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An abundance of the strangeness that can be induced in thermalized quark-gluon plasma
(QGP) is considered as a signal of the QGP phase appearing in the intermediate state of
ultra-relativistic heavy-ion collisions. As a quantitative characteristic of this signal, we take
the ratio RK+K− = NK+/NK− of the multiplicities of the production of K± mesons.
This ratio is evaluated for K mesons produced from thermalized QGP phase and also for K

mesons produced by the quark-gluon system out of the QGP phase. For a thermalized QGP
phase, the ratio RK+K− has been found a smooth function of a 3-momentum of the K±

meson and in the region 160 MeV < T < 200 MeV. We show that at T = 175 MeV our
prediction for the ratio RK+K− (q, T = 175) = 1.80+0.04

−0.18 agrees well with the experimental
data of NA49 and NA44 collaborations on central ultra-relativistic Pb+Pb collisions at 158
GeV/A, Rexp

K+K− = 1.80 ± 0.10. For the K+ and π+ multiplicities we have obtained the
value RK+π+(q, T = 175) = 0.134 ± 0.014 agreeing well with the experimental value
Rexp

K+π+ = 0.137 ± 0.008 obtained by NA35 collaboration in the nucleus-nucleus collisions
at 200 GeV/A.

PACS: 25.75.-q, 12.38.Mh, 24.85.+p

1 Introduction

Nowadays there is a consensus that QCD gives a satisfactory description of strong interactions of
hadrons. The important question, which is still left, concerns the properties of the QCD vacuum.
One of the approaches to these properties concerns the excited vacuum states at high densities
and temperatures. The quark-gluon plasma (QGP) phase of QCD [1,2] is most likely an excited
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QCD vacuum with quarks, antiquarks and gluons in the deconfined phase. There is a belief
[2] that the QGP phase of the quark-gluon system can be realized in ultra-relativistic heavy-ion
collisions.

As usual for the theoretical analysis of the QGP, one uses either the dynamical approach
[3] or the thermal one [4]. In the dynamical approach, the QGP is treated as a non-equilibrium
quark-gluon system, whose evolution obeys relativistic kinetic equations supplemented by high-
energy quark-gluon interactions treated perturbatively. In the thermal approach, the QGP is
approximated by the ideal quark-gluon gas thermalized after the collision of heavy-ions. In both
approaches the evolution of the QGP ends by hadronization.

The experimental detection of the QGP produced in ultra-relativistic heavy-ion collisions can
be carried out only by the analysis of hadrons in the final state of the reaction. However, hadrons
can be produced in these collisions not only from QGP phase but also from other states of the
quark-gluon system which can accompany the collisions and differ from the QGP phase. In order
to avoid mistakes in the detection of the QGP phase, one needs to have distinct criteria allowing
to distinguish the hadrons produced from the QGP phase from the hadrons which can appear due
to other states of the quark-gluon system in ultra-relativistic heavy-ion collisions.

As has been suggested in Refs. [5,6], one can expect an abundance of strange hadrons K,
Λ, Ξ produced from thermalized QGP. Such an abundance could serve as a criterion of the QGP
[5,6], if the existence of the thermalized QGP in ultra-relativistic heavy-ion collisions is well
justified. The arguments in favour of the formation of the thermalized QGP in ultra-relativistic
heavy-ion collisions are the following: Due to ultra-relativistic energies of heavy-ions, the quark-
gluon system produced in the intermediate state should contain highly relativistic and very dense
quarks, antiquarks and gluons. These constituents of the quark-gluon system are almost free by
virtue of asymptotic freedom, and an exchange of energies between them goes only via collisions.
Due to very high density of the constituents the collisions between them should occur very fre-
quently, what should lead to an equilibrium state of a quark-gluon system. Such an equilibrated
state can be treated as a thermalized QGP phase of the quark-gluon system. The constituents of
the thermalized QGP can be described by Fermi-Dirac and Bose-Einstein distribution functions.

The probabilities of light massless quarks nq(~p ) and light massless antiquarks nq̄(~p ), can be
defined by the Fermi-Dirac distribution functions [1,4,7]:

nq(~p ) =
1

e−ν(T ) + p/T + 1
, nq̄(~p ) =

1

eν(T ) + p/T + 1
, (1.1)

where q = u or d, with momentum ~p and temperature T . Here, T is measured in MeV, ν(T ) =
µ(T )/T , µ(T ) is a chemical potential of the light massless quarks q = u and d depending on a
temperature T [7]. A chemical potential of light antiquarks is −µ(T ). In the thermalized state
[1,4] a positively defined µ(T ) provides an enhancement of the number of light quarks with
respect to the number of light antiquarks. A chemical potential µ(T ) is a phenomenological
parameter of the approach which we determine below.

The probability for gluons to have a momentum ~p at a temperature T is given by the Bose-
Einstein distribution [1,4,7]

ng(~p ) =
1

ep/T − 1
. (1.2)
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Since the strangeness of the colliding heavy-ions is zero, the densities of strange quarks and
antiquarks should be equal. This implies for chemical potential µs = µs̄ = 0. In this case the
probabilities of strange quarks and antiquarks can be given by

ns(~p ) = ns̄(~p ) =
1

e

√

~p 2 + m2
s/T + 1

, (1.3)

where ms = 135 MeV [8] is the mass of the current strange quark/antiquark. The value of the
current s-quark mass ms = 135 MeV has been successfully applied to the calculation of chiral
corrections to amplitudes of low-energy interactions, form factors and mass spectra of low-lying
hadrons [9] and charmed heavy-light mesons [10]. Unlike the massless antiquarks ū and d̄ for
which the suppression is caused by a chemical potential µ(T ), the strange quarks and antiquarks
are suppressed equally by virtue of the non-zero mass ms.

We shall describe the multiplicities NK+ and NK− of the production of K+ and K− mesons,
in a way similar to a simple coalescence model [4,6] which we call a coalescence model of
correlated quarks. In this case the multiplicities of K± meson production can be defined in
terms of quark and antiquark distribution functions

NK+(~q, T ) = < nu(~p − ~q ) ns̄(~p ) > =

= NCVK

∫

d3p

(2π)3
1

e−ν(T ) + |~p − ~q |/T + 1

1

e

√

~p 2 + m2
s/T + 1

,

NK−(~q, T ) = < nū(~p − ~q ) ns(~p ) > =

= NCVK

∫

d3p

(2π)3
1

eν(T ) + |~p − ~q |/T + 1

1

e

√

~p 2 + m2
s/T + 1

, (1.4)

where ~q is a 3-momentum of the K± mesons, NC = 3 is the number of quark colour degrees of
freedom, VK is a parameter of our coalescence model of correlated quarks having a dimension
of a spatial volume and being to some extent an intrinsic characteristic of spatial distribution
of the K± mesons. We suggest to determine VK in terms of the parameters characterizing
the properties of the K-meson such as the mass MK = 500 MeV and the leptonic coupling
constant FK = 160 MeV [9,10]. Due to uncertainty relations, the K-meson should be localized
within a volume inversely proportional to the power of a 3-momentum. For the thermalized K-
meson system, this should be a thermal 3-momentum. The thermal momentum is proportional
to the K-meson mass

√
MK in the case of the Maxwell-Boltzmann gas of K± mesons. Another

important intrinsic parameter of K mesons is the leptonic coupling constant FK = 160 MeV
[9,10]. Thus, according to dimensional considerations, one can set VK = C/(FKMK)3/2, where
C is a dimensionless parameter of our model equal for all pseudoscalar mesons. Of course, such
determination of VK is not much rigorous, but it can be useful as a working hypothesis which
does not contradict to experimental data.

The multiplicity of π+-meson production is defined in analogous way

Nπ+(~q, T ) = < nu(~p − ~q ) nd̄(~p ) > =

= NCVπ

∫

d3p

(2π)3
1

e−ν(T ) + |~p − ~q |/T + 1

1

eν(T ) + p/T + 1
, (1.5)
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where Vπ = C/(FπMπ)3/2, and Fπ = 131 MeV and Mπ = 140 MeV are the leptonic coupling
constant and the mass of pions, respectively.

We would like to emphasize that other dimensional parameters of K and π mesons, such as
charge radii rK+ and rπ+ , can be hardly considered as intrinsic parameters of these mesons, since
they are functions of FK and Fπ . For example, in the Vector Dominance Approach, the charge
radii can be expressed in terms of the masses of the ρ and K∗ vector mesons Mρ and MK∗ ,
respectively. According to the Kawarabayashi-Suzuki-Fayazuddin-Riazuddin (KSFR) relations
imposed by chiral symmetry [9], these masses are proportional to Fπ and FK , respectively,
Mρ = gρ Fπ ' 790 MeV and MK∗ = gρFK ' 960 MeV, where gρ ' 6 is the coupling constant
of the ρππ interaction. Theoretical values of the masses of the ρ and K∗ mesons predicted by the
KSFR relations agree with experimental values Mρ = 770 MeV and MK∗ = 892 MeV within
accuracies of 3% and 8%, respectively.

In our coalescence model of correlated quarks, the multiplicities of K and π meson produc-
tion can be represented as

N(~q, T ) =

∫

d3pq

(2π)3/2

∫

d3pq̄ ′

(2π)3/2
nq(~pq) nq̄ ′(~pq̄ ′) Φ(~pq − ~pq̄ ′) δ(3)(~q − ~pq − ~pq̄ ′) , (1.6)

where ~pq and ~pq̄ ′ are the 3-momenta of the quark q and the antiquark q̄ ′, Φ(~pq −~pq̄ ′) is the wave
function of a relative motion of qq̄ ′ pair and the δ-function δ(3)(~q − ~pq − ~pq̄ ′) stands for the
momentum conservation. The wave function Φ(~pq − ~pq̄ ′) is responsible for bosonization of the
qq̄ ′ pair and contains all information about spontaneous breaking of chiral symmetry and quark
confinement. In our approach, the wave function of a relative motion of the qq̄ ′ pair is constant

Φ(~pq − ~pq̄ ′) = NCV, (1.7)

where V = VK or V = Vπ for the multiplicities of K and π meson production, respectively.
This approximation is admissible, since it does not contradict to confinement of quarks and

antiquarks, which should accompany hadronization of quarks and antiquarks from the QGP.
Indeed, the use of Fermi-Dirac distribution functions for the description of the thermalized quarks
and antiquarks (1.1) provides a concentration of the values of the momentum integrals around the
momenta of relative motion of the qq̄ ′ pair of order of p ∼ T . Effectively this confines quarks
and antiquarks in the region of spatial relative distances of order ∆r . 1/T ∼ 1 fm.

We employ in our coalescence model of correlated quarks also other approximation of mul-
tiplicities of the K and π meson production from the QGP phase. According to experimental
data, the phase volume of the hadrons produced in ultra-relativistic A+A collisions is not spher-
ically symmetric with respect to the collision axis. This can imply that the thermalization of the
quark-gluon system, leading to the formation of the thermalized QGP, should be different in the
transversal and longitudinal direction relative to the collision axis of ultra-relativistic A+A colli-
sions. However, due to very high complexity of the theoretical description of hadronization from
the thermalized QGP phase, we suggest to approximate multiplicities of hadron production by
spherically symmetrical distribution functions assuming a spherical symmetric thermalization of
the quark-gluon system. As we will show below, such a simplification describes well the ratios
of multiplicities of K and π meson production.

The main goal of this paper is to calculate the ratios of the multiplicities

RK+K−(q, T ) =
NK+(~q, T )

NK−(~q, T )
, RK+π+(q, T ) =

NK+(~q, T )

Nπ+(~q, T )
(1.8)
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with a minimum number of input parameters. Since the main input parameter for the theoretical
description of the thermalized QGP is the chemical potential µ(T ) of light quarks and antiquarks,
we shall aim our effort to this quantity.

We suggest to treat a heavy ion as a degenerate Fermi gas. Converting formally all nucleon
degrees of freedom into quark degrees of freedom we would get a degenerate Fermi gas of
quarks. More generally, this is a degenerate quark-gluon system, where all gluon and antiquark
degrees of freedom have died out. Heating this quark-gluon system up to temperature T and
demanding the conservation of the baryon number, this corresponds to the conservation of the
baryon number density in the fixed spatial volume of the ion. Thus we fix unambiguously the
temperature dependence of a chemical potential of µ(T ). We find that µ(T ) decreases strongly
for high temperatures from the value µ(0) = µ0 = 250 MeV obtained at zero temperature. Such
a behaviour of µ(T ) implies that for high temperatures the number of light antiquarks (ū and d̄)
will not be suppressed noticeably with respect to the number of light quarks (u and d). Therefore,
the ratio RK+K−(q, T ) should tend to unity in the high-temperature limit, RK+K−(q, T ) → 1
at T � µ0. However, the numerical estimates show that RK+K−(q, T ) ' 1 can be already
reached for T ≥ µ0 = 250 MeV. In turn, the ratio RK+K−(q, T ) varies from 2.14 to 1.48 for
intermediate temperatures T = 160 ÷ 200 MeV, as it is estimated in Sect. 6. This means that
the ratio RK+K−(q, T ) can be a good criterion for the signal of the thermalized QGP phase in
ultra-relativistic heavy-ion collisions. In fact, one gets the ratio RK+K− = NK+/NK− ' 1,
when it is calculated for the production of K± caused by the states of the quark-gluon system
different to the thermalized QGP.

In Section 2 we calculate the chemical potential µ(T ). In Section 3 we discuss a possibility
of the formation of the thermalized QGP in ultra-relativistic heavy-ion collisions. In Section 4
we analyse the multiplicities of the K±-meson production and give the analytical formula for
the ratio RK+K−(q, T ) as a function of 3-momenta of the K± mesons and a temperature T .
In Section 5 we analyse the multiplicities of the π±-meson production and give the analytical
formula for the ratio RK+π+(q, T ) as a function of 3-momenta of K+ and π+ mesons and a
temperature T . In Section 6 we make the numerical analysis of the analytical formulas obtained
in Section 4 and Section 5. We show that these ratios depend smoothly on both 3-momenta of
mesons and a temperature which we change from T = 160 MeV to T = 200 MeV. We find that
our theoretical formulas for the ratios of multiplicities of K and π meson production reproduce
reasonably well the experimental data on the central relativistic Pb+Pb collisions at 158 GeV per
nucleon by NA49 and NA44 Collaborations and the data on proton-nucleus and nucleus-nucleus
collisions at 200 GeV per nucleon by NA35 Collaboration for temperature T = 175 MeV. In the
Conclusions, we discuss the obtained results.

2 Chemical potential of light quarks and antiquarks

Suppose that the chemical potential µ(T ) is an intrinsic characteristic of the thermalized quark-
gluon system, which we identify with the thermalized QGP. Then, if we assume that the thermal-
ized QGP is an excited state of the QCD vacuum, the chemical potential µ(T ) should describe the
distributions of quarks and antiquarks of the thermalized QGP produced by any external state at
any external conditions, not only due to ultra-relativistic heavy-ion collisions. Since any state of
a thermalized system is closely related to certain external conditions, we need only to specify the
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external conditions of the thermalized quark-gluon system which should be the most convenient
for the determination of µ(T ) in order to obtain µ(T ).

Let the external conditions of the thermalized quark-gluon system be caused by the state of
the nuclear system, which is a heavy ion with the baryon number A. In the Fermi-gas approxi-
mation [11], a heavy ion is a degenerate gas of nucleons at T = 0 with the baryon density

nB =
A

4π

3
r3
A

=
3

4π

1

r3
N

= 0.14 fm−3 , (2.1)

coinciding with the nuclear matter density nN [11], where rA = rN A1/3 is the radius of a heavy
ion, and rN = 1.2 fm [11,12].

Suppose that all baryon degrees of freedom are converted into quark degrees of freedom
and quarks are massless. In this case we should get a degenerate Fermi gas of free quarks or
more generally a degenerate free quark-gluon system, where all gluon and antiquark degrees of
freedom have died out. Heating this quark-gluon system up to temperature T , we should get the
thermalized system of quarks, antiquarks and gluons confined in the finite volume of a heavy ion
(4π/3)r3

N A.
In the low-temperature limit T → 0, such conversion of baryon degrees of freedom into

the quark ones required to get a system of free quarks can be understood qualitatively within a
naive non-relativistic quark model, where baryons are slightly bounded three-quark states. These
three valence quarks, the constituent quarks, can be treated as current quark excitations above a
quark condensate produced by a cloud of current qq̄ pairs due to spontaneous breaking of chiral
symmetry.

In terms of the light quark and antiquark distribution functions (1.1), the baryon density of
the thermalized quark-gluon system at a temperature T is given by [1,4]

nB(T ) =
1

3
× 2 × 2 × NC × [nq(T ) − nq̄(T )] =

=
4

3
NC

∫

d3p

(2π)3

[

1

e−ν(T ) + p/T + 1
− 1

eν(T ) + p/T + 1

]

. (2.2)

The factor (1/3)×2×2×NC stands for the product of (baryon charge)× (number of light quark
flavour degrees of freedom)×(number of spin degrees of freedom)×(number of quark colour
degrees of freedom). Integrating over the momentum ~p we obtain [1]

nB(T ) =
2

9
NC

[

ν(T ) +
ν3(T )

π2

]

T 3. (2.3)

Denoting the chemical potential at zero temperature T = 0 as µ(0) = µ0 we get

µ0 =

(

3π2

2

)1/3

n
1/3
B = 250 MeV. (2.4)

Here, nB(0) = nB = 0.14 fm−3 is given by eq. (2.1), since the baryon density of nucleons
should be equal to the baryon density of quarks in the fixed spatial volume due to a conservation
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of a baryon number. Our value of the chemical potential µ0 = 250 MeV agrees well with the
estimate µ0 ∼ 300 MeV [1].

The fluctuations of the baryon number density nB(T ) caused by the fluctuations of a temper-
ature T inside the fixed spatial volume (4π/3)r3

N A of the heavy ion should lead to the violation
of the conservation of the baryon number. Since the baryon number is a good quantum number
conserved for strong interactions, we impose the constraint

nB(T ) = nB . (2.5)

Using (2.3) and (2.4), the equation (2.5) can be transcribed into the form

ν3(T ) + π2ν(T ) −
( 3

NC

)(µ0

T

)3

= 0. (2.6)

The cubic equation (2.6) has only one real root [13]. This defines the chemical potential µ(T ) as
a function of T

µ(T )

µ0
=







1

2
+

1

2

√

√

√

√1 +
4π6

27

(

T

µ0

)6






1/3

−






−1

2
+

1

2

√

√

√

√1 +
4π6

27

(

T

µ0

)6






1/3

, (2.7)

where we have set NC = 3. The chemical potential µ(T ) given by eq. (2.7) guarantees the
conservation of the baryon number under any fluctuations of a temperature T in the thermalized
quark-gluon system confined in the fixed volume V = (4π/3) r3

N A.
At T → 0 and T → ∞ the chemical potential µ(T ) has the following asymptotic behaviours

µ(T )

µ0
=











1 − π2

3

T 2

µ2
0

+ O(T 6) , T → 0 ,

µ2
0

π2

1

T 2
+ O(T−7) , T → ∞ .

(2.8)

From (2.7) one can find that µ(T ) decreases strongly when a temperature increases. Indeed, at
T = 160 MeV one obtains µ(T ) ' µ0/4, while at T = µ0 the value of the chemical potential
makes up about tenth part of µ0, i.e. µ(T ) ' µ0/10. This implies that at very high temperatures
the function ν(T ) = µ(T )/T becomes small and the contribution of the chemical potential
of light quarks and antiquarks can be treated perturbatively. This assumes that at temperatures
T ≥ µ0 = 250 MeV the number of light antiquarks will not be substantially suppressed by the
chemical potential relative to the number of light quarks.

Since for very high temperatures the ratio RK+K−(q, T ) should be of the order of unity,
one can hardly distinguish whether hadrons are produced from the thermalized QGP phase or
from another states of the quark-gluon system different to the thermalized QGP for temperatures
T > µ0 = 250 MeV.

Nevertheless, the ratio RK+K−(q, T ) would differ noticeably from unity for intermediate
temperatures T = 160÷ 200 MeV. Indeed, the rough estimate gives

RK+K−(q, T ) ∼ e2ν(T ) = 2.14÷ 1.48 > 1. (2.9)
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That is why the experimental analysis of the ratio RK+K−(q, T ) can be a good criterion for the
signal of the thermalized QGP phase in ultra-relativistic heavy-ion collisions.

For rough estimate of the ratio RK+π+(q, T ), we obtain

RK+π+(q, T ) ∼ VK

Vπ
× eν(T ) = 0.161÷ 0.133. (2.10)

Our estimates (2.9) and (2.10) are in qualitative agreement with the experimental data on the
central ultra-relativistic Pb+Pb at 158 GeV/A collisions by NA49 and NA44 Collaborations and
with the data on proton-nucleus and nucleus-nucleus collisions at 200 GeV per nucleon by NA35
Collaboration, which are Rexp

K+K− = 1.80± 0.10 [14-17] and Rexp
K+π+ = 0.137± 0.008 [17].

3 Thermalized quark-gluon plasma

The lifetime of the thermalized QGP phase is of the order of τQGP = (6÷ 15) fm/c. Therefore,
thermalization of the quark-gluon system should occur for times τth much less than τQGP, i.e.
τQGP � τth. This can be fulfilled only in a very dense matter. Thereby, in order to be convinced
that the thermalized QGP can be formed in ultra-relativistic heavy-ion collisions, we have to
calculate the density of the number of the constituents of the thermalized QGP at a temperature
T n(T ),, and to compare it with the nuclear matter density nN = 0.14 fm−3. The existence of
the thermalized QGP should correspond to n(T ) � nN. The density n(T ) is determined by
[1,4]

n(T ) = ng(T ) + nq(T ) + nq̄(T ) = 2(N2
C − 1)

∫

d3p

(2π)3
1

ep/T − 1

+ 4 NC

∫

d3p

(2π)3
1

e−ν(T ) + p/T + 1
+ 4 NC

∫

d3p

(2π)3
1

eν(T ) + p/T + 1
. (3.1)

Integrating over momenta, we obtain

n(T ) = T 3 4NC

π2

[(

N2
C − 1

4NC
+

1

2

)

ζ(3) + ν2(T ) ln 2 +
1

6
ν3(T ) −

ν(T )
∫

0

dx
(ν(T ) − x)2

ex + 1

]

,(3.2)

where ζ(3) = 1.202 is a Riemann zeta-function [18]

ζ(s) =
1

Γ(s)

∞
∫

0

dx
xs−1

ex − 1
=

1

(1 − 21−s)

1

Γ(s)

∞
∫

0

dx
xs−1

ex + 1
. (3.3)

At NC = 3, the density n(T ) is equal to

n(T ) = T 3 12

π2

[

7

6
ζ(3) + ν2(T ) ln 2 +

1

6
ν3(T ) −

ν(T )
∫

0

dx
(ν(T ) − x)2

ex + 1

]

. (3.4)
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We can neglect the contributions of the two last terms with accuracy better than 1% for tempera-
tures T ≥ 160 MeV. This yields

n(T ) = T 3 12

π2

[

7

6
ζ(3) + ν2(T ) ln 2

]

. (3.5)

Setting T ≥ 160 MeV, we get the estimate n(T ) ≥ 0.98 fm−3. This density is by a factor
of 7 larger compared to the nuclear matter density nN = 0.14 fm−3. Hence, we have got the
inequality n(T ) � nN which does not rule out the formation of the thermalized QGP phase in
the ultra-relativistic heavy-ion collisions.

Thus, if we treat the constituents of the thermalized QGP like rigid spheres with fixed radii,
the average time of collisions of the constituents in the thermalized QGP should be much less
than D/c = (6/πn(T )c3)1/3 ' 1 fm/c, i.e. τcoll � 1 fm/c. The parameter D is a radius of
a rigid sphere. In this approximation, the density n(T ) can be defined by n(T ) = 1/(πD3/6),
where πD3/6 is a volume of a rigid sphere. The inequality τcoll � 1 fm/c implies that the
time of the thermalization of the quark-gluon system τth, should be τth ≤ 1 fm/c. This value is
by of order of magnitude less compared to the lifetime of the QGP, i.e. τQGP ≥ (6 ÷ 15) τth.
Hence, these estimates confirm the possibility of the thermalization of the quark-gluon system in
ultra-relativistic heavy-ion collisions. For the thermalized QGP, the energy density is determined
by [1,4]:

ε(T ) = εg(T ) + εq(T ) + εq̄(T ) = 2(N2
C − 1)

∫

d3p

(2π)3
p

ep/T − 1

+ 4 NC

∫

d3p

(2π)3
p

e−ν(T ) + p/T + 1
+ 4 NC

∫

d3p

(2π)3
p

eν(T ) + p/T + 1
. (3.6)

Integrating over momenta we get [1,4]:

ε(T ) = T 4 NC

[

N2
C − 1

NC

π2

15
+

7π2

30
+ ν2(T ) +

1

2π2
ν4(T )

]

. (3.7)

At NC = 3 the energy density of the thermalized QGP amounts to

ε(T ) = T 4

[

37π2

30
+ 3 ν2(T ) +

3

2π2
ν4(T )

]

. (3.8)

Setting T ≥ 160 MeV, we estimate ε(T ) ≥ 1.08 GeV/fm3. This is another confirmation of
the possibility to treat the quark-gluon system produced in ultra-relativistic heavy-ion collisions
as the thermalized QGP [1,4]. Since our estimates do not contradict to the existence of the
thermalized QGP phase in ultra-relativistic heavy-ion collisions, we can proceed to the evaluation
of the multiplicities of the K±- and π±-meson production caused by hadronization from the
thermalized QGP phase.
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4 Multiplicities of the K±-meson production

The calculation of the multiplicities of the K±-meson production caused by hadronization from
the thermalized QGP we perform using eq. (1.4). These multiplicities were postulated following
(i) the hypothesis of coalescing quarks and antiquarks and (ii) the assumption of the spherical
symmetric thermalization of the quark-gluon system. Setting NC = 3, we transcribe eq. (1.4)
into

NK+(~q, T ) = 3 VK

∫

d3p

(2π)3
1

e−ν(T ) + |~p − ~q |/T + 1

1

e

√

~p 2 + m2
s/T + 1

,

NK−(~q, T ) = 3 VK

∫

d3p

(2π)3
1

eν(T ) + |~p − ~q |/T + 1

1

e

√

~p 2 + m2
s/T + 1

. (4.1)

Below, we show that the multiplicities eq. (4.1) are functions of λ = eν(T ), λs = ems/T and

λK = e q/T ,

NK+(~q, T ) = NK+(λ, λK , λs),

NK−(~q, T ) = NK+(λ−1, λK , λs), (4.2)

where q is a 3-momentum of K± mesons. Integrating over directions of a momentum ~p we
obtain

NK+(λ, λK , λs) =
3m2

sTVK

4π2 ln λK

ϕ(q)
∫

0

dϕ
shϕ chϕ

1 + λ
chϕ
s

[

F
(

λ, λ−1
K , λshϕ

s

)

− F
(

λ, λ−1
K , λ−shϕ

s

)

+(lnλK − ln λsshϕ) ln
(

1 + λλ−1
K λshϕ

s

)

− (ln λK + ln λsshϕ) ln
(

1 + λλ−1
K λ−shϕ

s

)

]

+
3m2

sTVK

4π2 ln λK

∞
∫

ϕ(q)

dϕ
shϕ chϕ

1 + λ
chϕ
s

[

F
(

λ, λK , λ−shϕ
s

)

− F
(

λ, λ−1
K , λ−shϕ

s

)

− (ln λK − ln λs

× shϕ) ln
(

1 + λλKλ−shϕ
s

)

− (ln λK + ln λsshϕ) ln
(

1 + λλ−1
K λ−shϕ

s

)

]

, (4.3)

where we have used the abbreviation p = ms shϕ and denoted

ϕ(q) = ln

(

q

ms
+

√

1 +
q2

m2
s

)

. (4.4)

For the integration over directions ~p we have used

∫

dx x

λ−1 ex + 1
= −x ln

(

1 + λ e−x
)

−
λ
∫

0

dz
ln
(

1 + z e−x
)

z
. (4.5)
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The functions F (λ, λ±1
K , x) are defined by

F (λ, λ±1
K , x) =

λ
∫

0

dz
ln(1 + λ±1

K x z)

z
. (4.6)

Using eq. (4.2) we obtain the ratio of the multiplicities of the K±-meson production

RK+K−(q, T ) =
NK+(λ, λK , λs)

NK+(λ−1, λK , λs)
=

=

{ ϕ(q)
∫

0

dϕ
shϕ chϕ

1 + λ
chϕ
s

[

F
(

λ, λ−1
K , λshϕ

s

)

− F
(

λ, λ−1
K , λ−shϕ

s

)

+ (ln λK − ln λs shϕ) ln
(

1 + λ λ−1
K λshϕ

s

)

− (ln λK + ln λs shϕ) ln
(

1 + λ λ−1
K λ−shϕ

s

)]

+

∞
∫

ϕ(q)

dϕ
shϕ chϕ

1 + λ
chϕ
s

[

F
(

λ, λK , λ−shϕ
s

)

− F
(

λ, λ−1
K , λ−shϕ

s

)

− (ln λK − ln λs shϕ) ln
(

1 + λ λK λ−shϕ
s

)

− (ln λK + ln λs shϕ) ln
(

1 + λ λ−1
K λ−shϕ

s

)]

}

×
{ ϕ(q)
∫

0

dϕ
shϕ chϕ

1 + λ
chϕ
s

[

F
(

λ, λ−1
K , λshϕ

s

)

− F
(

λ, λ−1
K , λ−shϕ

s

)

+ (ln λK − ln λs shϕ) ln
(

1 + λ−1 λ−1
K λshϕ

s

)

− (ln λK + ln λs shϕ) ln
(

1 + λ−1 λ−1
K λ−shϕ

s

)

]

+

∞
∫

ϕ(q)

dϕ
shϕ chϕ

1 + λ
chϕ
s

[

F
(

λ, λK , λ−shϕ
s

)

− F
(

λ, λ−1
K , λ−shϕ

s

)

− (ln λK − ln λs shϕ) ln
(

1 + λ−1 λK λ−shϕ
s

)

− (ln λK + ln λs shϕ) ln
(

1 + λ−1 λ−1
K λ−shϕ

s

)]

}−1

. (4.7)

The ratio RK+K−(q, T ) depends on 3-momenta of the K± mesons q and a temperature T in
terms of λ, λK and λs.

For high momenta (q → ∞), the multiplicities of the K±-meson production can be substan-
tially simplified. We would like to emphasize that infinite momenta q → ∞ do not correspond
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to the thermodynamic description. In fact, we deal only with momenta q � T . However, since
the momentum integrals describing the multiplicities of K and π meson productions are concen-
trated around the relative momenta of quarks and antiquarks, which are of order p ∼ T , the limit
q → ∞ should be understood as a mathematical idealization of the inequality q � T .

Thus, the contribution of the integrals over the region ϕ(q) ≤ ϕ < ∞ can be neglected
relative to the contribution of the integrals over the region 0 ≤ ϕ ≤ ϕ(q) for q → ∞ or
λK → ∞. Keeping only the leading terms in the λK expansion we arrive to

NK±(λ, λK , λs) =
3T 3VK

4π2
λ±1 λ−1

K =
3T 2VK

4π2
e±ν(T ) e−q/T , (4.8)

where the factor e−q/T testifies the transition of the thermalized QGP into the thermalized ultra-
relativistic gas of K± mesons.

Taking the ratio RK+K−(q, T ) in the limit q → ∞, we obtain

lim
q→∞

RK+K−(q, T ) = RK+K−(∞, T ) = λ2. (4.9)

We notice that the ratio of the multiplicities RK+K−(q, T ) does not depend on the momenta of
the K±-mesons. It is defined only by the chemical potential of the light quarks. Further we will
show that this result agrees well with the experimental data on central ultra-relativistic Pb+Pb
collisions at 158 GeV per nucleon for temperatures 160 MeV ≤ T ≤ 200 MeV.

The ratio RK+K−(∞, T ) given by eq. (4.9) differs from the result obtained by Koch, Müller
and Rafelski (see eq. (6.29) of Ref. [4b]) by the factor λ2

s = exp(2µs/T ), the squared frugality
of strange quarks, where µs is a chemical potential of strange quarks. In the case of chemical
equilibrium which we follow in our approach, µs = 0 and λs = λ−1

s̄ = 1.
In the limit q → 0, the multiplicities of the K±-meson production behave like

NK±(λ, 1, λs) =
3m3

sVK

2π2

∞
∫

0

dϕ
sh2ϕ chϕ

1 + λ
chϕ
s

1

1 + λ∓1 λ
shϕ
s

. (4.10)

It is easy to see that the main contribution to NK±(λ, 1, λs) comes from the region ϕ(q) ≤ ϕ <
∞. Thus, in the limit q → 0, the ratio of the multiplicities amounts to

RK+K−(0, T ) =

[ ∞
∫

0

dϕ
sh2ϕ chϕ

1 + λ
chϕ
s

1

1 + λ−1 λ
shϕ
s

][ ∞
∫

0

dϕ
sh2ϕ chϕ

1 + λ
chϕ
s

1

1 + λ λ
shϕ
s

]−1

(4.11)

The numerical analysis (see Section 6) shows that RK+K−(0, T ) calculated for 160 MeV ≤ T ≤
200 MeV differs insignificantly from RK+K−(q, T ) for q � T approximated by (4.9).

5 Multiplicity of the π±-meson production

In our approach the multiplicities Nπ+(~q, T ) and Nπ−(~q, T ) of the production of the π+ and π−

mesons are equal and defined by eq. (1.5). Integrating over directions of momentum ~p, we get
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the expression depending only on λ and λπ = exp(q/T )

Nπ+(λ, λπ) =
3VπT 3

4π2 ln λπ

λπ
∫

0

dx x

λ ex + 1

[

F
(

λ, λ−1
π , ex

)

− F
(

λ, λ−1
π , e−x

)

+(ln λπ − x) ln
(

1 + λ λ−1
π ex

)

− (ln λπ + x) ln
(

1 + λ λ−1
π e−x

)]

+
3V T 3

4π2 ln λπ

∞
∫

λπ

dx x

λ ex + 1

[

F
(

λ, λπ , e−x
)

− F
(

λ, λ−1
π , e−x

)

−(ln λπ + x) ln
(

1 + λ λ−1
π e−x

)

− (ln λπ − x) ln
(

1 + λ λ−1
π e−x

)

]

. (5.1)

The ratio RK+π+(q, T ) of the multiplicities of the K+ and π+ meson production is given by

RK+π+(q, T ) =
NK+(λ, λK , λs)

Nπ+(λ, λπ)
=

=
m2

s

T 2

VK

Vπ

{ ϕ(q)
∫

0

dϕ
shϕ chϕ

1 + λ
chϕ
s

[

F
(

λ, λ−1
K , λshϕ

s

)

− F
(

λ, λ−1
K , λ−shϕ

s

)

+(lnλK − ln λs shϕ) ln
(

1 + λ λ−1
K λshϕ

s

)

− (ln λK + ln λs shϕ) ln
(

1 + λ λ−1
K λ−shϕ

s

)]

+

∞
∫

ϕ(q)

dϕ
shϕ chϕ

1 + λ
chϕ
s

[

F
(

λ, λK , λ−shϕ
s

)

− F
(

λ, λ−1
K , λ−shϕ

s

)

−(lnλK − ln λs shϕ) ln
(

1 + λ λK λ−shϕ
s

)

− (ln λK + ln λs shϕ) ln
(

1 + λ λ−1
K λ−shϕ

s

)]

}

×
{ ln λπ
∫

0

dx x

λ ex + 1

[

F
(

λ, λ−1
π , ex

)

− F
(

λ, λ−1
π , e−x

)

+(lnλπ − x) ln
(

1 + λ λ−1
π ex

)

− (ln λπ + x) ln
(

1 + λ λ−1
π e−x

)]

+

∞
∫

lnλπ

dx x

λ ex + 1

[

F
(

λ, λπ e−x
)

− F
(

λ, λ−1
π , e−x

)

−(lnλπ − x) ln
(

1 + λ λπ e−x
)

− (ln λπ + x) ln
(

1 + λ λ−1
π e−x

)]

}−1

. (5.2)

For high momenta (q → ∞), which should be understood as a mathematical idealization of the
inequality q � T , the multiplicities of the π±-meson production behave like the multiplicities
of the K±-meson production

Nπ±(λ, λπ) =
3T 3Vπ

4π2
λ−1

π =
3T 3Vπ

4π2
e−q/T , (5.3)
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where the factor exp(−q/T ) testifies the production of π± mesons from the thermalized QGP in
the state of the thermalized ultra-relativistic π±-meson gas at a temperature T .

Taking into account eq. (4.8) we obtain the ratio RK+π+(q, T ) in the limit q → ∞

lim
q→∞

RK+π+(q, T ) = RK+π+(∞, T ) =
VK

Vπ
eν(T ). (5.4)

As we will show below this relation agrees well with the experimental data on nucleus-nucleus
ultra-relativistic collisions at 200 GeV per nucleon (NA35 Collaboration).

In the ratio the parameter C is canceled, as it has been intended, and the ratio RK+π+(q, T ) is
determined only by well established parameters of K+ and π+ mesons such as masses, MK =
500 MeV and Mπ = 140 MeV, and leptonic coupling constants, FK = 160 MeV and Fπ =
131 MeV.

6 Numerical analysis of the ratios RK+K−(q, T ) and RK+π+(q, T )

The numerical analysis of the ratio RK+K−(q, T ) (4.7) testifies that RK+K−(q, T ) varies slightly
around the value RK+K−(∞, T ) = λ2, when 3-momenta of the K± mesons take values from
interval 0 ≤ q < 103 GeV. This satisfies the relation (4.9) at q ≥ 103 GeV.

The ratio (4.7) depends also smoothly on temperature T for 160 MeV ≤ T < 200 MeV. The
numerical results read

RK+K−(q, T = 160) = 2.14+0.13
−0.30,

RK+K−(q, T = 175) = 1.80+0.04
−0.18,

RK+K−(q, T = 190) = 1.58+0.02
−0.13, (6.1)

where the upper and the lower values correspond to the maximum and the minimum of the ratio
RK+K−(q, T ), respectively.

Comparing the theoretical values (6.1) with the experimental data on central ultra-relativistic
Pb+Pb collisions at 158 GeV per nucleon [14–17]

Rexp
K+K− = 1.80± 0.10 , (6.2)

one can see that our coalescence model of correlated quarks, supplemented by the assumption
of the spherical symmetric thermalization of the quark-gluon system, describes well the experi-
mental data on the production of K±-mesons at the temperature T = 175 MeV.

For K± mesons, which can be produced in ultra-relativistic heavy-ion collisions due to mech-
anisms having no relation to the thermalized QGP, we obtain that the ratio RK+K− is indepen-
dent on the 3-momentum of the K±-mesons and is equal to RK+K− = 1.10±0.01. Our estimate
(6.1) testifies that the intermediate state in ultra-relativistic heavy-ion collisions should evolve via
the thermalized QGP phase with a reasonable probability.

For 3-momenta 0 ≤ q < ∞ the ratio RK+π+(q, T ) of the multiplicities of the K+ and π+

meson production varies very smoothly and it is given by

RK+π+(q, T = 160) = 0.144± 0.017,

RK+π+(q, T = 175) = 0.134± 0.014,

RK+π+(q, T = 190) = 0.128± 0.011, (6.3)
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where±∆ corresponds to the minimum and the maximum values of the ratio. Comparing the the-
oretical ratios (6.3) with the experimental data given by NA35 Collaboration on proton-nucleus
and nucleus-nucleus collisions at 200 GeV/A [17]

Rexp
K+π+ = 0.137± 0.008, (6.4)

one can see that the best agreement is obtained again for T = 175 MeV.

7 Conclusions

Resuming the obtained results we would like to accentuate that the calculation of the chemi-
cal potential µ(T ) as a function of T has allowed to diminish the number of input parameters
for the description of the thermalized QGP phase. The value of the chemical potential at zero
temperature µ(0) = µ0 = 250 MeV agrees well with the estimate µ0 ∼ 300 MeV [1].

For the theoretical analysis of multiplicities of meson production from the thermalized QGP
phase we have used the approach based on the hypothesis of coalescing quarks and antiquarks.
We have called this approach as the coalescence model of correlated quarks. For the simplifi-
cation of the theoretical formulas for multiplicities we have assumed that (i) the wave function
of the relative motion of a quark q and antiquark q̄ ′ coalescing into the meson with a quark
structure qq̄ ′ is constant and (ii) the thermalization of the quark-gluon system produced in the
ultra-relativistic heavy-ion collisions is spherically symmetric.

We have shown that the multiplicities of meson production defined in the coalescence model
of correlated quarks acquire the shape of the Maxwell-Boltzmann distribution functions in the
ultra-relativistic limit. This testifies the availability of the ideal multi-component meson gas at a
temperature T in the hadronic phase of the thermalized quark-gluon system.

We have found that the ratio RK+K−(q, T ) is a smooth function of 3-momenta q of the
K± mesons. It varies slightly around the value RK+K−(∞, T ) = exp(2µ(T )/T ). At T =
175 MeV, we have calculated RK+K−(q, T = 175) = 1.80+0.04

−0.18. This result agrees well with
the experimental data on central ultra-relativistic Pb+Pb collisions at 158 GeV/A (NA49 and
NA44 Collaborations) and ultra-relativistic nucleus-nucleus collisions at 200 GeV/A (NA35 Col-
laboration) [14–17], Rexp

K+K− = 1.80 ± 0.10. Moreover, the thermodynamic parameters of our
fit of experimental data T = 175 MeV and µ(T = 175) = 51 MeV are in qualitative agreement
with the experimental ones [15] T ∼ 170 MeV and µ ∼ 85 MeV.

We would like to accentuate that infinite momenta (q → ∞), which do not correspond to
the thermodynamic description, should be understood only as a mathematical idealization of the
regime q � T . This is justified by the concentration of the momentum integrals, describing the
multiplicities of meson production, around the momenta p ∼ T of a relative motion of coalescing
quarks and antiquarks.

For the first time, the ratio RK+K−(q, T ) has been calculated as a function of a chemi-
cal potential of light quarks and a temperature by Koch, Müller and Rafelski [4b]. Comparing
our result, given by eqs. (4.7) and (6.1), with that obtained by Koch, Müller and Rafelski (see
eq. (6.29) and Fig. 6.7 of Ref. [4b]) we argue that in the thermalized QGP phase (i) strange
quarks and antiquarks are in equilibrium state that provides a vanishing value of their chemical
potential, (ii) the ratio of multiplicities is a smooth function of 3-momenta of K± mesons, (iii)
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the most important values of a temperature should exceed T = 160 MeV and (iv) a chemical
potential of light quarks is a well-defined function of T decreasing as T −2.

The ratio RK+π+(q, T ) of the multiplicities of the K+ and π+-meson production has been
found a smooth function of the 3-momenta q, the mean value of which depends on VK/Vπ =
(FπMπ/FKMK)3/2 = 0.109. This gives the ratio RK+π+(q, T ) agreeing well with experimen-
tal data obtained by NA35 Collaboration [17], Rexp

K+π+ = 0.137±0.008. The best agreement we
get for T = 175 MeV and q � T , RK+π+(q, T = 175) = 0.134± 0.014.

The first calculation of the ratio RK+π+(q, T ) in the thermalized QGP has been performed
by Glendenning and Rafelski [19]. Unlike our approach, by skipping the intermediate quark-
gluon stage of the evolution of the thermalized QGP, Glendenning and Rafelski have postulated
that the mesonic phase of the thermalized QGP is the ideal Bose gas of K and π mesons. This
has led to the numerical value of the ratio R(K+π+) ≈ 0.3 (see Fig. 2 of Ref. [19]) computed
for 160 MeV ≤ T ≤ 180 MeV, which does not agree with contemporary experimental data. We
explain such a discrepancy by a loss of the quark-antiquark origin of the π+-meson production,
which is retained in our coalescence model of correlated quarks.

Supposing that the production of K± mesons in ultra-relativistic heavy-ion collisions can
be caused by mechanisms which have no relation to the thermalized QGP, we have calculated
the ratio RK+K− = 1.10 ± 0.01. Therefore, the numerical estimate RK+K−(q, T ) ' 1.80,
obtained due to hadronization from the thermalized QGP phase, testifies that the intermediate
state for ultra-relativistic heavy-ion collisions should proceed via the QGP phase with reasonable
probability.

In the conclusion we would like to accentuate that we have considered the multiplicities of
meson production from the thermalized QGP phase for the QGP at rest. This does not contradict
to pioneering papers on the thermalized QGP [1–6,19] (see also [21,22]). In the case of the
thermalized QGP moving with a constant 4-velocity uµ = (γ, γ~u ), where γ = 1/

√
1 − u2 is

the Lorentz factor, the multiplicities of meson production should be defined by using quark and
antiquark distribution functions in the Jüttner form [23]

NK+(~q, T ) = 3VK

∫

d3p

(2π)3
1

e−ν(T ) + γ (|~p − ~q | − ~u · (~p − ~q ))/T + 1

× 1

eγ (
√

~p 2 + m2
s − ~u · ~p)/T + 1

,

NK−(~q, T ) = 3VK

∫

d3p

(2π)3
1

eν(T ) + γ (|~p − ~q | − ~u · (~p − ~q ))/T + 1

× 1

eγ (
√

~p 2 + m2
s − ~u · ~p)/T + 1

. (7.1)

For ultra-relativistic QGP the Lorentz factor γ � 1 but and the main contribution to the integrals
comes from the momenta |~p | ∼ T , therefore, the multiplicities of the K-meson production can
be reduced to the more simple form

NK+(~q, T ) = 3VK e+ν(T )
∫

d3p

(2π)3
e−γ (|~p − ~q | +

√

~p 2 + m2
s − ~u · (2~p − ~q ))/T ,

NK−(~q, T ) = 3VK e−ν(T )
∫

d3p

(2π)3
e−γ (|~p − ~q | +

√

~p 2 + m2
s − ~u · (2~p − ~q ))/T . (7.2)
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Since the momentum integrals coincide, the ratio of multiplicities is equal to

RK+K−(~q, T ) =
NK+(~q, T )

NK−(~q, T )
= e2ν(T ) = 1.80. (7.3)

This confirms our result obtained in Section 6.
The multiplicity of the π+-meson production should be

Nπ+(~q, T ) =

= 3Vπ

∫

d3p

(2π)3
1

e−ν(T ) + γ (|~p − ~q | − ~u · (~p − ~q ))/T + 1

1

eγ (|~p | − ~u · ~p)/T + 1
. (7.4)

For γ � 1 the r.h.s. of (7.4) reduces to

Nπ+(~q, T ) = 3Vπ

∫

d3p

(2π)3
e−γ (|~p − ~q | + |~p | − ~u · (2~p − ~q ))/T . (7.5)

Making a shift of variables ~p − ~q → ~p and taking into account that |~q | � T , we obtain

NK+(~q, T ) = 3VK e+ν(T ) e−u · q/T
∫

d3p

(2π)3
e−2γ (|~p | − ~u · ~p)/T ,

Nπ+(~q, T ) = 3Vπ e−u · q/T
∫

d3p

(2π)3
e−2γ (|~p | − ~u · ~p)/T , (7.6)

where we have neglected the terms of order O(ms/|~q |) and O(|~p |/|~q |). This is correct, since
|~p | ∼ ms ∼ T that testifies that these ratios are of the same order ms/|~q | ∼ |~p |/|~q | ∼ T/|~q | �
1.

Taking the ratio RK+π+(~q, T ) of multiplicities defined by (7.6) we get

RK+π+(~q, T ) =
NK+(~q, T )

Nπ+(~q, T )
=

VK

Vπ
e+ν(T ) = 0.147. (7.7)

This result agrees with the number obtained in Section 6.
Thus, we can conclude that our theoretical predictions for the ratios of K and π meson mul-

tiplicities, obtained for the thermalized QGP at rest, do not contradict to the case of the QGP
moving with ultra-relativistic hydrodynamical velocity.
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