength of the triplet and (singlet) parts of the potential, while

b
t(s)
i refers to the range of the triplet and (singlet) parts of the potential. The different parameters

of the used potentials are given in Tab. 1. In calculating the magnetic form factor, we have used
also the values µ(3He) = −2.1276 nm, µp = 2.793 nm, µn = −1.9135 nm for the 3He, proton,
and neutron static magnetic moments, respectively. In calculating the nucleon electromagnetic
form factors, a dipole fit [22] of the form [1/(1 + |q|2/0.71(GeV/c)2)2] is used.

It was found that the contributions of the hyperradial wave functions for values of K > 8
corresponding to U18, U20 are so small without any effect on the obtained values of the form
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Fig. 1. 3He magnetic form factors using Gaus-
sian shape potentials. Experimental points are taken
from Ref. [3].
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Fig. 2. 3He charge form factors using Gaussian
shape potentials. Experimental points are taken
from Ref. [4].

factors. Therefore, it is justified to neglect terms for which K > 8 in the equations representing
the symmetric and mixed symmetric form factors given by equations (14) and (17). Presently,
numerical calculations are carried out for the U18 contributions using different potentials [19,21].
The calculated magnetic and charge form factors for the 3He nucleus are shown in Figs. 1 and 2
respectively. The calculated values for the charge radii (rms) of 3He are also given in Tab. 2.

4 Discussion and conclusions

The calculated 3He magnetic form factors and the experimental data as well as the impulse [3]
approximation results are shown in Fig. 1. The impulse approximation results are presented here
for comparison, where the first minimum is obtained at q2 = 8 fm−2. We notice from Fig. 1
that the slopes of the calculated magnetic form factors for zero momentum transfer (q2 = 0) are
in good agreement with the experimental points. We also notice that the calculated form factors
for Peries [21] and Volkov [19] potentials give first minimum around the experimental value
(q2 = 15 fm−2), since Peries potential shows a minimum at q2 = 15.5 fm−2, while for Volkov
potential a minimum is obtained at q2 = 14.0 fm−2. As for the modified Volkov Potential V x

[20] for which the triplet and singlet parts are not equal we have obtained a first minimum at
q2 = 19.5 fm−2 which does not fit the first minimum of the experimental points. In other words,
this potential is too week to give the magnetic moment experimental values of the 3He nucleus.
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The calculated values as well as the experimental data for 3He charge form factors are given
in Fig. 2. Also the calculated (rms) values are given in Tab. 2. We notice from the figure that
the calculated charge form factors are in good agreement with the experimental data at low
momentum transfer ranging from q2 = 0 fm−2 up to q2 = 5 fm−2. The calculated values
for the charge radii (rms) of 3He are in good agreement with the measured value. The calculated
charge form factors for Volkov and Peries potential give a first minimum at q2 = 14 fm−2

and q2 = 15 fm−2 as can be seen from Fig. 2. For the modified Volkov potential V x, a first
minimum is obtained at q2 = 18.5 fm−2 which is far from the measured value at q2 = 11.5
fm−2. So, we can say that the core is too week to produce a minimum that fit the experimental
data. From the above result a general trend could be noticed for the used potential which is the
good agreement between the calculated electromagnetic form factors and the experimental value
for the Volkov and Peries potential while a poor agreement for the modified V x potential. Also
our calculated form factor are comparable with the results obtained applying the Faddeev and
variational techniques [1–8] which show that the hyperspherical method is a reliable method for
studying the different properties of the trinucleon system and is comparable with other methods
such as the Faddeev and variational techniques. This shows that our considered potentials are
reliable enough to be used to investigate the different properties of the 3He nucleus and the
trinucleon system in general. We expect that including the non-nucleonic degrees of freedom
(i.e., meson exchange current contributions) and the three body effect might slightly change the
position of the first minimum of the 3He electromagnetic form factors.

From the above discussion, we conclude that in the frame of the hyperspherical formalism
we have obtained, with realistic two body potentials, good results for the 3He electromagnetic
form factors which are in good agreement with the experimental measurements as well as the
theoretical methods such as Faddeev [8] and variational [1] ones. We also conclude that the
wave functions introduced by the hyperspherical formalism generate 3He magnetic form factors,
which are nearly independent of the potential used.
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