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In this paper a variational method for the intermediate ground state of a quasiparticle (exciton,
electron or hole) interacting with dispersionless optical vibrations in a one-dimensional chain
of the E-e Jahn-Teller systems is investigated. The intermediate and strong nonadiabatic range
constitutes a kind of “critical” region, where the electron-phonon coupling constant g and the
nonadiabatic parameter ~y are approximately equal to one. We have investigated the conditions
for the existence and for the stability of a soliton ground state of the extended one-dimensional
Jahn-Teller system in one dimension which is affected by quantum fluctuations of optical
phonons. The soliton was found to be stable for a sufficiently strong electron-phonon coupling
strength. Although the nonadiabatic parameter ~ is chosen sufficiently large, comparable
to one, the presented model for the one-dimensional chain of the E-3 Jahn-Teller systems
leads to substantially lower ground state energies, in contrast with one which is presented
in previous studies. Our soliton ground state energies, for the one-dimensional chain of the
E-/3 Jahn-Teller systems, are in good agreement with those which are presented for the one-
dimensional chain of one-level molecules in previous studies.

PACS: 71.35.-y, 71.38.+i

1 Introduction

The interaction of an electron, a hole or an exciton with vibrations of a crystal lattice leads to
some peculiar phenomena, one of which is an autolocalization or self-trapping of the quasipar-
ticle. This phenomena is interesting in one-dimensional systems in connection with the soliton
regime of charge and energy transport. In the last time various analytical and numerical investi-
gations of Davydov’s soliton [1-3] were carried out because the attempts to study the problem of
the ground state of an electron using a translationally invariant ground state wave functions have
not led to satisfying results. Electron-phonon bound states are relevant for understanding various
physical effects. Nonadiabatic effects become important if the scales of phonon and electron en-
ergies are comparable, i.e., the ratios iw /T (w is the phonon frequency, T is the intersite electron
transfer parameter) are not too small.
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In contrast to the lattice of Jahn-Teller molecules, the quantum effects in the E-e Jahn-Teller
system are quite well understood [4-6]. We investigate the ground state of an electron (exciton)-
phonon system in the extended Jahn-Teller system in one dimension, and estimate the conditions
necessary for the realization of a spontaneously localized state in the case of the interaction with
a dispersionless optical mode.

In the tight-binding approximation the Hamiltonian of the extended Jahn-Teller system in
one dimension has the form

N
2 2
1
H = E {hw E (b;kbmk + 5) + ag (cizcnﬁg — c:;lcnyl) Xn1

__N c—
n=—5+1 k=1

2
+ +
— Bo ( Cp,2Cn1 T Cn 16n, 2) Xn2 — TZ (Cn,jcn+1,j + Cn+1,jcn,j)} )

j=1

where N is the number of sites, X, . = (b}, +b,,,)/v2fork =1,2and b}, and b,, . are the
creation and the annihilation boson operators for site n of mode k (frequency w), respectively,
ag and Sy are the electron-phonon coupling constants, cw, cn,; are the electron creation and
annihilation operators for site n related to two degenerate levels, j = 1,2, respectively, and T’
is the intersite electron transfer parameter. The first interaction term causes the splitting of the
degenerate level, and the second one represents phonon-assisted transitions between the levels.
Transitions between the levels 1 and 2 of the two neighbour sites are not allowed.

2 The approximation of the intermediate ground state
The calculation of the expectation value of H consists of the next five steps:
Sepl

By means of the unitary transformation

N
2
U = Z Un, Un - n,QUn,la
N
-2

x| (10 0 ) (3 = ioom ) + (15 (D 6o ) 0+ 00)|
Gy (n) = exp (iowb:7kbn1k) fork=1,2,

Ong = (1/2) (|nv 1><n7 2‘+|TL, 2><7‘L, 1|) )
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ony = —lo (1/2) (In, 2)(n, 1| = |n, 1)(n, 2[) ,
onz = (1/2) (In,2)(n, 2| = [n, 1)(n, 1)),

Lp = [n, 1)(n, 1] +[n, 2)(n, 2],

[n, 7) :c:;j|0)e for j =1 and 2,

|0). is the electron vacuum state, |n,%)(n, j| are the projection operators from the linear space
generated by the vector |n, j) on the linear space generated by the vector |n,i) (i,5 = 1,2),
ip = v/—1, and 1 is the unit operator on the space of boson functions, the unitary transformed
Hamiltonian is obtained from (1)

5 2
H + 1 Qo Bo
U Ur = > {Z (bn,kb”vk + 5) Ln + (ﬁXn,l ~ 5,01 (M) Xn,2> L,
n=—4+1 L k=1
T
fﬁ{ 15+ G1(n)Gi(n+1)][15 + G2 (n) Gz (n+1)] (|n, 1){(n + 1,1|+n,2)(n + 1,2])

+ [Ls = G1 (n) G (4 D] [Ga () + G (n+ D] (I, 1) +1,1] [, 2)(n +1,2) }

T

——{ {15+ G1 () G1 (1 + 1] [15 = Gz () Gz (1 + 1]) (1, 2) (0 + 1,1, 1)+ 1,2])

+ 13 = G1(n)G1(n+ 1] [Gy (n) — Ga (n+ 1] (In, 1)(n+1,2[ = [n,2)(n + 1, 1I)}
+ h.c. } 2

Sep 2

The choice of a suitable trial ground state wave function for the Hamiltonian (2) is the central
problem for the ground state energy approximation. We choose the following form of the ground
state wave function:

2 5
V=3 D B (m) e ™ m, )D (m) [0} @)

and |0)pn,m,x is the vacuum state of mode & for site m, K is the wave vector,
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2

D) =exp|VE) 55 G ) (b7~ b |
n:7%+1 k=1

and ¢, (m) and §; (m) are the real variational parameters. D (m) |0),, is nothing else than

the lattice state associated to the polaron centered on site m, and it describes a superposition of

coherent states,

exp [(1/\/ﬁ)§n7k (m) (b:{k - bn,k)} .

This choice is the generalization of the ground state wave function given in [7] for a quasi-
particle interacting with dispersionless optical vibrations in a one-dimensional one-level chain of
molecules.

The expectation value of U (H/hw) U™ in the trial ground state (3) has the form

H
(U, U%UJF\I/K} =
B 3 2 2 2
n=—41 Up=—N415=12 k=1 “ VN j=1
Bo 5Gn2 (n) Grt (1) o T g
_Eﬁ Ni exp(—QT);ﬁj (n) — mcos(K)mZ%)\w,A 4)

X{@' (n) Bj (n+1)exp [=Wa (n,n +1)] + Bi (n) Bj (n — 1) exp [-Wa (n,n — 1)]}} :

where
2
Wa(n,n+t1)= W,j[(n)
k=1
2
n] Cnk(n £1) Coi(n) srE1] Gt k(N £ 1) G k(n))
+ 1 — (=1)% ’ J + |1 —(=1)% J )
2 ([1- o] et R R
with
J 9
WEM =52 D [k (£1) = G ),
m:7%+1
A = (87,67, 85,57,
where 5};,5};*1 are equal to 0 or 1 for every n = —% +1,..., % and for £ = 1 and 2, and

the values \; ; A for ¢, j = 1 and 2 are equal to 41, —1, or 0, respectively. The definition of the
values \; ; A is clear from the shape of the Hamiltonian (2), and it can be illustrated as

A12,1,1,00 = +tL, Ao, =1 A11,1,000 =0, A11,0,0,0,0 = 1
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From the shape of the Hamiltonian (2), we come to the next equalities:
( 5n+1 62 76n+1) ( 6n ! 62 56n 1) (6?,6?_1,53753_1) = (6?75?+1563563+1)

foreveryn=—-4 +1,.., 4.
Sep 3

We choose the method of the Lagrange multipliers to find the minimum of the expectation
value (4).

In our model the Lagrangian of the form

A= <\11K,Uh U W) — (Z B2 (n) ~ 1) 5)

is considered, where E is the Lagrange multiplier.
The method of Lagrange multipliers then leads to

OA
OA
=0 7
) “
with j = 1 and 2,

)= (VN) D0 e (),
n=-N/2+1,..,N/2,

and

qg=(2n/N)mform=—-N/2+1,..,N/2.

It is evident that the equations (6) can be rewritten as

Eﬁj Z mk ;LAO]Cn\}L)B]()
Bo Cn,2 (1) Gia(n) T
_\/5_ NG exp(—2 N )ﬁj (n) — T o8 (K) 8)

XZZAJM o (n+1)exp(—Wa (n,n+ 1)) + 8, (n — 1) exp (—Wa (n,n — 1))],

where j,n, m and A are defined above.
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Sep 4

Because the expectation value (¥ x, U (H /hiw) U T W) contains 2N 2 +2N variable param-
eters, equations (6) and (7) are not soluble for the large IV in the general case, and therefore it is
necessary to use a suitable approximate method for their solution.

In this paper the following variational method for the solution of the equations (6) and (7) is
used:

The solution 3; (n) of equations (8) for j = 1, 2 is considered in the form

Bj (n) = Kjvo (n), )

where «; is a real variational parameter which is independent on n, and o (n) is a probability
density function fulfilling the condition

> W) =1. (10)

DOEDIAGESE (1)

2
> okr=1. (12)

Further, we assume that values

Cn.k (n) Cn+1.k (n + 1) Cn—1,k (n - 1)

N A (13
Cn,k (n + 1) Cn,k (n — 1) Cn+1,k (n) Cn—l,k (n) (14)

and W (n) for each n are well approximated by the real variational parameters ¢, (0), Cx (1)
and Wy, for k = 1, 2, respectively, which are all independent of n. This assumption is considered
in [8], too. Because the values WW,* (n) for k = 1 and 2, are non-negative, the values W, are also
considered to be non-negative.

In the Appendix B the expressions which define the values ¢;(0) and (i (1) for k = 1,2 are
given.

Another approximation which is used in our model is the so-called continuum approximation
of the parameter n (i.e., n = y/a, where y is a real number and a is the lattice constant) [7-8].
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By means of the approximations which are considered in Step 4, the equations (8) can be
rewritten into the next approximate form:

Bty (n) = iy (n NZm n)I° + V222G (0) Ky (n)

VA O 0 (2600wt () e S Niane 09

X exp <i (Wi ([1= %] + 1= (—1)62i1}) G (0) G (1))) o (1)

k=1

—m cos (K) Z RN L

X exp <i (VV;c + ([1 - (71)52} + {1 — (71)5%1}) Cr (0) Cr (1))) dd—;wo (n),

k=1
forj =1,2.
By means of the condition (12), we can transform the equations (15) into
d2
B () = (ps + U )~ 2) o (). (6
where

W= mcos g Aj i AR R
JJ/ A

X exp (—22: (Wit ([1= 0]+ 1= %)) G0 e (1))) ,

k=1

= %Z |Cq.k (”)|2 + \/5;—2(1 (0) — \/55—00)(2 (0) exp (—2 (G (0))2) )
q,k

The equation (16) is the nonlinear Schrodinger equation and it can be very easily proved that
the value p is positive in the case that cos (K) > 0 (see Appendix C). To investigate the energy
E in the equation (16) at an arbitrary value of the electron-phonon interaction, and to compare
our results with those given in [7-8], we shall use a direct variational method and choose the trial
function of the ground state of the electron in a chain in the form

K 1
Yo (n) = \/;M7 17)

where « is a real variational parameter.
By means of the method which is presented in Appendix A, we can transform the system of
equations (7) into

(A+20) i (a) = (39 + m0) 7 (q) (18)
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for k = 1 and 2. Here, \ and U are infinite matrices with elements

Aij = (—1 — /L[HQ + (27T/N)2 22}) 8ij
—+o0
Uij = / O (m) (1/(:os,h2 (km)) @, (m)dm,
iand j are equal to 0, £1, 2, ... and &;; is Kronecker’s symbol, @, (m) = (1/V'N)
x exp (jig (2/N)m), ®; (m) is the number conjugate of ®; (m),e = 2ux?, & (g) is the infi-
nite vector with elements ¢; 5, (¢) fulfilling the equation
+oo

Yo (n) G (n) = Y ¢k (@@ (n), (19)

j=—oc0

+oo |
for k = 1and 2 and 7 (q) is the infinite vector with elements v\ (q) = [ 0™ (m)
x®, (m)dm,forp=0,£1,+2,...,

T 89,
pi = =5 cos (K) D Ak [1 - (=1 ’“}

3:3"A

x exp (Z (Wit (L= 0%+ 1= ]) a0 (1))) G (1) 2

k=1

for &’ = 1and 2, 4% is the infinite matrix of elements 5% = 6,,{A; + By cos [(27/N) p]} for

k=1,2and 'y,(,i) = 0ps{A2 + By cos[(2n/N) p|} for k = 1,2, respectively, and p and s are
equal to 0, =1, £2, ..., and §,, is Kronecker’s symbol.
Further,

A = \f— + 4f— exp (—2¢2(0)) ¢ (0) ¢ (0) + ¢ (1) T cos(K) <1 + 1;-;2)

2hw 2
0
XY Nk [1— (—1)61}
IR

x exp (Z (Wt ([1= 0%+ 1= %)) G 6 <1>)> (20)

k=1

=¢ (0 ) T cos )Z \j it AR [1 _(_1>5?i1}

7,34

xexp< i(vm([ 1)“%[1<1>“2*1D@(0><k<1>)>, (21)

k=

[
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\/_— exp (—2¢ (0)) + ¢, (1) % cos(K) (1 + 1,%2)

2
0
X Z Ajj' AKj K [1* (*1)52}

4,3' A
2
X exp (—Z (Wit (1= 0¥+ 1= 0] ) @ (1))) . @
k=1
T §0£1
= (2 (0) 57— cos(K) > Njgakyk; [1 —(-1)™ }
RN
2
xexp< > (Wi (1= 0%+ 1= })<k<o>ck<1>)>. (23)
k=1
Sep5
After multiplying (16) by ¢ (n), and performing the integration Jrj’oo()dn, we obtain the next

energy functional:

2
1 2 1 1 1
E=-r’n+ { <Ak + —@ka) — Ay
3 ]; 3 4 (1 +H’f2)3/2 ut/2

1 1 1 1 1
+ (Ag +aOy) Ok = 373 1% <1+,//{2+—>exp< n2+—)
2(1+un2) M H H
1 11 1 1
+ B} 372 1/2—{1+<1+2,/n2+—)exp<2,/n2+—>}
(1+u/~@2) p'=8 H Iz

) 1 1
+b®k4 (14 )3/2 e }

FVERG (0)  VERG (0)exp (~263 (0)) — 20, @4

where a, (x(0) and ©, are defined in Appendix B for k = 1 and 2, A;, and By, for k = 1 and 2
are defined in (20-23) and ~ and . are defined in Step 4, and

! 1 {1 a8 1/ a6 ¥ A\ 2
_<A6>2{<A6> [ 1-x) 2 (1A6) ar“an(lx(s) 1

)\6 1—A5arcmn\/1—m“}

where A and § are defined in Appendix B.
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In the case that ¢; (0) # 0, it can be easily proved that the next inequalities are valid:

463 (0) < (Bo/a0)” 4} (0 exp (4} (0) [1 + 4¢3 (0) + €] (25)
< (Bo/ao)? e [1+ 42 (0) + C]°,

where
C = T/ () (2 + 0.5x2) (1 + T/ (hw) 6r2 (1 - \/W(MQ)_1> .

From the inequalities (25), we come to the conclusion that for 5y = 0 is {2 (0) = 0. Thus,
the condition 5y = 0 leads to the next expressions:
Ay =209/ (hw), B; = 0 (see Appendix C), As = 0, By = 0,

¢1(0) = —v2a0/ (th,um/Co) — dav2a0\/1ik?/ (th,um/Cm/,uFaQ + 1) )
where () is defined in Appendix B, ©; = 5\/§a0\/ﬁn2/ (ﬁw\/u/# + 1), Oz =0,and pp =

cos (K) exp (—W1) T/ (hw).
After inserting these expressions into the energy functional (24), the next one is obtained:

@T) Yot L
unz) 12

1
Egﬁu+< g/+a—

SV (1+
<2\/_+a *jL W) 7%52\/9/_7
g %(1+:n2)3/2 u11/2 <1+m> P ( HQJF%)

2
ﬂé l 1 - ’
+b <\/pm27+1 2 g/v) 4 (1+MK2)3/2 75 T 2Va/ ¢ (0) —2pu, (26)

where we have used

ag/ (hw) = \/29/7, g = a3/ (2Thw), vy = hw/T, and u = cos (K ) exp (—=W7) /7.

The expression (26) together with the condition
—Va/v/ (/m Co) —dan/g/v/iK?/ (/u-”»\/ Co/ K + 1) (26a)

determine the energy dependence on the variational parameters W7, , and ¢ to be found from
the extremum condition for E. This functional dependence, as follows from (26) and (26a), is
determined by the numerical values of two parameters, namely, by the nonadiabatic parameter
and the dimensionless coupling constant g. If the optimal values of W1, x, and ¢, i.e., W1, £,



The soliton ground state of an electron or exciton in. . . 81

o r B
© o N

W
T eerw,) 1
W
~ ]

K,

m

E neol2T]: Kys EXp(-W,,)

[
r P OO OO o o o o
M o ®m o MM ONMDBDOD

%\O\

I I I I I I I I

06 07 08 09 10 11 12 13 14
9

|
I
i

|
g
=2}

o
o

Fig. 1.The minimal values of the energy func-
tional in units of 27" and the optimal values of
the variational parameters W, and x as a func-
tion of g obtained from (26) with respect to
(26a), for the case of v = 0.2.
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Fig. 2. The minimal values of the energy func-
tional in units of 27" and the optimal values
of the variational parameters W; and « as a
function of g obtained from (26) with respect
to (26a), in the case that v = 0.3. Because

of the comparison with ground state energies
of a quasiparticle (exciton, electron and hole)
interacting with dispersionless optical vibra-
tions in a one-dimensional one-level chain of
molecules, the values F,, ;) obtained from
Ref. [7] are presented.

and 4,,, are determined, that is for Wy, = W1,,,, & = km, and § = §,,, the value of E arrives to
its stable minimum E,,,. We have used the penalty method to determine the optimal values of
the variational parameters. The optimal values of the variational parameters W, and , i.e.,Wy,,
and k., are presented in Figs. 1, 2, in the case of v = 0.2, v = 0.3, respectively. The numerical
calculations which were performed for various values K lead to the conclusion that the mini-
mal value of the energy functional with respect to the condition (26a) is obtained for K = 0.
Therefore, the results of the numerical analysis are presented for K = 0.

3 Conclusions

In our model we have studied the intermediate coupling and strong nonadiabatic regime for one-
dimensional chain of the E-3 Jahn-Teller systems, i.e., the range, where the electron-phonon
interaction coupling constant g and the nonadiabatic parameter ~ are approximately equal to 1.
The results of the numerical analysis of Egs. (26) and (26a) for v = 0.2 and 0.3 are shown in Fig-
ures 1 and 2, respectively, and in Table 1. These Figures show only those values of exp (—W1,,)
for which 17,,, is non-negative. The range where &, is increasing as a function of g and W7y,
is non-negative can be called as an autolocalized one. The following conclusions can be made
from the data of the presented ground state energy model:



82

D. Kulak

g Erm,26) [27] Km exp (—Wim) Om Gm(0)
0.5 -0.98 0.290 0.820 0.981 -0.754
0.6 -1.02 0.301 0.836 0.975 -0.815
0.7 -1.07 0.315 0.854 0.970 -0.867
0.8 -1.12 0.330 0.873 0.964 -0.913
0.9 -1.17 0.343 0.890 0.958 -0.954
1.0 -1.22 0.354 0.910 0.952 -0.990
11 -1.26 0.364 0.926 0.945 -1.023
12 -1.31 0.376 0.943 0.940 -1.053
1.3 -1.36 0.391 0.962 0.933 -1.080
14 -141 0.405 0.981 0.928 -1.105
15 -1.46 0.420 0.997 0.922 -1.127

Tab. 1. The minimal values of the energy functional in units of 27" and the optimal values of the variational
parameters «, W1, d,¢1(0) as a function of g obtained from (26) with respect to (26a) in the case that

v =0.3.

1.

2)

b)

c)

if g = 0and By # 0, i.e., if ¢4 (0) = 0and ¢; (0) # 0, then we obtain from the
expressions (C5) and (C11) (see Appendix C),

AE = [2T/(hw) — Tr?/(3hw)] exp(é1 Wk) [1 — exp(—46 (0) & (1))} >0,

and k? — k3 =0,i.e, k2 =1/2and k% = 1/2.
These two relations lead to the conclusion that if the phonons of mode 1 are not
present, the electron performs oscillations between the energy levels 1 and E5,

if |¢1 (0)] >> 1, e, if ap/hw >> 1, then the expression (25) implies that ¢z (0)
is approximately equal to zero, and (C11) leads to the expression k% — k2 ~ 1, i.e.,
k? =~ land k3 ~ 0,

if (1 (0) #0,then1 > x? — k2 >0,ie,1>k?>1/2and 1/2 > k3 > 0.

The conclusions a), b), and ¢) which are presented above, lead to the next one: the
phonons of mode 1 “settle” the electron on the lower energy level £; and the phonons
of mode 2 cause the electron oscillations between the energy levels £, and E>, be-
cause n? is nothing else than the occupation probability of the energy level E;. The
expression (C5) leads to the conclusion that the gap is opened by the interaction of
the electron with phonons of mode 1 and 2 during its transfer in the lattice.

2. The excitation energy is reduced by the self-trapping effect. The largest reduction is for
the smallest value of the interaction constant g.

3. The numerical calculations which were performed for various values g ~ 1 and v ~ 1
lead to the next conclusions:

2)

we obtain the value of g, for every v < 0.4, which has the following property: the
soliton ground state can be considered as an approximative one for sufficiently large
9,9 < g~. Here, g, isthat value of g, for which exp(—W,,) = 1 (as a function of g).
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b) g~ is increasing with increasing ~, but slower than . We can conclude from Figs. 1
and 2, that the spontaneously localized (autolocalized) state exists in some interval of
the coupling constant g although the nonadiabatic parameter  is chosen rather large,
close to one.

4. Fig. 2 shows a good agreement between the ground state energies obtained from Ref. [7]
and from (26) with respect to (26a) in the intermediate coupling and strong nonadiabatic
regime.

5. The optimal value x,,, as a function of g is not so rapidly increasing as it is presented in
[8]. This reality follows from the fact that all roots of «2 are considered in our model, what
is reflected in parameters a and b, in contrast to the model presented in [8], where not more
than the first root of 2 is considered in the energy functional.

6. The mathematical model which is presented in [8] considers the ground state energy varia-
tional ansatz which has not the norm equal to 1. Futher, the ground state energies which are
obtained from Ref. [8] are very different from those in [7], and therefore the results which
are presented in [8] cannot represent the ground state energies for an extended Jahn-Teller
system in one dimension.

In the next paper the cases with small values g will be solved. This work is under way.

Appendix A

In the case that &k = 1, the equations (7) can be rewritten into the next form:

2

> ()~ G (n +f°‘025 (A1)
+4\/§§—Z g"j%l) exp (2 j\§ )> G { ‘anz 87 (n + — cos(K)
X Z Xij.A (ﬁi (n) B; (n+1)exp (—=Wa (n,n + 1)) {N (Cg1(n) — g1 (n+1))
ij,A
+ [1 - (—1) } n, 1\(/71_—&— b1 Neloqn + [1 - (71)5(&1} Gnt1(n £ 1 \1/%+ )1 ~ loq(n-i-l)}

#0000 8, 0= Dxp (W (00 = 1) (D { 5 G (1) = G (0= 1)

+ [1 - (—1)‘55)} 7@“1\(/% D %eioq” + [1 —~ (—1)53&1} 7@”’\1/% D %ei“q<””}> ~0.
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When using the variational parameters (. (0), ¢, (1) and W}, (see Step 4) as approximations
of the values defined by Egs. (13) and (14) and of W,;'E (n), we obtain from Eqs. (A1)

262 S (n +\/§§—f)iﬂf(n)%ei“q" (A2)
+4\/§%§2 (0) exp (—2¢7 (0) ‘“qnz 87 (n + — cos ”ZA Xij,A
(( )8 (n+1) exp< i(ww([ 1)5%[1(1)5?1})@(0)@(1)))
k=1

iogn

x {% (g1 (n) = Cga (n+1)) + [1 — (71)5?}0 (1) eN {1 _ (71)5 il}(l 0) elog(n+1) }

i(wk+([1(1)5ﬂ+[1( 1)5&1})@ ) (1 )

k=1

+6i (n) B; (nl)eXp<

eioqn

{3 G =G -1+ [1- Co¥a 0 S+ [1- 0* e o equ(;_l)})

=0.

Further, when we use approximation (9), expression (12), and the continuum approximation
of the parameter n, we obtain

0 (1)1 ) = 1[G (1) 3 ) = 5z (G () ()

= VB (n) €07 4 4vT G (0) exp (~265 (0)) G (0) i () 07 4 11— cos (K)

4hw
X Z i j, AKiKj €Xp (i (Wk + ({1 — (71)52} 4 [1 - (71)5?1]) ¢k (0) Gk (1)))
iGA k=1
(- 0" e (v + 20 )
1= a0 io 2cos (550) ) (@) 25 () | (A3)
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When inserting d wo( )=
tions (A3), we obtain

% (U (n) —2p — E) o (n) (see equation (16)) into the equa-

T )= nfGa 0 % W ) = 22 By (o )+ e @ (—j)zcb;f(n)}

- (ﬁa " m,f—g@ (O)exp (-2 (0)) 1 (0) + 51— cos (K)

X Z i j AKiK; €Xp (—22: (Wk + ({1 - (_1)52} + {1 — (—1)62i1}) Cr (0) Cr (1))>
0,7, k=1

x [1—(—1)‘*}@(1)) iugw )@} (n) + 71— cos (K)

X > Nijakikj exp ( 22: Wk + 1 —( 1)6’“} + {1 — (=1)% D Gk (0) Gk ( )))
0,7, k=1

x[1-n%aa >%<U< n) — 24 - E)pi”(”( )@ (n) + 52— cos (K)

> MA'WJGXP< S (Wt (1= 0%+ [i- 0% ]) a0 >))
0,4, =1

% [1= (=11 (0) cos (%) S @)@ ) (A2)

where we have used expression (19) for k£ = 1, and the equality

o) dom = 55 D () 82 (n).

p=—00

After inserting the identity

a1 (M) U (n) o (n) = (2N+W€ + E) ZCJ 1 2”“22203 1(9) Ujp®;, (n),

J

which is valid provided that vy (n) = v/(k/2) (1/ cosh (kn)),
+oo
into the equations (A4), multiplying it by ®; (n), and performing the integration [ ()dn, we

obtain the 4-th linear equation of the next infinite linear system:
(A+e0)a @ = (30 +m0) 7 (g). (A5)

The terms of the expression (A5) are defined below the equation (18).
In the case that k£ = 2, we can derive the formula (18) analogously as it was made in the case
that £ = 1.
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Appendix B

o < (5 (15 pi2)) " (4/3)Y2, where A~1is

the inverse matrix of A, and ng‘_lfjH[zz " is the norm of eA\~1U in the Banach space [i2, 2]

It can be easily proved that Hs&*lfj

[9]. In the case that ((ux?) / (1 + ;m2))3/4 (4/3)"/? < 1, we can derive for the approximate
solution of the equations (18) by means of the perturbation theory
A (1) 1 e m' (2m’+3)
¢k (q) :)\JT?jVj (9) + m[uk + A0 (A + Bi)] > (M) v (a), (BY)
m’=0

where £k = 1 and 2,

+oo )
A= (ViR®) [V uk? + 1, V§2m+3) (9) = \/%/2 [ ®; (n)cosh™ ™ F3) (kn)eloandn,

j=0,£1,+2 ..., m = —1,0,1,2,..., and ¢ is a real variational parameter approximately
equal to 1. The optimal value of this parameter has to be determined in the minimum of the
energy functional . The other terms of the expression (B1) are defined in Step 4.

After inserting expression (B1) into formula (19), we obtain for ¢, 1 (n)

1 =

Cok (n) = 1/)0—(”) Z Cj,k (Q)q); (n)

j=—oc0
(k)

1 Vi, p*

~ . (q)P; (n

B o

+oo
e+ 0 (A Bl s 30 (00" 30 5™ (98 () 82)
j 77

m’=0

Then, because ¢, 1 (n) /v N = (1/N) 3 e~09"¢, 1 (n) we come to
q

Cm,k(n)N_(Ak—f—Bk)wO(m)eX ke m—n
Ny o o R AT

1 K 1
" Yo (n) \/;[Mk 0 (A + Bl cosh® (km) — A\d cosh (km)

—fi\/C_'0|m—n|)> , (B3)

X

1
<_ 20/ (

where Cp = 1+ 1/ux?.
In the case of m = n, the expression (B3) can be used for the definition of the values ¢ (0)
and j (1) as given below.
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When ¢, (0) is defined as

“+00
G (0) = / C"j%") 42 (n) dn,

we obtain
i ) (At B O X T
(0) = nk 1) o dn= — k k) k AS)™ 7$
gk() _4 \/N 7/}0 (n) n 2,LU€\/C_’0 2#“\/0707712:0( ) /Cosh2m+4 (.1‘)
(Ap, + By) Or =X Cm+2)!!  (Ay+ By) Ok

_ - A6)™ — - ,
2puk1/Co 2/“@\/507”2:0( " @m 2un/Co  2un/Co

where ©, = ux + A (Ag, + By), for k =1 and 2, and

a = —% + W (15—5)\5)1/2 arctan (%)1/2.

Analogously, defining

y G (n)
NGl n+1,k ) o dn,
G ( )_/ =g (n) dn

we obtain

Ck (1) = ¢ (0) exp (fn Co) .

Appendix C
+oo
After multiplying (15) by ¢ (n), and performing the integration [ ()dn, we come to
FEri=JkK1 +L[I€1 (/\1 +>\2+l/) + Ko ()\1 7/\2)], (Cla)

EHQ = Jlig + L[Hl (/\1 — )\2) + Ko (/\1 + )\2 — l/)], (Clb)
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where

A1 = 14exp (=41 (0) €1 (1)), A2 = Arexp (—4¢2 (0) 2 (1)),
v =2exp (=22 (0)¢2 (1)) (1 —exp (—4¢1 (0) C1 (1)),

J==¥% / [Cauk (I 43 (n) dn + V2221 (0) - \/55—24“2 (0) exp (—2¢7 (0))

2
T T 1,
L= {—%4‘@5% ] exp (—;Wk>

The system of homogeneous linear equations (C1a) and (C1b) has a nontrivial solution only
if its determinant is equal to zero, i.e.,

E—-J—- L()\l + Xy + V) —L()\l — )\2) —0 (CZ)
7L(>\1 7/\2) E*J*L(/\l +>\27l/) ’
The equation (C2) has two solutions,
By =J+ L1+ X))+ Ly (A —A) + 02, (C3)
By =J+LM+ ) — L\ (A — A2)? 402 (C4)

Then the values (C3) and (C4) give the next expression for the excitation energy:

AE = Ey — By = —2L7\/ (A1 — X2)” + 12, (C5)

where we have considered the case K = 0, as energetically the most advantageous one.
Further, when inserting £ = F; in the equations (Cla) and (C1b), multiplying (Cla) by 1
and (C1b) by k5, and adding them, we obtain the next expression:

Ey = J+ L[k} (A + X2 +v) + 26162 (A1 — A2) + K3 (A1 + A2 — V)] (C6)
=T+ LY Aoy aringexp (Z (Wt (1= 0%+ 1= %)) G ) 6 <1>)>-
9, o—

The values of energy E1, as given by (C3) and by (C6), are equal in the ground state. There-
fore,

exp <22: Wk> (Al + A+ (A — X))+ y2>
= Z i j ARil; €XD <—Z (W;C + ([1 — (—1)52} + [1 — (—1)52i1D ¢k (0) ¢k (1)))

i,7,A k=1
(C7)
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Because A; > 1 and Ay > 0, the expression (C7) leads to
2
> cos (K)exp <—Z Wk> T/ (4hw) > 0,
k=1

provided that cos(K) > 0.
Further, it can be easily proved that (C7) is equivalent to

\/ ()\1 — )\2)2 +1v2=v (KJ% — Hg) + ()\1 — )\2) 2K1K9. (C8)

One has A\; = A, for (> (0) = 0. Then we come to the equality v = v (k% — x3) from the
expression (C8), and this implies that x? = 1 and k3 = 0 is for (> (0) = 0.
We can easily obtain from (15)

K2y ALj.aK) exp <—z2: ([1 _ (_1)62} + {1 - (_1)5?1}) G (0) G (1))

J,A k=1

2
= 11> Dok exp <Z (1= 0%+ 1= ) a0 <1>> (c9)

3A o=1
which is equivalent to

2K1KoV = (/ﬁf — ﬁg) (M —A2). (C10)

From the expressions (C8) and (C10), we come to

v

\/ ()\1 — )\2)2 + 2

which leads to the next conclusion: if ¢; (0) # 0, then {2 (0) = 0 is equivalent to x5 = 0.
If {5 (0) = 0, then B; = 0. This statement can be proved as follows: Because

(C11)

Ki — K5 =

T 2
By = ¢ (0) cos (K) 37 P (—Z Wk> [2 (k2 + K2) (e~4o1 4 emdm—dz2)
k=1
+ 4 (Hg _ Ii%) 6—411—2m2 + 4%1%2 (6—411 _ e—4$1—412):| ,

where 21 = (1 (0) ¢1 (1) and z2 = (2 (0) (2 (1), we obtain the relation B; = 0 for ¢, (0) = 0,
i.e,, for zo = 0. We have used here k¥ = 1 and x3 = 0, which are valid in the case that
¢2 (0) = 0, as it has been proved above.
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