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Amorphous conductors such as liquid metals and alloys are subject to dc conductivity σ

calculation here. Principal aim is to explore the impact on σ of the constitutive equation
α∗ = 1, formulated and developed in the preceding papers. The nearly free electrons (NFE)
model has been applied. Alkali metals are assumed to fit this model well, and sodium the
best. Consequently, the results on these metals have been assumed reliable and relevant for
conclusions making. The conclusion we made is: instead of the Fermi radius kF proper for
the statistical ensemble in state of thermodynamics equilibrium, a new k′

F number is needed
to be introduced into the linear response formula when calculating σ and α∗. This k′

F is the
length of the corresponding axis of ellipsoid proper for describing the statistical ensemble
in the state with dc current. In the traditional interpretation of the linear response formula
(Kubo formula) this conversion has been overlooked. Parameters of the mentioned ellipsoids
are determined in this paper for a number of liquid metals of valency numbers 1,2,3,4, in
addition to a selection of some binary and ternary conducting alloys. It is up to experimental
measurements to decide how real this concept of restructuring the statistical ensemble is.

PACS: 02.50.+s, 05.60.+w, 72.15.-v

1 Introduction

This paper, following the two previous papers [1, 2] from this series, hereafter referred to as I.,
and II. respectively, is devoted to numerical calculation of σ, the dc electrical conductivity. Prin-
cipal aim of this paper is to investigate the impact on σ of the explicit and consistent inclusion
into calculation of the constitutive equation [2] α∗ = 1. This constitutive equation emerges from
the equation: limω→0 σi(ω) = 0, after the non-dissipative component σi(ω) of the full electrical
conductivity σ(ω), frequency ω dependent, is substituted by the linear response expression for
σi(ω), see eqs. (66), (67), (106) and (108) in II.
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The point of view we apply here is: σ and α∗, being them both related to the same state of
a conductor, are to be calculated from the same set of input parameters, and the calculated α∗

should obey the relation α∗ = 1 anyway. If the constitutive equation is not obeyed, the pattern of
σ calculation cannot be assumed correct, irrespective to the results for σ, calculated for a given
particular case. Since the nearly free electrons (NFE) model has been applied, well fitted to al-
kali metals, the results of calculations on these metals, are expected to be the most trusted and
relevant items to discussion and conclusions making. It appeared that the relation α∗ = 1 has
not been obeyed on alkali metals, including sodium, which is assumed to fit the (NFE) model
the best, though the calculated σ agree well with the values obtained from experimental mea-
surements. Having in mind this deficiency, on top of the objections, critical views and pleads for
improvement [3–7] known from before, we have looked for outcome from this deficiency, and
have found it in adopting some corrections concerning the concept of σ calculation. According
to the Kubo’s concept, dc conductivity has to be calculated by inserting into the linear response
formula for σ the values of parameters characterizing the state of thermodynamics equilibrium.
Now we assume, as far as Fermi radius kF is concerned, this is not correct. In the state of thermo-
dynamics equilibrium, the carriers of an amorphous conductor are represented by the statistical
ensemble spherical in the wavenumbers space, in k − space, while in presence of the dc electric
field, the carrier system has undergone conversion, and the corresponding statistical ensemble
obtains an ellipsoidal shape in the wavenumber space, in k − space. The conversion is to be
attributed to coupling to the dc electric field, uniform and long lasting on the microscopic scale.
Some authors assume [4], this conversion is left out of the linear response theory as consequence
of linearisation in external driving force applied in the too early stage of linear response formula
derivation. Anyway, we assume now, instead of the Fermi radius kF characteristic for thermo-
dynamics equilibrium state, a new k′

F radius of the ellipsoid is to be substituted into the formula
for σ and α∗ calculation.

This paper is organized as follows. In Section 2.1 the matrix element Uq, being it the main
component in expressions for σ and α∗, is outlined. Two types of Uq are shown. Section 2.2
is devoted to numerical calculation. The properties of two formulas, giving σ and α∗ in terms
of S(q) — the structure factor, and v(q) — the form-factor, are explained and monitored by a
number of graphs. A table with results of calculation on alkali metals is given. The analysis of
the results then follows, where the disobey of the equation α∗ = 1 has initiated a new treatment
of the Fermi radius. In Section 2.3 the statistical ensemble for carriers, inherent to the state with
dc current is introduced and described. Section 3 is devoted to calculation of σ and α∗ on liquid
metals from columns IIA, IIIA and IVA of the Periodic Table of the elements, in addition to some
binary and ternary conducting alloys. Section 4 is devoted to conclusions.

2 Basics in σ calculation on amorphous conductors

2.1 The Matrix Elements |Uq|

We start with the coupling (scattering) Hamiltonian U , as it is given by the sum of overlapping
potentials of single ions u(r − Rj), multiplied by the carrier’s charge (−e)

U(r) = −e
∑

j

u(r − Rj), (1)
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where r and Rj are the carrier’s and the ion’s position, respectively. The matrix element Uq ,

Uq =< Ψk+q |U |Ψk >, (2)

with U = U(r) given by eq. (1), and with Ψk+q and Ψk plane waves, reads

Uq =

(−e

V

)
∫

V

∑

j

u(r − Rj)e
−iq·rd3r. (3)

Following the Van Hove’s path [9] of separating the structure-induced properties from the atom-
induced properties in Uq , it is convenient to factories eq. (3) as

Uq = sa(q) · v(q), (4)

where sa(q) and v(q) are the structure-amplitude and the form-factor respectively, defined [8] by

sa(q) =
1

Na

∑

j

e−iq·Rj , (5)

v(q) =

(−e

Ω

)
∫

V

d3r · u(r)e−iq·r, (6)

where Na and Ω are the number of ions in the volume V and single ionic volume respectively,
Ω = V/Na. In order to take into account screening, exchange and carrier’s correlation ef-
fects [10, 11], v(q) is rewritten as

v(q) =
vi(q)

εr(q)
, (7)

where εr(q) is the relative dielectric screening function with the correlation and exchange effects
included, and vi(q) is the bare-ion’s form-factor. The bare-ion’s form-factor vi(q) is obtained
from eq. (6), after the single ion’s screened potential u(r) is replaced by the single ion’s bare
potential ui(r) [8, 10, 11]. Here we are going to outline explicitly two types of bare-ion’s form-
factors vi(q). The first one, in our terminology called the true-potential bare-ion form-factor
vi(q), is obtained by taking for ui(q) the single ion’s electrostatic potential at r, produced by the
atomic nucleus consisting of Z protons positioned at the origin of space, at r = 0, in addition to
the core electrons spread around the nucleus with the electron density ne(ρ)

ui(r) =

(

e

4πε0

) [

Z

r
−

∫

V

d3ρ

(

ne(ρ)

r − ρ

)]

. (8)

The core electron density ne(ρ), as well as the integral in eq. (6) with u(r) replaced by ui(r),
appear in physics of X-ray diffraction and in physics of electron diffraction on crystals [8]. The
integral in eq. (6), for this case, has been solved in terms of a certain quantity fq, leading to the
following expression for vi(q)

vi(q) =

(−e2

ε0Ω

) (

Z − fq

q2

)

, (9)
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Fig. 1. Axes labeling: X ≡ q[ 1010m−1], Y ≡
fq . q is the scattering’s displacement wavenum-
ber, fq is the atomic scattering factor in electron
units, here for sodium Na, with values taken from
“The International Tables for X-ray Crystallogra-
phy” [12]. The segment with arrows pointing to
q = 1.8 · 1010m−1 by its own length displays
magnitude of the term Z − fq , standing as mul-
tiplier in eq. (9). For sodium Z = 11, and in
the vicinity of the double Fermi wavenumber kF ,
q0 = 2kF ≈ 1.8 · 1010m−1, fq ≈ 1, therefore, in
the vicinity of q0, Z − fq ≈ +10.

Fig. 2. Axes labeling: X ≡ q[ 1010m−1], Y ≡
v(q)[ 1.6 · 10−19J]. Curves 1 and 2 are graphs
of the true-potential form-factor and the pseudo-
potential form-factor respectively, v(q) given by
eq. (7), with the same screening function εr(q)
taking the correlation and exchange effects by the
Kleinman-Langreth factor [11,16]. The bare-ion’s
form-factor vi(q) for curve 1 is given by eq. (9),
for sodium Na with the parameters: Z = 11,
Ω = 41.1 ·10−30m3, and with fq displayed in Fig.
1. The bare-ion’s form-factor vi(q) for curve 2 is
given by eq. (11), for Na with the parameters: Zv =
1, Ω = 41.1 · 10−30m3 and Rc = 0.96 · 10−10m.

where ε0 is the empty space dielectric constant (SI units are assumed). The term fq is known
under the name of the atomic scattering factor in electron units, and its numerical values, for
any kind of neutral or ionized atom, are available from “The International Tables for X-ray Crys-
tallography” [12]. The second type of bare-ion’s form-factors, here denoted by vi

m(q), are known
under the name of pseudo-potential or model-potential bare-ion’s form-factors. Ashcroft’s empty-
core model-potential [10, 11], well representing this class of form-factors, is defined by

ui
m(r) =

{

(eZv/4πε0r) , r ≥ Rc

0 , r < Rc
(10)

where Zv and Rc are the atomic valency number and the empty-core radius respectively. The
corresponding bare-ion form-factor vi

m(q), following from eq. (6) by substituting ui
m(r) for u(r)

in eq. (6), is

vi
m(q) =

−e2Zv

ε0Ωq2
cos(Rcq). (11)
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Fig. 3. Axes labeling: X ≡ q[ 1010m−1], Y ≡
S(q). S(q) is the structure factor for liquid sodium
Na at temperature t = 105oC, measured by X-ray
diffraction [13]. Arrow pointing to X = 1.8 shows
position of the double Fermi radius q0, q0 = 2kF =
1.8 ·1010m−1. Arrow pointing to X = 2.02 shows
position of qp, the wavenumber corresponding to
the first peak of the structure factor.

Fig. 4. Axes labeling: X ≡ q[ 1010m−1], Y ≡
S(q)v2(q)[ 1.62 · 10−38J2]. The multipliers v(q)
and S(q) defining Y in this graph are displayed
by curve 1 in Fig. 2. and by the curve in Fig.
3. respectively. This graph displays the averaged
square of the true scattering potential |Uq |

2

av given
by eq. (12), (up to the constant multiplier (Ω/V )),
for the liquid sodium Na at temperature t = 105oC.
Arrow at X = 1.8 points to the double Fermi radius
q0 = 2kF = 1.8 · 1010m−1.

The two types of form-factors from the above are different in their magnitude; the second
type, given by eq. (11), is considerably smaller than the first one given by eq. (9). The reason
why vi

m(q) is smaller than vi(q) given by eq. (9) is easy to understand, from comparison of
eqs. (8) and (10). When right hand side of eq. (10) is inserted into eq. (6), the integral does not
gain a contribution from the core sphere of radius Rc. Since Rc, by the concept’s propositions is
taken to be approximately equal to the positively charged ion’s radius [10, 11], vi

m(q) describes a
situation physically equivalent to one occurring when conduction electrons do not enter the core
sphere at all. Unlike this, the form-factor eq. (9) describes the physical situation when carriers
are allowed to enter the core sphere, with probability equal to any point of the V volume; note
that the wave-functions Ψk in the matrix element eq. (2) are plane waves.

The structure induced properties of Uq, given by eq. (5), are determined by the set of Rj

vectors, by the arrangement of ions. If the ions are arranged in a perfect crystalline lattice,
sa(q) 6= 0 only for q = κ, where κ denotes the reciprocal lattice vector, otherwise sa(q) = 0.
(In the cases of lattices with a single ion per unit cell, sa(κ) = 1.) But if the ions are arranged
outside the perfect crystalline structure, randomly, sa(q) 6= 0 generally, for any wavenumber q.

To our purpose not Uq, but the square of it, averaged over time and configuration of ions, is
needed, |Uq |2 = (Uq · U∗

q )av , where the subscript )av means taking statistical average over the
configuration and time. We transcribe |Uq |2 to the form,

|Uq |2 =

(

Ω

V

)

S(q)v2(q), (12)
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Fig. 5. Axes labeling: X ≡ q[ 1010m−1], Y ≡
q3B2(q)[ 10

30m−3]. B2(q) as defined in eq. (15)
depends on two parameters: temperature T , and
Fermi energy Ef . This graph is for sodium Na at
t = 105oC, with Ef = h̄2k2

F /2m1, for kF and
m1 given in Tab. 1. Arrow at X = 1.8 points to the
double Fermi radius, q0 = 2kF = 1.8 · 1010m−1.

Fig. 6. Axes labeling: X ≡ q[ 1010m−1], Y ≡
q3B1(q)[ 10

30m−3]. B1(q) defined by eq. (18)
depends on two parameters: temperature T , and
Fermi energy Ef . This graph is for sodium Na
at t = 105oC, with Ef = h̄2k2

F /2m1, and with
parameters kF and m1 given in Tab. 1. Arrow
at X = 1.8 points to the double Fermi radius
q0 = 2kF = 1.8 · 1010m−1.

where S(q) is the structure factor defined by the expression

S(q) =

(

V

Ω

)

|sa(q)|2av . (13)

Data for structure factors S(q) of amorphous conductors, are available whether from ex-
perimental measurements [13, 14], or from analytical expressions derived for models, like the
Percus-Yevick formula [8] is. In the numerical calculations within present paper, only the exper-
imentally measured S(q) are used, assuming that they are more reliable.

2.2 Numerical Calculations

The eq. (105) as it stands in our paper II., with |Uq |2 substituted by eq. (12) from this paper, leads
to the following expression for the dc conductivity σ,

σ =

(

Ωe2β2

48 · 6π3h̄

) (

m1

me

)2 ∫ qG

0

dq · q3 · S(q) · v2(q) · B2(q), (14)

where the second derivative
(

∂2nk/∂ε2
k

)

k=q/2
, of the partition function nk as accounted for

k = q/2, has been replaced by a dimension-less function B2(q) in accord with the equations as
follow

(

∂2nk

∂ε2
k

)

k=q/2

= β2 · B2(q), B2(q) = nq/2 · (1 − nq/2) · (1 − 2nq/2), (15)
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Fig. 7. Axes labeling: X ≡ q[ 1010m−1], Y ≡
q3B2(q)S(q)v2(q)[ 1.62 · 10−8J2m−3]. Y in this
graph displays the integrand in eq. (14). The two
factors of Y in this graph, i.e. S(q)v2(q) and
q3B2(q) are displayed graphically in Fig. 4. and
Fig. 5. respectively. Arrow at X = 1.8 points
to the double Fermi radius q0 = 2kF = 1.8 ·
1010m−1, (for sodium Na, at t = 105oC).

Fig. 8. Axes labeling: X ≡ q[ 1010m−1], Y ≡
q3B1(q)S(q)v2(q)[ 1.62 · 10−8J2m−3]. Y in this
graph displays the integrand in eq. (17). The two
factors of Y in this graph, i.e. S(q)v2(q) and
q3B1(q) are displayed graphically in Fig. 4. and
Fig. 6. respectively. Arrow at X = 1.8 points
to the double Fermi radius q0 = 2kF = 1.8 ·
1010m−1, (for sodium Na, at t = 105oC).

nq/2 =
1

eβ(E/4−Ef ) + 1
, E = β

h̄2q2

2m1
, β = (1/kBT ), (16)

where kB , T and Ef are the Boltzmann constant, temperature and Fermi energy respectively.
By the same substitution performed to eq. (106) from the paper II., the following equation

for the α∗ − term follows:

α∗ =
Ω2meβ

12π4h̄2Zv

(

m1

me

)2 ∫ qG

0

dq · q3 · S(q) · v2(q) · B1(q), (17)

where the dimensionless multiplier B1(q) in the integrand is given by

B1(q) = V .P .

(

1

E

)
∫ ∞

0

dZ

(

1

eZ−βEf + 1

) [

1

(
√

E − 2
√

Z)2
− 1

(
√

E + 2
√

Z)2
)

]

, (18)

with Z representing the dimensionless energy of carriers, Z = (βh̄2k2/2m1). Zv in eq. (17) is
the valency number, the number of conduction electrons per ion, (V/N) = (V/Na ·Zv) = Ω/Zv.
The integral in eq. (18) has no solution in terms of the elementary functions, and it has to be car-
ried out numerically. Due to the singularity in the point Z = (E/4), the numerical calculations
are to be performed with much of care. The two functions from the above, B1(q) and B2(q),
already have appeared in our earlier work [15], but in a different context, with tabulated val-
ues of function B1(q), for a series of βEf parameters. The integrands in eqs. (14) and (17),
can be expressed in terms of three functions of q as follow: S(q)v2(q), q3B2(q) and q3B1(q).
The graphs of these functions displayed on characteristic samples, help us a lot, better to under-
stand eqs. (14) and (17) as calculating tools, and to see the specific way in which the scattering
Hamiltonian |Uq |2 ∼ S(q)v2(q) impacts σ and α∗.
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Fig. 9. Axes labeling: X ≡ qG[ 1010m−1], Y ≡
σ(qG)[ 108(Ω · m)−1]. qG denotes the upper limit
of integration in eq. (14). σ(qG) in this graph is
the conductivity σ as function of qG, for sodium
Na at t = 105oC, with parameters given in Tab. 1.
Arrow at X = 1.8 points to the double Fermi radius
q0 = 2kF = 1.8 · 1010m−1].

Fig. 10. Axes labeling: X ≡ qG[ 1010m−1], Y ≡
α∗(qG). qG denotes the upper limit of integration
in eq. (17). α∗(qG) in this graph is the value of
α∗-term as function of qG, for sodium Na at t =
105oC, with parameters given in Tab. 1. Arrow at
X = 1.8 points to the double Fermi radius q0 =
2kF = 1.8 · 1010m−1].

In Fig. 1, where fq, the atomic scattering factor in electron units is displayed, the segment
with arrow on both ends, represents the factor (Z−fq) appearing in eq. (9). Physically, (Z−fq)
can be interpreted as the magnitude of the electric charge seen by the carrier scattered with a
given displacement wavenumber q. In case of a displacement vector q0 = 2kF = 1.8 · 1010m−1,
the factor (Z − fq) has value, (Z − fq) ≈ +10, and it can be interpreted like if the carriers
moving on the Fermi surface with wavenumber kF , in the event of back scattering have seen the
scatterer (Na-ion), with a charge of +10 units of electron charge, and it can be so only if the
carriers have penetrated the Na-ion deep down, almost to the very bottom of the electronic core,
leaving only one core electron closer to the atomic nucleus. How real this description may be, it
is a matter to dispute, but eq. (9) gives it.

Figure 2 displays the graphs of the form-factors v(q) given by eq. (7), with the screening
function εr(q) accounting the correlation and exchange effects by means of the Kleinman Lan-
greth factor [16], in this instance in application to sodium Na. Curve labeled by 1 is the true-
potential form-factor given by eq. (9) and accounted for by the parameters for Na: Z = 11,
Ω = 41.1 · 10−30m3, and fq taken from “The International Tables for X-ray Crystallography”
for sodium. Curve labeled by 2 is the Ashcroft’s empty-core model-potential (pseudo-potential)
given by eq. (11) with the parameters for Na: Zv = 1, Ω = 41.1 ·10−30m3, Rc = 0.96 ·10−10m.
It is the curve of type 1 which is applied in calculating σ within this work. Figure 3 displays
the structure factor S(q) for the case of liquid sodium Na at temperature t = 105oC, with val-
ues obtained from X-ray measurements [13, 14]. Fig. 4 shows the graph of S(q)v2(q), as it is
calculated from v(q) presented by curve 1 in Fig. 2, and from S(q) displayed in Fig. 3. Up to a
constant multiplier (Ω/V ), this curve displays the average of the true scattering potential |Uq|2av .



The dc Electrical Conductivity Calculation...,III. 131

Fig. 11. Axes labeling: X ≡ qG[ 1010m−1],
Y ≡ σ(qG)[ 108(Ω · m)−1]. qG denotes the up-
per limit of integral in eq. (14). σ(qG) denotes the
conductivity σ as function of qG, with parameters
given in Tab. 1 for sodium Na at t = 105oC. Curve
a is calculated by taking for Fermi radius numerical
value given in line 4, i.e. kF = 0.90 · 1010m−1,
while curve b is calculated by the second selec-
tion for Fermi radius given in line 8, i.e. k′

F =
0.99 · 1010m−1. All other parameters are the same
for both curves. Arrow 1 points to the double Fermi
radius q0 = 2kF = 1.8 · 1010m−1, while arrow 2
points to the second selection of the double Fermi
radius, q

′

0 = 2k′

F = 1.98 · 1010m−1.

Fig. 12. Axes labeling: X ≡ qG[ 1010m−1],
Y ≡ α∗(qG). qG denotes the upper limit of integral
in eq. (17). α∗(qG) displays α∗-term as function
of qG, with parameters given in Tab. 1 for sodium
Na at t = 105oC. Curve a is calculated by tak-
ing for Fermi radius numerical value given in line
4, i.e. kF = 0.90 · 1010m−1, while curve b is
calculated by the second selection for Fermi ra-
dius given in line 8, i.e. k′

F = 0.99 · 1010m−1.
All other parameters are the same for both curves.
Arrow 1 points to the double Fermi radius q0 =
2kF = 1.8 · 1010m−1, while arrow 2 points to
the second selection of the double Fermi radius,
q

′

0 = 2k′

F = 1.98 · 1010m−1.

The Fig. 5 and Fig. 6 display graphs of q3B2(q) and q3B1(q) respectively. These two
functions act like moulds shaping the impact to σ and α∗ of the scattering potential |Uq |2 ∼
S(q)v2(q). From the shape of the graph in Fig. 5 one can conclude that the multiplier q3B2(q) in
the integrand of eq. (14) cuts out a very narrow interval on the q − axis, with center at the point
q0 = 2kF , where q3B2(q) 6= 0 and where the scattering potential S(q)v2(q) has impact to σ, and
the remaining larger part of q-axis where q3B2(q) ≈ 0, and where S(q)v2(q) has no impact to
σ. The small width of the interval on q-axis giving non-zero contribution to σ, allows us to state
that only the scattering back (or nearly back scattering) matters to σ calculated from eq. (14).
From the shape of graph in Fig. 6, a similar conclusion can be formulated for the role played
by the multiplier q3B1(q) in the integrand of eq. (17). However, the width of q-interval, where
S(q)v2(q) plays significant role in α∗ calculation, is considerably larger than the width of the
interval where S(q)v2(q) plays significant role in σ calculation. There is also another interesting
feature common to both graphs in Fig. 5 and Fig. 6. It is the negative sign of both q3B2(q) and
q3B1(q), for any q < 2kF and the positive sign of both q3B2(q) and q3B1(q), for any q > 2kF ,
meaning that both σ and α∗ gain negative contributions from the scattering with q < 2kF , and
correspondingly a positive one from the scattering with q > 2kF , since the factor S(q)v2(q) is
positive for any q. Therefore σ and α∗ are equal to the differences of the mentioned positive and
negative contributions.
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Fig. 13. Axes labeling: X ≡ qG[ 1010m−1], Y ≡
σ(qG)[108(Ω · m)−1]. qG is the upper limit of the
integral in eq. (14). σ(qG) is the conductivity σ as
function of qG, with parameters given in Tab. 1 for
Na at t = 105oC. The parameters for curves a and
b in both, this and Fig. 11 respectively are the same
in everything but the form-factor v(q). While in
Fig. 11 the true-potential form-factor v(q) has been
applied, whose graph is given by curve 1 in Fig. 2,
in this figure the pseudo-potential form-factor v(q)
has been applied, whose graph is given by curve 2
in Fig. 2 The arrow 1 points to the double Fermi
radius q0 = 2kF = 1.8 ·1010m−1, while the arrow
2 points to the second selection of the double Fermi
radius, q

′

0 = 2k′

F = 1.98 · 1010m−1.

Fig. 14. Axes labeling: X ≡ qG[ 1010m−1],
Y ≡ α∗(qG). qG is the upper limit of the inte-
gral in eq. (17). α∗(qG) is the α∗ − term as func-
tion of qG, with parameters given in Tab. 1 for Na
at t = 105oC. The parameters for curves a and b
in both this and Fig. 12 respectively are the same
in everything but the form-factor v(q). While in
Fig. 12 the true-potential form-factor v(q) has been
applied, whose graph is given by curve 1 in Fig. 2,
in this figure the pseudo-potential form-factor v(q)
has been applied, whose graph is given by curve 2
in Fig. 2. Arrow 1 points to the double Fermi radius
q0 = 2kF = 1.8 · 1010m−1, while arrow 2 points
to the second selection of the double Fermi radius,
q

′

0 = 2k′

F = 1.98 · 1010m−1.

The graphs in Fig. 7 – Fig. 10, give further and quite convincing approval of back scattering
character mattering to σ and α∗. From the graph in Fig. 9 we see that integration in eq. (14) up
to the upper limit of integration qG = 1.7 · 1010m−1 does not result in any noticeable gain; the
whole gain takes place on the interval of q from 1.7 · 1010m−1 till 1.9 · 1010m−1. The upper
limit of integration in q denoted by qG in eq. (14) was not specified so far, but now we see it
may be extended till qG = ∞, or it may be restricted to qG = 1.9 · 1010m−1 in this case, it
gives the same σ. Generally, the upper limit of integration in eq. (14), qG, is a number of order
q0 = 2kF , slightly above this number. From observing the graph in Fig. 10 similar conclusions
can be formulated about α∗ and eq. (17), but with somewhat wider interval in the vicinity of
point q0 = 2kF being relevant to α∗ calculation.

In Tab. 1, the result of our numerical calculations on five alkali metals at different temper-
atures are presented. The nearly free electrons (NFE) dynamics of carriers is applied in these
calculations. Generally it is assumed that these metals meet the nearly free electrons (NFE)
model well. Sodium Na is the one assumed to meet the (NFE) model the best. The results on
sodium are assumed most reliable and relevant for conclusion and decision making.
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Fig. 15. In a) the shaded sphere with radius kF

represents the part of the k − space occupied by
conducting electrons in the state of thermodynam-
ics equilibrium. In b) the shaded ellipsoid with the
axis denoted by k′

F oriented toward the dc external
electric field represents the part of the k − space
occupied by conduction electrons in the state of
stationary but not thermodynamically equilibrium
state. Volumes of both the sphere and the ellip-
soid are equal, so is the number of carriers within
them. Thermal smearing of states in the vicinity of
the Fermi surface is not indicated in the figures, but
it is assumed to exist and to be determined by the
Fermi-Dirac distribution in both the sphere and the
ellipsoid.

Fig. 16. Axes labeling: X ≡ q, Y ≡ S(q). S(q)
is a schematic display of the structure factor, on
q − axis scaled by qp, the position of the first pick
of S(q). The vertical dotted lines display the po-
sition of the double Fermi radius 2kF , relative to
the first pick, for conductors of valency numbers:
Zv = 1; 2; 3; 4 respectively. In presence of the dc
current, the carrier system undergoes a conversion
in which 2k′

F , double of the parameter k′

F defined
in this paper, denoted by vertical straight full line,
is positioned somewhere slightly below the position
of the first pick of S(q).

There are three facts to point out when estimating data in Tab. 1. First, all the parameters, as
given in lines t, Ω, (m1/me), kF , and applied as inputs in calculating values of σcal and α∗

cal,
are in pretty good consent with data encountered in sources of parameters for the liquid metals
considered. Second, values of ρcal in Tab. 1, obtained from ρcal = 1/σcal with σcal calculated
by eq. (14), are in pretty good agreement with the experimental values of resistivity ρexp [21].
Third, the values of α∗

cal in Tab. 1 are in rather obvious disagreement with the theoretically
prescribed value of α∗, α∗ = 1. Here we are facing a dilemma, whether to accept this situation
as non-problematic, since ρcal is satisfactory, and to regard the mentioned disagreement as a
marginal item, or alternatively to conceive this situation as a problematic one, assuming that the
inconsistency between α∗

cal and α∗ = 1 is not marginal, but rather a symptom of a fault. We
undertook the last option, anticipating that the source of fault is in wrong values for the input
parameter denoted by kF . After performing the calculations with taking for the input parameter
kF values as they are given in Tab. 1 by the row k′

F , we have obtained for resistivity ρ and the
parameter α∗ values as they are given in rows ρ′

cal and (α∗
cal)

′

. Resistivities ρ have been slightly
changed but still remaining close to ρexp, while α∗ has passed through significant conversion,
(compare the row α∗

cal to row (α∗
cal)

′

), approaching the theoretically prescribed value of α∗ = 1.
Graphs in Fig. 11 and Fig. 12 give clear visualization of the conversion which σcal and α∗

cal

pass through, when kF has been shifted from kF = 0.896 · 1010m−1 to k′
F = 0.995 · 1010m−1,

in case of liquid sodium Na at temperature t = 105oC. The transition from curve a to curve b in
Fig. 11 and Fig. 12 proceeds gradually as the parameter kF is rising from kF = 0.896 ·1010m−1

to k′
F = 0.995 · 1010m−1. Similar are the graphs for all the remaining liquid metals in Tab. 1.
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Liquid metal Li Li Li Na Na Na Na Na K K K K K Rb Rb Cs Cs
t [oC] 190 250 452 105 200 300 450 550 70 105 200 350 450 40 200 30 200
Ω [10−30m3] 22.5 22.8 23.8 41.1 42.3 43.3 45.1 46.4 78.6 79.3 81.4 85.1 87.6 96.1 102 120. 127.
(m1/me) 2.05 2.07 1.99 1.32 1.26 1.27 1.13 1.11 0.98 0.91 0.87 0.79 0.76 0.54 0.50 0.40 0.39
kF [1010m−1] 1.10 1.09 1.08 0.90 0.89 0.88 0.87 0.86 0.72 0.72 0.71 0.70 0.70 0.67 0.66 0.63 0.62
α∗

cal 10.0 9.67 8.74 44.2 38.2 34. 20. 14. 106. 73. 59. 32. 18. 58. 31. 50. 30.
ρcal [10−8Ω · m] 23.4 23.7 22.9 9.3 9.87 11.9 18.2 23.3 5.62 8.1 11. 22.5 33.9 21. 34. 51. 55.
ρexp [10−8Ω · m] 24. 26. 34. 9.7 13.4 18. 25. 30. 13. 15.3 21.6 31.6 38.2 23. 37. 37. 56.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

k′

F [1010m−1] 1.22 1.22 1.18 0.99 0.98 0.97 0.96 0.94 0.79 0.79 0.78 0.77 0.76 0.74 0.72 0.71 0.68
k′′

F [1010m−1] 1.04 1.03 1.03 0.86 0.85 0.84 0.83 0.82 0.69 0.69 0.68 0.67 0.67 0.64 0.63 0.59 0.59
(α∗

cal)
′ 0.94 1.01 1.01 1.1 0.7 1.2 0.9 0.9 0.97 1.1 1.1 1.1 0.95 2.9 −1.1 2.6 0.7

ρ′

cal [10−8Ω · m] 23.7 25.9 34. 9.8 13.4 18.2 25. 29.7 13.0 15.3 21.6 31.6 38. 22.8 36. 37. 56.
(k′

F − kF )/kF 0.12 0.12 0.10 0.11 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.12 0.10
qp[10

10m−1] 2.50 2.50 2.44 2.02 2.02 2.02 2.02 2.02 1.62 1.62 1.62 1.62 1.62 1.52 1.52 1.45 1.44
(qp − 2k′

F )/qp 0.02 0.02 0.03 0.02 0.03 0.04 0.05 0.07 0.03 0.03 0.04 0.05 0.06 0.03 0.05 0.03 0.06
DOS 0.75 0.77 0.75 0.72 0.70 0.72 0.66 0.65 0.82 0.76 0.74 0.69 0.68 0.51 0.50 0.45 0.45
Zv 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

Tab. 1. The labels Li, Na, K, Rb and Cs in the top row denote Lithium, Sodium, Potassium, Rubidium and Cesium respectively. Any column comprises
the set of input parameters and the corresponding values of σ and a∗ calculated by eqs. (14) and (17) respectively, for metal denoted on the top of the
column. The rows (entries) labeled by t and Ω, display the metals temperature and the single ions volume respectively. Ω is calculated from the relation
Ω = (A/ρ)1.66, where A is the atomic mass of a given metal in the atomic mass units (a.ra.w), and ρ is the metal’s density at temperature t in [g·cm−3]
units. Data for density ρ are taken from [13]. The row labeled by (m1/me) displays the velocity mass m1 as ratio to the free electron mass me. The
experimental data for this important input parameter are: for Li from thermal measurements [17] (m1/me) = 2.19, and [18] (m1/me) = 2.4; for Na
from cyclotron resonance [19,20] (m1/me) = 1.24, while the electronic specific heat has given [17] (m1/me) = 1.25, and also [18] (m1/me) = 1.3.
Experimental data for potassium K are: from cyclotron resonance [19] (m1/me) = 1.21, and from thermal measurements [17] (m1/me) = 1.23. Data
listed for (m1/me) in this Table for Li and Na agree very well with the up mentioned experimantal data. The row kF displays the Fermi radius proper
for the statistical ensemble in state of thermodynamics equilibrium. kF has been calculated from kF = (3πZv/Ω)1/3, with valency number Zv = 1.
Rows labeled by a∗

cal and ρcal (with ρcal obtained from ρcal = 1/σcal), display the numbers calculated by eqs. (17) and (14) respectively, from measured
structure factors S(q) [13,14], and from true form-factors v(q) given by eqs. (7) and (9). The atomic scattering factors fg in eq. (9) have been taken from
“The International Tables for X-ray Crystallography” [12], and the screening function εr(q) in eq. (7), has been calculated from the expression taking the
correlation and exchange effects into account by the Kleinman-Langreth factor [11,16]. Data for Fermi radius in these calculations have been taken from the
above mentioned row labeled by kF . Row labeled by ρexp displays the measured resistivities [21]. The data in this Table laid below the row with labels ∗
(stars), belong to calculations performed in accord with the concept developed in this paper, and the explanations are given in the main text of the paper.
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Liquid Metal Mg Ca Sr Ba Al Ga In Tl Si Gc Sn Pb
t [oC] 680. 850. 780. 730. 670. 50. 160. 315. 1460. 980. 250. 340.
Ω [10−30m3] 26.1 48.5 61.1 68.6 18.9 19. 27.1 30.1 18. 21.7 28.4 32.3
(m1/me) 1.00 0.65 0.42 0.275 1. 0.75 0.482 0.34 0.81 0.60 0.395 0.295
kF [1010m−1] 1.31 1.07 0.99 0.95 1.67 1.67 1.48 1.43 1.88 1.76 1.61 1.54
α∗

cal −17. −27. −25 −17. −8.9 −39. −20. −13. −3.85 −9.2 −7.5 −7.4
ρcal [10−8Ω · m] −47. −56. −117. −253. −271. −6766. −882. −836. −427. −313. −1715. −2600.
ρexp [10−8Ω · m] 27.6 33. (58) (133.) 24.2 26.2 33. 73.5 78. 70. 47.5 95.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

k′

F [1010m−1] 1.153 0.88 0.848 0.830 1.275 1.20 1.112 1.062 1.10 1.00 1.059 1.054
k′′ [1010m−1] 1.39 1.18 1.07 1.02 1.91 1.97 1.71 1.66 2.46 2.33 1.98 1.86
(α∗

cal)
′ 0.97 1.02 1. 1. 1. 1. 1. 1. 1. 1. 1. 1

ρ′

cal [10−8Ω · m] 27.6 32.3 58.9 131. 24.2 28. 32.8 73.5 78. 70. 47.5 96.
(k′

F − kF )/kF −0.12 −0.18 −0.14 −0.15 −0.24 −0.28 −0.25 −0.26 −0.41 −0.43 −0.34 −0.32
qp [1010m−1] 2.44 1.97 1.80 1.75 2.71 2.52 2.30 2.28 2.72 2.55 2.22 2.28
(qp − 2k′

F )/qp 0.055 0.107 0.058 0.05 0.059 0.048 0.033 0.068 0.18 0.21 0.046 0.075
DOS [st./eV·atom] 0.40 0.37 0.29 0.21 0.32 0.23. 0.195 0.146 0.218 0.17 0.16 0.135
Zv 2. 2. 2. 2. 3. 3. 3. 3. 4. 4. 4. 4.

Tab. 2. Parameters used in σ and α* calculation by eqs. (14) and (17) respectively, and results obtained on liquid metals from columns: IIA, IIIA,
IVA of the Periodic Table of the elements, for temperatures t slightly above the melting point. Entries (left column of Table) and the labelings are
the same as in Tab. 1. Ω is calculated from Ω = (A/ρ)1.66, with A as the atomic mass of a given metal in the atomic mass units [a.m.u], and ρ
is the metal’s density at temperature t in [g · cm−3] units. Data for metals density ρ are taken from [13]. Data for kF have been calculated from
kF = (3π2Zv/Ω)1/3 with valency number Zv given in this Table. Data for measured resistivity ρexp are taken from [21]. α∗

calc, and resistivity
ρcal, with ρcal obtained from ρcal = 1/σcal, have been calculated by eqs. (17) and (14) respectively, from Fermi radius kF proper for state of
thermodynamics equilibrium, with S(q) measured by X-ray diffraction [13]. We see, both of these, α∗

cal, and ρcal, with values presented in rows
6 and 7 are physically meaningless. The results of calculation obtained by applying the concept formulated in this paper are presented below the
row labeled by * (stars), with explanations given in the main text. Essentially, the system of two equations: eqs. (14) and (17), has been applied
within this concept to determine the two unknown parameters: (m1/me) and k′

F respectively, in addition to DOS determined from eq. (21).
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Ca10Mg90−xGax x = 0 x = 0 x = 10 x = 10 x = 15 x = 15 x = 20 x = 20 x = 30 x = 30 x = 40 x = 40
S(q)-type X-ray neut. X-ray neut. X-ray neut. X-ray neut. X-ray neut. X-ray neut.
T [K] 300 300 300 300 300 300 300 300 300 300 300 300
Ω [10−30m3] 25.1 25.1 24.1 24.1 23.2 23.2 22.6 22.6 21.7 21.7 21.0 21
(m1/me) 0.70 0.64 0.595 0.53 0.52 0.49 0.47 0.62 0.46 0.45 0.42 0.415
kF [1010m−1] 1.33 1.33 1.37 1.37 1.40 1.40 1.42 1.42 1.46 1.46 1.50 1.50
α∗

cal −21. −21. −28. −28 −8. −8. −6.6 −6.6 −4.1 −3.78 −3.1 −3.2
ρcal [10−8Ω · m] −143. −143. −486. −486 −1049. −1049 −1040. −1040 −496. −1752. −760. −890.
ρexp [10−8Ω · m] 53. 53. 101. 101. 130. 130. 159. 159. 214. 214. 193. 193.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

k′

F [1010m−1] 1.172 1.175 1.18 1.16 1.165 1.14 1.146 1.142 1.13 1.10 1.14 1.12
k′′

F [1010m−1] 1.42 1.42 1.48 1.49 1.53 1.55 1.58 1.58 1.66? 1.68 1.72 1.74
(α∗

cal)
′ 1.10 0.98 0.96 0.97 1.02 1.02 1.00 1.01 0.49 0.79 0.57 1.07

ρ′

cal [10−8Ω · m] 53. 53. 101. 102. 128. 130. 156. 158. 208. 210. 217. 194.
(k′

F − kF )/kF −0.12 −0.12 −0.14 −0.15 −0.17 −0.18 −0.19 −0.20 −0.18 −0.18 −0.24 −0.25
qp [1010m−1] 2.43 2.42 2.48 2.44 2.51 2.44 2.50 2.46 2.52 2.52 2.52 2.52
(qp − 2k′

F )/qp 0.037 0.029 0.048 0.047 0.072 0.066 0.083 0.08 0.010 0.13 0.091 0.11
DOS [st./eV·atom] 0.28 0.25 0.23 0.20 0.19 0.17 0.16 0.21 0.27 0.14 0.13 0.13
Zv 2.0 2.0 2.1 2.1 2.15 2.15 2.2 2.2 2.3 2.3 2.4 2.4

Tab. 3. Input parameters and results in σ and a∗ calculation by eqs. (14) and (17) respectively, on conducting alloys Ca10Mg90−xGax (x = 0; 10; 15;
20; 30; 40). Entries (left column of Table) and the labelings are the same here as in Tab. 1. For any x there are two columns of data: the left column,
in the entry S(q)-type holding the sign X-ray, where the structure factor S(q) applied has been obtained from X-ray diffraction technique, and the right
column denoted by neut., where the structure factor S(q) applied has been obtained by neutron diffraction technique [23–25]. fq , the atomic scattering
factors in electron units, needed in eq. (9), have been calculated by the formula: fq = C1 · (fq)1 + C2 · (fq)2 +C3 · (fq)3, where C1, C2 anf C3 are the
concentration of atoms Ca, Mg, and Ga respectively in the given alloy, and (fg)1, (fg)2 and (fg)3 are the atomic scattering factors in electron units taken
from [12] for Ca, Mg and Ga respectively. Ω and kF have been calculated from the valency number Zv and mass density taken from [23–25]. Data for
measured resistivity ρexp are taken from [23–25]. Resistivity ρcal = 1/σcal, and α∗

cal calculated by eqs. (14) and (17) respectively, from Fermi radius
kF proper for the state of thermodynamics equilibrium are both physically meaningless. The results of calculation obtained by applying the concept
established in this paper are given in lines below the labels * (stars). Essentially, the system of two equations: eqs. (14) and (17), has been applied here
to determine the two unknown parameters: (m1/me) and k′

F respectively, in addition to DOS determined from eq. (21). More explanation is given in
the main text.
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Relative shift in kF described by (k′
F − kF )/kF , as it is given in Tab. 1, needed to set

α∗
cal ≈ 1, is nearly the same for all five liquid metals observed, it is nearly 10%. Second item

observed in Tab. 1 is the property of the double of k′
F to remain below the qp, with qp denoting

the position of the first pick of the structure factor S(q),

2k′
F < qp. (19)

We assume, these particular cases give us a clue how to proceed in other cases of this kind
(not necessarily metals in liquid phase), to set α∗

cal consistent with the theoretically prescribed
value α∗ = 1, to obtain α∗

cal ≈ 1, and to determine ρcal = 1/σcal afterwards, consistent with
α∗

cal ≈ 1.
It is to be stressed that true-potential form-factors v(q), given by eqs. (7) and (9) have been

applied in the calculations presented in Tab. 1. The pseudo-potential form-factors are not appli-
cable in this calculation. Fig. 13 and Fig. 14, display σcal(qG) and α∗

cal(qG), the values of σcal

and α∗
cal against qG, with qG denoting the upper limit of integration in q, for the case when v(q)

in eqs. (14) and (17) have been substituted by the pseudo-potential form-factor given by eqs. (7)
and (11). We see that α∗

cal(qG) is too small, and can’t reach the theoretically prescribed value
of α∗ = 1, independently on both the value of the upper integration limit qG and of the chosen
value for kF . Similarly, the value of σcal(qG) is too small with this v(q), and the calculated
resistivity ρcal = 1/σcal is too large, inconsistent with experimentally measured values of ρexp.
This is true in all cases of liquid metals in Tab. 1. Obviously, the reason for non-applicability of
the pseudo-potential form-factors in our approach to σ and α∗ calculation is the smallness of the
pseudo-potential form-factors.

2.3 Statistical ensemble for carriers inherent to state with dc current

The carriers system of a conductor, isotropic one like the liquid metals are, while the conductor
itself is in the thermodynamics equilibrium, with no coupling to the external electric field, is
described by the Fermi-Dirac statistical ensemble, presented by a sphere of radius kF (Fermi ra-
dius) in the space of wavenumbers k, like it is illustrated in Fig. 15a). The fluctuation-dissipation
theorem, and Kubo formula within its framework [22], is assumed to describe electrical conduc-
tivity σ from spontaneous thermodynamic fluctuations of the carrier’s velocity taking place in
the system, while the system itself is in the state of thermodynamics equilibrium, i.e. in the state
described by the statistical ensemble presented in Fig. 15a). Our calculations, while performed
in the framework of this concept, have lead to results presented in lines α∗

cal and ρcal in Tab. 1,
which show internal inconsistency with the theory itself (conflict of α∗

cal with theoretically pre-
scribed α∗ = 1). By taking instead of the Fermi radius kF proper for the state of thermodynamics
equilibrium, a larger one k′

F presented in the Tab. 1 below the line with labels ∗, the calculated
numbers for α∗ and resistivity ρ as presented in lines (α∗

cal)
′ and ρ′cal, became consistent with

both theoretically prescribed α∗ = 1 and measured resistivity ρexp. What does this k′
F represent

itself? Fermi radius kF is not a dummy number allowing volatile physical interpretation, but it
has very clear and tangible meaning; it determines the number of carriers in the system. When
we have substituted for kF in eqs. (14) and (17) the numbers k′

F , we did not have in mind the
idea that the number of carriers is changed, but the idea that the statistical ensemble has changed
its shape in the k − space. The ensemble is no longer spherical but rather it is of an ellipsoidal



138 N. Milinski, E. Milinski

shape, elongated in the direction of the external electric field, and thinned in the directions or-
thogonal to the electric field, with the remaining two axis of the ellipsoid equal to k ′′

F , keeping
the volume of the ellipsoid equal to the volume of the Fermi sphere with radius kF , therefore
with the number of carriers unchanged, see Fig. 15b). The parameter k ′′

F in Tab. 1, has been
calculated from the equation,

4

3
πk3

F =
4

3
πk′

F · (k′′
F )2. (20)

Of course, a question can be raised now, how can we apply eqs. (14) and (17) to the system
whose statistical ensemble is of ellipsoidal shape in k − space, if eqs. (14) and (17) themselves
have been derived for spherical shape. It is the property of eq. (14) to give nonzero contribution
only from back scattering, which enables it. Nonzero contribution to σ comes only from pro-
cesses starting from points on one longest apex, denoted by A in Fig. 15b) and ended at the other
opposite apex, denoted by B. The distance between the points A and B is 2k ′

F , i.e. the points A
and B are in the same time on the sphere of radius k′

F and on the ellipsoid whose longest axes
is k′

F . The same arguments hold up for eq. (17), but less accurately, since the back scattering
property is less accurately pronounced in eq. (17).

The next question is: What kind of statistical ensembles is that one of ellipsoidal shape in Fig.
15b), is it a thermodynamics equilibrium state? We assume it is not, it is a non-equilibrium state,
but stationary in time, holding up as long as dc electric field is present. Its energy (free energy)
is over the carrier system’s energy in the state of thermodynamics equilibrium, and as soon as
the dc electric field is switched off, the process of system’s return into the thermodynamics equi-
librium starts. Theoretical description of the system’s return into statistical equilibrium is hardly
tractable in the framework of the Liouville equation, since it does not proceed with system’s
entropy invariant. The same is true for the reverse transition of the system from thermodynamics
equilibrium into the stationary non-equilibrium state at the start of dc current. However it does
not preclude the linear response formula for σ(ω) (Kubo formula) to be valid. When deriving
it [22], one has to assume that the system’s transition from the thermodynamics equilibrium into
the mentioned stationary state already has been accomplished, and after that the system proceeds
with system’s entropy invariant, since the entropy produced in the carriers system equals the
entropy flown out from the carriers system. Application of the Liouville equation to the pos-
terior evolution is lawful, and the statistical operator of the initial state denoted by ρ0, which
the formula for σ(ω) is resting on [22], has to be assumed identical to the mentioned ellipsoidal
stationary state. The important property here, the absence of macroscopic current in the initial
state, has been kept.

We know, statistical ensemble is not the many particle system itself, but only a notion, a
simplified scheme, sophisticated enough to reproduce the pattern of the many-particle system on
a given level of observation, under the given boundary conditions [7]. From our calculation fol-
lows the conclusion that the statistical ensemble adequate for description of the thermodynamics
equilibrium is not sophisticated enough to describe the state with dc current.

The need to introduce a correction concerning the initial state has been a subject of argumen-
tation in a number of papers [3–6].In the papers by Ichiyanagi [5], where the problem of initial
state determination for Kubo formula, has been treated by means of the Liouville equation, we
can see how complex and volatile in practice would be the theoretical determination of the initial
state. Instead, here we have found an approximation for it, in the above described ellipsoidal
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model, whose parameters, the ellipsoid’s axis lengths, can be determined from one accurately
established requirement, from the equation α∗ = 1. Direct experimental test for correctness of
this model is difficult no more than the direct experimental detection of the Fermi surface.

As far as dc conductivity is in question, we assume, the linear response formula has to be
conceived as an algorithm determining σ from spontaneous thermodynamic fluctuations, taking
place in the system which itself is no longer in the thermodynamics equilibrium, but it is shifted
from it into some other, specific stationary state, like it is illustrated in Fig. 15.

3 Further calculations on liquid metals and conducting alloys

Calculation of σ and α∗ on some other liquid metals, by applying the concept established in the
preceding sections, is presented in Tab. 2. On top of Tab. 2, sequentially one after the other follow
at first four metals from column IIA of the Periodic Table of the elements, then four metals from
column IIIA, and finally four metals from column IVA. Only a single temperature slightly above
the melting point is embraced in this Table.

Some elements from the set of input parameters for σ and α∗ calculation by eqs. (14) and
(17), can be assumed well known, whether from theory or from measurements independent of σ.
Such parameters are: T — temperature, Ω — the single ion’s volume; kF -Fermi radius; S(q)-
structure factor, fq — atomic scattering factor in electron units and εr(q) — the screening func-
tion. However, one of the input parameters playing important role, the carriers velocity masses
(m1/me), is far from being known reliably for all metals in Tab. 2. There is also one parameter
more, introduced by our concept, k′

F , which is unknown. Therefore, we are before the calcula-
tion of two terms: σ and α∗, with two missing parameters: (m1/me) and k′

F respectively. Since
α∗ is always due to have the same value, α∗ = 1, if σ is known (taken) from measurements, then
the two independent eqs. (14) and (17) can be conceived as a system suitable for determination of
the two unknown parameters: (m1/me) and k′

F . Tab. 2 is to be understood exactly this way, as
presenting the numerical values of (m1/me) and k′

F obtained by fitting to measured conductivity
σexp = 1/ρexp, with ρexp listed in Tab. 2.

In all metals in Tab. 2, double of Fermi radius kF is larger than qp, 2kF > qp, with qp

denoting the position of the first pick (principal maximum) of the structure factor S(q). It has
appeared that for all k′

F obtained by the fitting procedure, the double of k′
F is slightly below

the first pick, 2k′
F < qp, in accord with eq. (19) deduced earlier for metals of valency number

Zv = 1. Fig. 16 illustrates the relation holding up for kF , k′
F and qp generally. We see, for any

metal with Zv ≥ 2 holds k′
F < kF .

The eq. (82) from our paper II., gives N(εf ), the density of states at Fermi surface, in units
of (SI) system: N(εf ) [number of electron states/J ·m3]. Equivalent to N(εf ) is the term usually
denoted by DOS, and defined by

DOS = N(εf ) · e · Ω =
kF m1 e Ω

π2h̄2 , (21)

giving the density of states in units outside the (SI) units system:
DOS [number of electron states/(eV) · atom]. Data for DOS as given in Tab. 1, Tab. 2, and
Tab. 3, have been calculated by eq. (21), but with kF replaced by k′

F , in accord with our concept.
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The results of calculation on a series of solid amorphous alloys Ca10Mg90−xGax, (x=0; 10;
15; 20; 30; 40), are given in Tab. 3. Specific to Tab. 3 is that for any alloy (any x) there are two sets
of results obtained from different structure factors S(q) [23–25].The left column is calculated by
S(q) obtained from X-ray diffraction technique, while the right column is calculated by S(q)
obtained from neutron diffraction technique. For any x, up to x = 20 the results in two columns
are in pretty good agreement, but for x = 30 and x = 40 some confusing differences between
them exist.

Further investigation of conducting alloys, binary and ternary before all, can be very useful
for verification of the concept exposed. Lack of measured (tabulated) structure factors S(q) in
the referential literature seems to exist.

4 Conclusion

This paper, third in sequence of papers on this subject, is devoted to detailed demonstration of σ
calculation, in conjunction with the constitutive equation, introduced and developed in the two
preceding papers. The traditional interpretation of the linear response formula (Kubo formula),
prescribes to calculate σ from parameters taken for the thermodynamics equilibrium state. It has
appeared that sensible interpretation of results, obtained by means of our consequently linear
response calculation, requires a new, improved way of input parameters selection. We have con-
cluded that the carrier system while exposed to boundary conditions creating dc current, cannot
be described in terms of a statistical ensemble adequate to thermodynamically equilibrium state,
spherical in the wavenumber space, in k − space, but rather in a new specific state, stationary
state, ellipsoidal in shape, in the k− space. Instead of the Fermi radius kF , a new k′

F parameter,
one of the ellipsoid’s axis is to be applied in σ calculation. The difference between kF and k′

F

is large enough to be measurable. It is to be stressed, that the replacement of kF by k′
F in our

calculation is not just a formal step, but it expresses the physics, the real conversion, the carrier
system is undergone while the dc current is running in it. A desirable test to verify reality of our
concept would be the experimental detection of difference between kF and k′

F .
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