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TWO-PULSE SPIN ECHO IN TWO-LEVEL SYSTEMS INSIDE AMORPHOUS
FERROMAGNETS
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The dependence of Mims echo on time, caused by the existence of two-level systems within
180◦ Bloch domain walls has been considered. It is shown that in the case of two-level
systems, the two-pulse echo formation is characterized by some specific features due to the
wide distribution of the two-level systems splitting energy.

PACS: 76.60.Es

Amorphous systems with tunneling two-level systems (TLS) have been studied with great inten-
sity [1]. The model of TLS was first developed for spin glasses, then for hydrogenous metals [2,3]
and solid solutions [4,5]. Amorphous ferromagnetic materials with TLS were considered in [6,7].

Most of the materials as a rule are strongly inhomogeneous by a number of characteristics.
In this connection, the development of various methods for investigation and control of inhomo-
geneities is of great interest.

The magnetic resonance is one of such methods, since some characteristics of spins are sensi-
tive to inhomogeneities. Therefore, the method of spin echo the peculiarity of which in magnets
is the enhancement factor of the domain walls [7–9], is widely used. In [10] the rotational echo
was studied for amorphous ferromagnets without any consideration of domain walls. The spin
echo caused by two-level systems was studied in [11–13].

The goal of this work is to study a two-pulse echo in amorphous ferromagnets in case of wide
angles of rotation—the so called “Mims echo”, caused by pseudo-spins of TLS located within
180◦ Bloch walls [14]. According to [6], we consider the case when magnetic atoms form TLS.
Because of the strong anisotropy in domain walls the authors assume that the dipole field with
account of the enhancement effect differently changes the TLS frequency for TLS located in
walls and in domains:

ωnw = ωnd + α ,

where ωnw = Enw

h̄ is the frequency of TLS in domain walls, ωnd = End

h̄ is the frequency in
domains, Enw is the splitting energy of the TLS located in domain walls, End is the splitting
energy of the TLS located in domains and h̄ is the reduced Planck constant. The value α must
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be limited by the condition γnη0H1 > |ωnd − ωnw| = α, which guarantees the TLS excite-
ment along the whole Bloch walls. Here H1 is the amplitude of radio frequency field, γn is the
gyromagnetic ratio for nuclei, η0 is the value of the enhancement coefficient η(y) in the center
of 180◦ Bloch wall. Let us explain our assumption briefly. As it was already mentioned, we
consider the case when TLS atoms are magnetic. Therefore, the matter of particular interest
for us is the dipole-dipole interaction between the spins of these atoms and the electron mag-
netic moments forming the ferromagnetic structure of the material (domains and Bloch walls).
The fluctuation of the dipole-dipole interaction constant caused by atom transition between TLS
states allows TLS pseudo-spin to experience the action of external magnetic field (static or vari-
able). Let us consider that ~Mi = γs~si is the magnetic moment of the atom located in i-th TLS (γs

is the gyromagnetic ratio and ~si is the spin operator for electrons). The dipole-dipole interaction

Hdd = A
(

1
r3

ij

)

~Mi
~Mjbetween the magnetic moment

⇀

M i and electronic magnetic moments

located in domain wall changes due to the fluctuation of the inter-atomic distance rij caused by
tunneling of i-th atoms from one state to another
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where d is the distance between the states of i-th TLS, A is the dipole-dipole interaction con-
stant. Expression for Hdd can be expanded in series in terms of the small parameter d

rij
∼ 0.1.

Taking into account the linear term of this expansion we obtain the following expression for the
frequency of i-th TLS

ω
′

i =
E

′

i

h̄
=



Ei/h̄ +
3d

r

∑

j

Aij
~Mi

~Mj



 dz
i ,

where dz
i is the pseudo-spin operator of TLS, E is the splitting energy. When the line width of

TLS caused by Klauder-Anderson mechanism is ∆ω ∼ 106 Hz, the magnitude of 3d
r Aγ2

s ∼
0.3 · 109 Hz shows that the given mechanism is effective. External magnetic field influences the
TLS frequency by means of the interaction with magnetic moments of electron spins. (The direct
influence of the external magnetic field on the magnetic moments of i-th atom, presented in the
i-th TLS, does not affect the frequency of this i-th TLS. This influence on frequency becomes
apparent in other TLS, when the magnetic moments of the given i-th TLS play the role of external
electron moments.) Let us consider the influence of external variable field on the frequency of
two-level system in detail. The variable field changes the orientation of δM electron magnetic
moments. These moments take the orientation along the effective field

H = H0 + h(t) ,

where H0 is the static magnetic field and h(t) is the variable field.
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We can qualitatively estimate the change of the TLS frequency caused by this effect. Let us
suppose that the variable field is in resonance with one of the packets of magnetic moments with
equal quasi-Zeeman frequencies included in the sum AijMiMj . As the frequencies of Mi and
Mj differ from each other the variable field can not be in resonance with both packets. Neglecting
the influence on the non-resonant moments, we can see that the above-mentioned effect is linear
to δM

δω
′

=
3d

r
AMδM .

Let us imagine that δM has the following form δM = λh(t), where λ is the magnetic
susceptibility of the electron system (the tensor of magnetic susceptibility λαβ like the tensor
of enhancement ηαβ ≈ λαβ has only one component, which is nonzero for 180◦ Bloch strip
domain structure). We compare two kinds of changes when the radio-frequency field is applied.
The first change of TLS frequencies δω

′

w is caused by electron spins, existing in domain walls,
and the second one δω

′

α is the change caused by the spins in domains. As λw > λα, where λw

and λα are the magnetic susceptibilities for walls and domains respectively,

δω
′

w

δω′

α

∼
λw

λα
∼ 103,

we can conclude that the interaction of TLS with domain walls will prevail over the interaction
with domains.

For calculation of echo amplitude from the TLS pseudo-spin located in domain walls, we use
the method offered in [14]

|∆M(ω, t)| =
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here ∆ω = ωn − ω is the detuning of radio-frequency field relative to the centre of passband of
the receiver ωn with the width δω; gw(∆ω) is the function which takes into account the variations
of the TLS frequency in the walls, and for 180◦ Bloch walls has form:

gw(∆ω) =

(

2D
dωn(y)

dy

)

−1

=
[

4(∆ωd − ∆ωw)−1/2(∆ωd − ∆ω)(∆ω − ∆ωw)1/2
]

−1

∆ωd = ωnd − ω; ∆ωw = ωnw − ω, D is the width of the walls,
η(∆ω) = η0[(∆ωd − ∆ω)/(∆ωd − ∆ωw)]

1/2 is the enhancement coefficient. We neglect the
dispersion of η0 for the centers of the walls.

Amplitude m+(∆ω, t) after the action of two pulses is described by [15]

m+(∆ω, t) = m0 · 2α∗

1β
∗

1β2
2 exp(−i∆ω(t − 2τ12))

where τ12 is the time interval between the pulses, t is the time measured from the first pulse, m0

is the equilibrium magnetization, α1, β1 and β2 are the Kelly-Klein parameters, expressed by the
pulse characteristics [15–16]:
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α1 = cos [Ω1(∆ω)t1/2] + i cos [θ1(∆ω)] sin [Ω1(∆ω)t1/2] ,

β1 = sin [θ1(∆ω)] sin [Ω1(∆ω)t1/2] ,

β2 = sin [θ2(∆ω)] sin [Ω2(∆ω)t2/2] ,

Ω1,2(∆ω) =
[

γ2
nη2(∆ω)(h(1,2))2 + ∆ω2

]1/2

,

tn[θ1,2(∆ω)] = γnh(1,2)η(∆ω)/∆ω .

Here h(1,2) is the radio-frequency field amplitude, t1 and t2 denote the duration of radio-
frequency field.

When we have wide angles of rotation (Ω1,2t1,2 >> 2π) for the same radio-frequency
pulses, the integration by ∆ω removes fast oscillating factors sin Ωt and cosΩt down to zero.
Therefore, the formula (1) takes the simplest form:

|∆M(ω, t)| =
3m0
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(2)

The peculiarity of TLS is the dispersion of splitting energy E requiring the obtained expres-
sion to be averaged by distribution function. The further simplification of (2) also depends on
E. When E/h̄ ∼ ωn where ωn is the carrier frequency of the receiver, δω >> γnhη(∆ω) is
valid δω is the TLS line shape width caused by Klauder-Anderson mechanism [17], equals to the
passband width of the receiver). In this case the expression

∆ω exp [−i∆ω(t− 2τ1,2)] ÷
[

∆ω2 + (γnhη(∆ω))2
]2

is the fast-oscillating factor under the integral (2). Therefore, for ∆ω = 0 other factors can
be removed from under the sign of the integral and thereafter the limits of integration tend to
infinity. As a result, taking into account the averaging by the TLS distribution function, we have
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∫
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,

here p̄ is the TLS state density and ∆0 is the TLS tunneling parameter. For the resonant TLS, the
energy of which is within the interval h̄ωn − h̄δω < E < h̄ωn + h̄δω, we have

|M(ω, t)| ∼ p̄
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Fig. 1. Echo signal dependence on time.

In the opposite case δω << γnη(∆ω)h we can neglect ∆ω with respect to γnη(∆ω)h in the
integral expression (2). Finally we have:
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The expression for echo amplitude (3“) can not be solved analytically and needs the use of
numerical methods. The echo amplitude dependence on time is shown in Fig. 1. As the graphic
shows, the echo amplitude has a split summit with two maxima that are set in time shifted from
2τ12 that is completely consistent with the Mims [11] theory. The graphic is plotted by the
numerical integration for the following parameters: τ12 ∼ 10−6 s, h ∼ 1 A/m, η0 ∼ 106,
γn/2π ∼ 1 Hz·m/A, ω ∼ 106 Hz, δω/2π ∼ 105 Hz, T ∼ 0, 1 K, Emax ∼ 10K, ωn ∼ 1010 Hz.

As it was already mentioned, the Mims echo in amorphous magnets must be specific due to
the wide dispersion of TLS frequencies. It is also well known that Mims echo from nuclear spins
depends significantly on detuning (i.e. whether the influence is resonant or not with respect to
spins) and has a sharp maximum if the influence is resonant.

In our case the TLS, for which the pulse frequency is resonant as well as the TLS the fre-
quency of which differs from the pulse frequency take part in echo formation (see formula (3”)).
Since there is no other principal difference, the authors think that the fact that echo signal ampli-
tude formed by TLS is less-dependent on pulse frequency (see Fig. 2) could be explained by the
above-described peculiarities.
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Fig. 2. Echo amplitude dependence on rf field frequency. The solid line corresponds to nuclear spins is
taken from [14]. The dashed line corresponds to TLS.
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