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BOSON EXCITATIONS IN ELECTRON PLASMA OF METALS
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The grand canonical partition function of the electron plasma in metals is calculated by using
the formalism of functional integrals. Within the framework of this formalism the Coulomb
interaction between electrons is expressed naturally as an interaction mediated by bosons.
The grand canonical partition function of the electron plasma is then represented as a product
of two partition functions corresponding to the free electron gas and to a boson gas with a
given energy spectrum and of a factor describing correlation effects between the electrons
and bosons.

PACS: 05.30.Fk, 71.10.Ca, 71.45.Gm

1 Introduction

Some interacting fermion systems can be described rather well by the Landau theory of normal
Fermi liquids [1]. This theory applies to a fermion system with a spectrum of elementary exci-
tations similar to that of a free Fermi gas. In more precise statement the Landau theory assumes
a one to one correspondence between the states of the free Fermi gas and those of an interacting
fermion system. An interacting fermion system is usually described by a Hamiltonian H written
as a sum of two terms

H = H0 + HI , (1)

where H0 describes free fermions and HI takes into account their mutual interactions. The free
Hamiltonian has usually the simple form

H0 =
∑

k,α

εk,αa+
k,αak,α , (2)

where a+
k,α(ak,α) are the creation (annihilation) operators of fermions in the states (k, α) spec-

ified by the wave vector k and by the spin projection α = ±1 and εk,α denotes the energy of
the fermion in the state (k, α). Thus, the free Hamiltonian H0 defines the energy levels εkα as a
given function of k and α.
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The Landau theory assumes that by switching on the interaction between fermions via the
interaction Hamiltonian HI , this interaction transforms only the values of the unperturbed energy
levels εk,α into a new set of levels Ek,α. By this assumption one expects an isomorphism between
the genuine interacting fermion system and a noninteracting gas of Fermi quasiparticles with the
energy levels Ek,α. Therefore, the solution of the original problem represented by the interacting
fermion system is reduced in the Landau theory of normal Fermi liquids to the calculation of the
energy spectrum Ek,α of quasiparticles. Needles to say that the spectrum Ek,α is a complicated
functional of quasiparticle distribution functions nk,α.

In general, an interacting fermion system has also collective excitations bc(q), such as plas-
mons in the electron plasma of metals, which are specified by the wave vector q. States corre-
sponding to the collective excitations b(q) have no analogy in the free Fermi gas. Therefore, the
one to one correspondence assumed by the Landau theory of Fermi liquids is not strictly true.
One usually gives arguments that the Landau theory is restricted to low temperatures, where an
energy gap for collective excitations suppresses effects of collective modes to such an extent that
they may generally be neglected in calculations of bulk properties.

However, in many interacting fermion systems their interaction Hamiltonians HI can induce
transitions of fermions between states (k′, α′) and (k, α) associated with productions or absorp-
tions of boson-like excitation b(k′, α′; k, α) according to the scheme

e(k′, α′) ⇀↽ e(k, α) + b(k′, α′; k, α) , (3)

where e(k, α) denotes a fermion (e. g. electron) in the state (k, α). The energy h̄ωb(k
′, α′; k, α)

of the boson excitation b(k′, α′; k, α) in the process (3) is expected to be given by the relation

h̄ωb(k
′, α′; k, α) ≈ |εk′α′ − εk,α| . (4)

The energy spectrum (4) of the boson excitations b(k′, α′; k, α) has no energy gap. By this fact
the interacting fermion system with interactions permitting transitions (3) cannot be satisfactorily
described by the Landau theory of normal Fermi liquids at temperatures T 6= 0.

The presence of boson excitations b(k′, α′; k, α) in an interacting fermion system provides
us an intuitive argument that properties of the interacting fermion system can be described in
some approximation by properties of a free fermion gas together with properties of a Bose gas
corresponding to boson excitations b(k′, α′; k, α). To be more precise, it is expected that the
general canonical partition function Z of the interacting fermion system involves a product of
two grand canonical partition functions Zf and Zb corresponding to the free fermion gas and to
the Bose gas of boson excitations b(k′, α′; k, α), respectively. Their forms are given by the well
known formulae

Zf =
∏

k

∏

α=±1

(1 + e−β(εk,α−µ)) , (5)

Zb =
∏

k,k′

∏

α,α′=±1

(1 − e−βh̄ω(k′,α′;k,α))−1 , (6)

where µ is the chemical potential of the fermions and h̄ω(k′, α′; k, α) is the energy spectrum of
the boson excitations b(k′, α′; k, α) which will be presented in this paper.

Thus, the grand canonical partition function Z of the interacting fermion system has the form

Z = CZfZb , (7)
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where the factor C involves effects of correlations between fermions and bosons with the required
accuracy corresponding to the given order of the perturbation theory.

The assumption of an one-to-one correspondence between states of the free Fermi gas and
those of the interacting system definitely fails for all temperatures (even for T = 0) if bound
states of fermions appear when the interaction is turned on. For example, a state of a supercon-
ductor is not related in a direct way to any state of the free Fermi gas for temperatures T < Tc,
where Tc is the critical temperature. In fact, for this system the basic assumption of the Landau
theory of normal Fermi liquids is not valid at all. However, for such a system of interacting
fermions described by BCS model of superconductivity the partition function Z has indeed the
form (7) as it was shown in the work [3].

The purpose of this paper is to derive the partition function Z in the form (7) for a gas of
electrons with Coulomb interactions in the presence of an uniform background of a positive
charge, i. e. for the electron plasma within the simplest model of metals. Therefore, our task is to
calculate the energy spectrum h̄ωb(k

′, α′; k, α) of the elementary Bose excitations.

2 Interacting electron gas

For our purpose we consider the simplest model of the electron plasma in metals. This system
is an interacting electron gas in the presence of a uniform background of a positive charge in
order to enforce the electric neutrality of the system. Thermodynamic properties of this system
have been studied many years ago [4, 5] and are included in contents of many textbooks on
quantum theory of many particle systems. As an reference textbook to this problem we refer to
the excellent monograph by Fetter and Walecka [6].

The Hamiltonian H for the system under considerations has the form

H =
∑

k,α

h̄2k2

2me
a+

k,αak,α+
2πe2

V

∑

k,k′

α,α′

∑

q

′ 1

q2
a+

k+ q

2
,αa+

k′−
q

2
,α′ak′+ q

2
,α′ak− q

2
,α , (8)

where ak,α(a+
k,α) is the annihilation (creation) operator of an electron in the state (k, α). The

sum over q is restricted by the condition q 6= 0, what is here and in what follows indicated by a
prime at the summation symbol. All thermodynamic properties of the system described by the
Hamiltonian (8) are derived from the grand canonical partition function

Z = Tr exp {−β(H − µN)} , (9)

where N is the electron number operator, µ is the chemical potential, β = 1/kBT , kB is the
Boltzmann constant and T is the temperature. For the explicit evaluation of the partition function
it is very convenient to employ functional integral over Grassmann variables a∗

k,α(τ) and ak,α(τ).
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By using the standard rules [7] we express Z by the following functional integral

Z =

∫

D(a∗, a) exp







−

β
∫

0

dτ





∑

k,α

a∗
k,α(τ)

(

∂

∂τ
+ ξ~k

)

ak,α(τ)+

+
2πe2

V

∑

k,k′

α,α′

∑

q

′ 1

q2
a∗

k+ q

2
,α(τ)a∗

k′−
q

2
,α′(τ)ak′+ q

2
,α′(τ)ak− q

2
,α(τ)

















, (10)

where

ξk =
h̄2k2

2m
− µ (11)

and the Grassmann variables satisfy the antiperiodic conditions

a∗
k,α(τ + β) = −a∗

k,α(τ) , ak,α(τ + β) = −ak,α(τ) . (12)

The functional integral formalism employed in statistical physics permits one to rewrite the
Coulomb interaction between electrons as the interaction between electrons mediated by an elec-
tric field represented by its corresponding electric scalar potential ϕ(x, τ). Within this formalism
we express the partition function (10) as the following functional integral

Z = Z−1
0

∫

D(a∗, a, ϕ) exp







−

β
∫

0

dτ

[

V

8π

∑

q

′
q2ϕq(τ)ϕ−q(τ)+

+
∑

k,α

a∗
k,α(τ)

(

∂

∂τ
+ ξ~k

)

ak,α(τ) + ie
∑

k 6=k′,α

ϕk−k′ (τ)a∗
k′α(τ)akα(τ)











. (13)

Here ϕq(τ) are commutative (Grassmann even) integration variables satisfying the periodic con-
ditions

ϕq(τ + β) = ϕq(τ) (14)

and the constant Z0 is defined by the functional integral

Z0 =

∫

D(ϕ) exp







−

β
∫

0

dτ
V

8π

∑

q

′
q2ϕq(τ)ϕ−q(τ)







. (15)

The integration variables ϕq(τ) are in fact the Fourier transforms of the scalar potential ϕ(x, τ).
The partition function Z expressed by the formula (13) corresponds indeed to a system of elec-
trons interacting with the electric field represented by the scalar potential.

One may convince himself that the partition functionsZ defined by (10) and (13) are identical
quantities. By the exact and explicit integration over ϕq(τ) variables in the formula (13) one
recovers indeed exactly the functional integral (10). However, we can equally well integrate first
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exactly and explicitly over the anticommuting variables a∗
k,α(τ) and ak,α(τ) in the functional

integral (13). We obtain the result

Z = Z−1
0

∫

D(ϕ) exp







−

β
∫

0

dτ
V

8π

∑

q

′
q2ϕq(τ)ϕ−q(τ)







detF(ϕ) , (16)

where F(ϕ) is the functional matrix, the matrix elements of which are as follows

〈k′, α′, τ ′|F(ϕ)| k, α, τ〉=

[(

∂

∂τ
+ ξk

)

δk′,k + ieϕk′−k(τ)

]

δα′,αδ(τ ′ − τ) . (17)

The Dirac δ-function δ(τ ′ − τ) which enters in the relation (17) above is defined in terms of its
spectral representation

δ(τ ′ − τ) =
1

β

+∞
∑

ν=−∞

exp[iων(τ ′ − τ)] , ων =
π

β
(2ν + 1) , (18)

where the summation index ν runs through all integer values and ων are the so-called Matsubara’s
frequencies for fermions. Next we decompose the functional matrix F(ϕ) into two parts as

F(ϕ) = F0 + eF1(ϕ) , (19)

where the matrices F0 and F1(ϕ) have the following matrix elements

〈k′, α′, τ ′|F0| k, α, τ〉 =

(

∂

∂τ
+ ξk

)

δk′,kδα′,αδ(τ ′ − τ) , (20)

〈k′, α′, τ ′|F1(ϕ)| k, α, τ〉 = iϕk′−k(τ)δα′ ,αδ(τ ′ − τ) . (21)

In this notation we express detF(ϕ) entering (16) as the following product of two determinants

detF(ϕ) = detF0 · det[1 + eF−1
0 F1(ϕ)] . (22)

The first factor, detF0, is independent on the integration variables ϕq(τ) and it is exactly
equal to the partition function Zf of the free electron gas given by the relation (5), i. e. ,

Zf =
∏

k

∏

α=±1

[

1 + e−β(εk,α−µ)
]

. (23)

By employing the well-known formula we express the second factor in the product (22) by the
relations

det[1 + eF−1
0 F1(ϕ)] = exp

{

Tr ln[1 + eF−1
0 F1(ϕ)]

}

= exp

{

−Tr

∞
∑

n=1

(−1)n 1

n
[eF−1

0 F1(ϕ)]n

}

. (24)

The matrix F−1
0 entering relation (22) and (24) has the matrix elements defined by

〈k′, α′, τ ′|F−1
0 | k, α, τ〉 = −δk′,kδα′,α

1

β

∑

ν

1

iων − ξk
exp[iων(τ ′ − τ)]

≡ δk′,kδα′,αGk(τ ′ − τ) . (25)
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By taking into account the relations (16)–(25) we can express the partition function Z for the
interacting electron gas as the following functional integral over commuting variables ϕq(τ)

Z = Z−1
0 Zf

∫

D(ϕ) exp {−S0(ϕ) − Sint(ϕ)} , (26)

where the effective actions S0(ϕ) and Sint(ϕ) are defined by

S0(ϕ) =

β
∫

0

dτ
V

8π

∑

q

′
{

q2ϕq(τ)ϕ−q(τ)−

− e2
∑

k

β
∫

0

dτ ′Gk+ q

2

(τ − τ ′)Gk− q

2

(τ ′ − τ)ϕq(τ
′)ϕ−q(τ)

}

(27)

Sint(ϕ) = Tr
∞
∑

n=3

(−1)n en

n
[F−1

0 F1(ϕ)]n . (28)

Until now all our calculations were exact. From this point we start to employ a perturbation
theory in which the action S0(ϕ) is treated exactly and the action Sint(ϕ) as a perturbation.
By using the expressions (27) and (28) we can carry out the functional integration over the
commuting variables ϕq(τ) in the functional integral (26) with the following result

Z = exp

{

∞
∑

n=1

1

n!
〈Sn

int(ϕ)〉0,connected

}

Zf

∏

q

[det(1 − Mq)]
−1/2 . (29)

Here Mq is a functional matrix the matrix elements of which are given by

〈τ ′|Mq |τ〉 =
2vq

V

∑

k

Gk+ q

2

(τ − τ ′)Gk− q

2

(τ ′ − τ) , (30)

vq =
4πe2

q2 (31)

and 〈Sn
int(ϕ)〉0,connected denotes the connected part of the statistical average 〈Sn(ϕ)〉0 averaged

with the unperturbed action S0(ϕ). Perhaps we should mention that in the process of the deriva-
tion of the formula (29) the factor Z−1

0 entering (26) has been canceled and the cluster expansion
theorem

〈e−Sint(ϕ)〉0 = exp

{

∞
∑

n=1

(−1)n

n!
〈Sn

int(ϕ)〉0,connected

}

(32)

has been employed.
The det(1 − Mq) can be explicitly calculated with the result

det(1− Mq) = exp {Tr ln[1− Mq]} = exp

(

−
2βvq

V

∑

k

fk+ q

2

fk− q

2

+

+
∑

q

+∞
∑

ν=−∞
ν 6=0

{ln[1 + Fq(i2πν)] − Fq(i2πν)} + ln[1 + Fq(0)] − Fq(0)

)

, (33)
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Fig. 1. The exchange diagram Fig. 2. Contribution of the ring diagrams to the correlation energy

where

fk = (eβξk + 1)−1 (34)

is the Fermi function, ν are integers and

Fq(z) =
2βvq

V

∑

k

fk+ q
2

− fk− q
2

z − β(ξk+ q

2

− ξk− q

2

)
=

2β2vq

V

∑

k

(fk+ q
2

− fk− q
2

)(ξk+ q
2

− ξk− q
2

)

z2 − β2(ξk+ q
2

− ξk− q
2

)2

= −
2vqβ

2

V

∑

k

|fk+ q

2

− fk− q

2

|

z2 − β2(ξk+ q

2

− ξk− q

2

)2
|ξk+ q

2

− ξk− q

2

| (35)

is an analytic function in the complex z-plane, except for pairs of poles at Rez = xp =
±zp(k, q), where

zp(k, q) = β|ξk+ q

2

− ξk− q

2

| . (36)

From the expressions (33) and (35) one identifies that the product [
∏

q
det(1 − Mq)]

−1/2 in

the partition function (29) is exactly the same as the contribution coming from the exchange
diagram and from the infinite sum of the so-called ring diagrams [6] depicted on Fig. 1 and
Fig. 2, respectively.

In our approach these contributions are shown as if they had an origin in a noninteracting
boson system described by the action (27) corresponding to a system of independent harmonic
oscillators. These terms contributing to the grand canonical potential Ω = −kBT lnZ have the
notations Ω1 and Ωr as in [6]. The term

Ω1 = −
1

V

∑

q,k

vqfk+ q

2

fk− q

2

(37)

comes from the exchange diagram and the term

Ωr =
1

2
kBT

∑

q

+∞
∑

ν=−∞

{ln[1 + Fq(2πiν)] − Fq(2πiν)} (38)
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Fig. 3. The integration path C in the contour in-
tegral (40). The full dots denote the poles of the
integrand and the open dots denote nodes of the
function 1 + Fq(z)

Fig. 4. The two integration paths C1 and C2 are
equivalent to the path on Fig. 3

corresponds to the infinite sum of the mentioned ring diagrams.
The sum

Yq =

+∞
∑

ν=−∞
ν 6=0

{ln[1 + Fq(i2πν)] − Fq(i2πν)} (39)

over all integer ν with the exception ν = 0, which enters the partition function (29) through
the relation (33) can be evaluated by employing the theory of analytic functions, namely, by the
contour integral

Yq =
1

2πi

∮

C

dz

(

1

ez − 1
−

1

z

)

{ln[1 + Fq(z)] − Fq(z)} . (40)

Here the closed curve C encircles the imaginary axis Imz = y in the complex z-plane as it is
depicted on Fig. 3.

It is now easy to verify that the contour C may be deformed as shown on Fig. 4 into two
closed contours C1 and C2, because the contributions along the arcs vanish.

Thus the contour C in the contour integral (40) can be formally regarded as an union of two
contours C1 and C2. The contours C1 and C2 encircle singularities of the integrand (40) which
are situated on the real axis in the complex z-plane. These singularities are the poles ±zp(k, q)
of the function Fq(z) given by the relation (36) and nodes (i. e. , zero points) of the function
1 + Fq(z). The expression (35) implies that between each of the two neighbour poles of Fq(z)
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on the real axis there exist nodes at points xn = ±zn(k, q) given approximately by the following
relation

zn(k, q) = zp(k, q)+

+
vqβ

V
|fk+ q

2

−fk− q

2

|

{

1 −
vqβ

V

|fk+ q

2

− fk− q

2

|

zp(k, q)

}

+ O(e6) . (41)

We can use the expressions (36) and (41) and the argument principle from the theory of the
complex function analysis to evaluate the integral (40), with the following result

Yq = 2
∑

k

{

ln

[

zp(k, q)

zn(k, q)

sinh 1
2zn(k, q)

sinh 1
2zp(k, q)

]

− (42)

−

[

1

2
coth

1

2
zp(k, q) −

1

zp(k, q)

]

vqβ

V
|fk+ q

2

− fk− q

2

|

}

. (43)

By using the relation (41) we derive the formula

ln
∏

k

zp(k, q)

zn(k, q)
= − ln

[

1 +
vq

V

∑

k

|fk+ q

2

− fk− q

2

|

|ξk+ q

2

− ξk− q

2

|

]

= − ln[1 +
1

2
Fq(0)] . (44)

With this result we can write

∏

q

det(1 − Mq)
− 1

2 = e−βΩ1

∏

q

{

1 + 1
2Fq(0)

[1 + Fq(0)]
1

2

}

∏

k,q

{

sinh 1
2zp(k, q)

sinh 1
2zn(k, q)

}

×

× exp







1

2

∑

k,q

vqβ

V
|fk+ q

2

− fk− q

2

| coth
1

2
zp(k, q)







. (45)

From the last expression we immediately see the relation

∏

k,q

[

sinh
1

2
zn(k, q)

]−1

= Zb

∏

k,q

2e−
1

2
zn(k,q) , (46)

where Zb is the partition function of a noninteracting bose gas

Zb =
∏

k,q

(1 − e−βh̄ω(k,q))−1 (47)

with the energy spectrum of boson excitations given by

h̄ω(k, q) = |ξk+ q

2

− ξk− q

2

|+

+
vq

V
|fk+ q

2

− fk− q
2

|

{

1 +
vq

V

fk+ q

2

− fk− q

2

ξk+ q

2

− ξk− q

2

}

+ O(e6) . (48)
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Needless to say that the expression (46) represents the partition function of independent harmonic
oscillators with the frequencies ω(k, q).

Thus, we have shown that the partition function Z of interacting electron gas has indeed the
form (7) involving the product of the partition functions Zf and Zb corresponding to the free
electron gas and to the noninteracting bose gas as it was intuitively expected in the introduction.
All remaining factors entering the expression (45) and those given by (32) can be assembled into
the factor C in the expression (7).

In order to derive a compact formula for the product (45), we again use (41) to derive the
expression

∏

k

{

sinh 1
2zp(k, q)

sinh 1
2zn(k, q)

}

=
∏

k

{

1 +
1

2
coth

1

2
zp(k, q)

[

βvq

V
|fk+ q

2

− fk− q

2

| + O(
e6

V 2
)

]}−1

=

{

1 +
β

2

vq

V

∑

k

coth
1

2
zp(k, q)|fk+ q

2

− fk− q

2

|

}−1

. (49)

The identity

coth
1

2
zp(k, q)|fk+ q

2

− fk− q
2

| = (fk+ q
2

− fk− q
2

) coth
1

2
β(ξk+ q

2

− ξk− q
2

)

= (1 − fk+ q

2

)fk− q

2

+ fk+ q

2

(1 − fk− q

2

) (50)

is used to express
∏

q
det(1 − Mq)

−1/2 in the following form

∏

q

det(1−Mq)
−1/2 = e−βΩ1 ×exp

∑

q

{

ln

[

1 + 1
2Fq(0)

[1 + Fq(0)]
1

2

]

− ln[1 + Xq] + Xq

}

, (51)

where Xq is defined by

Xq =
βvq

V

∑

k

fk+ q
2

(1 − fk− q
2

) . (52)

We have made the explicit and exact summation over ν in the sum (39). This is a completely
new result in the theory of interacting electron gas. Therefore, we have obtained a new represen-
tation of the contribution to the grand-canonical potential Ωr coming from the ring diagrams

Ωr =
1

β

∑

q

{

ln[1 + Xq] − Xq +
1

2
ln

[

1 + Fq(0)

[1 + 1
2Fq(0)]2

]}

. (53)

3 Conclusion

In this work we have investigated the simplest model of the electron plasma in metals. We
have focused on the structure of its grand canonical partition function by using the formalism of
functional integrals. We have explicitly shown that the partition function contains a product of
two partition functions corresponding to the free electron gas and to a noninteracting boson gas
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as well as a factor describing correlation effects between the electrons and bosons. In addition
to this result we have obtained a new representation for the infinite sum of the ring diagram
contributions by carrying out the sum over Matsubara’s frequencies exactly and explicitly.

The formalism of functional integrals offers very elegant solutions of problems from the field
of quantum statistical physics. It is especially advantageous to use it to calculate the partition
function of many-particle systems. Besides this work, this has been done in [3], where it is
shown that the partition function of BCS model has a similar structure. We expect the future of
the presented technique in application of it for more realistic models.
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