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NUCLEAR MAGNETIC RELAXATION IN HYDROGEN-CONTAINING NIOBIUM
CAUSED BY MODULATION OF QUADRUPLE INTERACTION

BY MEANS OF TUNNEL TWO-LEVEL SYSTEMS
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Nuclear magnetic relaxation in niobium and hydrogen nuclei caused by modulation of quadru-
ple interaction by means of a tunnel two-level system (TLS) has been investigated. It is shown
that at low temperatures and high density of states, the relaxation caused by TLS dominates
the relaxation of conduction electrons.

PACS: 76.60Es

In the recent years very active investigations of amorphous systems such as spin glasses,
dielectric glasses, amorphous ferromagnetics, and hydrogen-containingmetals modeled as tunnel
two-level systems (TLS) have been carried out [1,2]. The concept of TLS model worked out for
spin glasses has been after applied to hydrogen-containing metals, particularly to NbOxHy [3,4].
The works [5,6] deal with the influence of TLS upon the electronic spin-lattice, as well as upon
the process of nuclear magnetic relaxation in various disordered samples. It was shown [5,6]
that in many cases, the influence of TLS upon the processes of relaxation at low temperatures
is of great importance, as with due account of this influence one can explain the experimentally
observed temperature behavior of the spin-lattice relaxation time. A cross-relaxation of hydrogen
and niobium nuclei in NbOxHy system was studied in [7]. In order to explain the anomalous
behavior of longitudinal relaxation time Tl of H nucleus the relaxation rate 1/Tl remains finite
at T < 10 K for low frequencies of hydrogen nucleus ωI ∼ 5 MHz and does not tend to zero
in contrast to the Korringa mechanism [8]—the following mechanism has been proposed: the
positional disorder of the H nuclei in the lattice causes a wide distribution of the electric field
gradient on the Nb nucleus with the spin J > 1, leading to cross-relaxation at the coincidence
of the Zeeman frequency of the H nucleus with the mixed Zeeman quadruple frequency of the
Nb nucleus. Even if the mechanism explains the anomalous behavior of the relaxation time of
the H nucleus, according to the authors, it is possible to use TLS model as a universal model for
disordered systems at low temperatures. Essentially we suppose that H nuclei form TLS. The
tunneling of hydrogen between two levels changes the gradient of electrical field on Nb nuclei
and causes nuclear relaxation.

1E-mail address: Lchotor@yahoo.com

0323-0465 /02 c© Institute of Physics, SAS, Bratislava, Slovakia 35



36 L. L. Chotorlishvili

Let us write the Hamiltonian of the interaction between Nb nuclei and TLS. The quadruple
Hamiltonian for Nb nuclei is [9]:

Ĥq = p11

[{

(Jz)2 −
1

3
J(J + 1)

}

+
1

3
η

(

(J+)2 + (J−)2
)

]

,

where p11 = 3
2pzz, η =

pxx − pyy
pzz

, pzz = 1
2

eQq
4J(2J − 1)

, Q is the quadruple moment and q is

the electrical field gradient (see [10]).
Taking into account the fact that the nucleus can be in a nonsymmetric potential well, we can

write

p̂11 =

(

p1
11 0
0 p2

11

)

= p1
1 1

(

1 0
0 0

)

+ p2
11

(

0 0
0 1

)

=
p1
11 + p2

11

2
Î +

p1
11 − p2

11

2
σz , (1)

where p1
11 and p2

11 are the values corresponding to two different states of TLS, Î is the unit
matrix, and σz is the Pauli matrix.

The second term in equation (1) describes the change of the electric field gradient [10] due
to the jumps of TLS between two equilibrium positions [11]. An order-of-magnitude estimate of
this term gives

(p1
11 − p2

11)d ∼
d

a
p11d

z ∼ 0.1p11d
z ,

where d is the distance between the minima of TLS, dz is the pseudo-spin operator and a is the
separation between TLS and Nb nuclei.

Taking into account the above argument, we can write the Hamiltonian of the interaction
between the Nb nuclei and the tunneling TLS as follows:

ĤJd =
∑

kn

Akn

[{

(Jz
k )2 −

1

3
Jk(Jk + 1)

}

+
1

3
η

(

(J+
k )2 + (J−

k )2
)

]

dz
n,

where A ≈ d
aP11.

Let us use the unitary transformation operator

u = exp(iϕdy),

where tan ϕ = ∆0/∆, ∆0 is the tunneling parameter and ∆ is the potential well asymmetry.
Then, the Hamiltonian in the representation of TLS will be

ĤJd =
∑

kn

Akn

[{

(Jz
k )2 −

1

3
Jk(Jk + 1)

}

+
1

3
η

(

(J+
k )2 + (J−

k )2
)

]

×

×

{

√

ε2
n − ∆2

0n

εn

dz
n +

1

2

∆0n

εn

(d+
n + d−n )

}

, (2)

where εn =
√

∆2
0n + ∆2

n is the TLS energy.
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Thus, we can assume that the interaction (2) is responsible for relaxation.
Let us write the total Hamiltonian of the system:

Ĥ = −~ωI

∑

i

Iz
i − ~ωJ

∑

i

Jz
i +

∑

n

εndz
n +

∑

s

~ωsa
+
s as + HIJ + HJd+

+
8π

3
~

2γJγS

∑

ij

(S+
i J−

j + S−
i J+

j )δ(Ri − rj) + HII + Hdd + HJJ + Hq, (3)

where Hq is the quadruple Hamiltonian for Nb nuclei, ~ωs is the energy of conduction electrons,
Ri is the radius-vector of conduction electrons, rj is the radius-vector of Nb nuclei, ~ωI is
the Zeeman frequency of H nucleus, ~ωJ is the Zeeman frequency of Nb nucleus, Iz, Jz are
the spin operators of H and Nb nuclei, dz is the TLS pseudo-spin operator, γs and γj are the
gyro-magnetic ratios for electrons and nuclei, a+

s , as are the second-quantizing operators of
conduction electrons and S± is the electron spin operator, which in the representation of the
second-quantization has the following form [12]

S−(Ri) =
∑

kk′

ei(k−k′)Riuk(Ri)u
∗
k′(Ri)a

+
k′↓ak↑

S+(Ri) =
∑

kk′

ei(k′−k)Riu∗
k(Ri)uk′(R)a+

k↑ak′↓,

where the Bloch’s zone number index is omitted, as the averaging is carried out only in the
vicinity of the Fermi surface (see [13]). The Hamiltonians HII , Hdd and HJJ are the secular
parts of the dipole-dipole interaction. Secular part does not affect the form of kinetic equations
describing the relaxation process, however, it should be taken into account in the calculation of
corresponding correlation functions. The interaction causing the cross-relaxation between Nb
and H subsystems is given by

HIJ =
∑

ij

B+−
ij (I+

i J−
j + I−i J+

j ).

Let us consider the relaxation process as a thermodynamical process. For this assumption
we use the method of non-equilibrium statistical operator (NEO) [14]. According to this method
the time derivatives of the average values of the subsystem energy 〈Hi〉q = Sp(ρqHi) (where

ρq = (Sp e−A)−1e−A is the local equilibrium distribution operator) are equal to the average of
appropriate thermodynamical currents

d

dt
〈Hi〉q = 〈ki〉NEO,

where the averaging is done with respect to the density matrix

ρ
NEO

= Sp ρq







1 − (βi − β)

1
∫

0

dλ

0
∫

−∞

dt eεteλRki(t)e
−λR
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Here A and R are the well-known standard notations [14], β is the inverse temperature of the
lattice, and βi is the inverse temperature of i-th subsystem.

If we suppose that the subsystems of TLS and electrons are in thermal equilibrium with the
lattice, after simple calculations (similar to those made by Zubarev [14]) we obtain the following
set of equations in the high-temperature approximation for nuclear spins:

dβJ

dt
= −

βI − β

TJI

−
βJ − β

TJJ

dβI

dt
= −

βJ − β

TIJ

−
βI − β

TII

, (4)

where

(Tij)
−1 = −

1

β ∂
∂β

〈Hi〉

β
∫

0

dλ

0
∫

−∞

eεt〈kj(t − iλ)ki〉dt, (5)

βI is the inverse temperature of the H subsystem, βJ is the inverse temperature of the Nb sub-
system.

In expression (5), we replace dz by the corresponding fluctuation δdz
n = dz

n − d̄z
n and change

the summation over indices by the integration with respect to TLS parameters (we use TLS
parameters distribution function p(ε∆0) [1-2]). After simple calculations we obtain:

1

TIJ

=
4γJNJJB2

γINI

G(ωI − ωJ);
1

TII

= 4B2JG(ω1 − ωJ)

1

TJJ

=
4πkBT

~

(

∆H

H

)2
γ3

J

γ3
s

+
B2

J
G(ωI − ωJ) +

4

9

Nd

NJ

A2p̄+

+
4

9

Nd

NJ

τ

1 + ω2
I τ2

A2p̄ ln
εmax

e∆0

kBT

~
(6)

1

TJI

=
γINI

γJNJJ
B2G(ω1 − ωJ),

where γ and N are the corresponding gyro-magnetic ratios and concentrations, p̄ is the density
of TLS states, T is the value of the temperature, kB is the Boltzmann constant, J is the value of
Nb spin, εmax is the maximum value of the TLS energy, τ is the correlation time of pseudo-spin

correlation function 〈dzdz(t)〉 determined by the interaction between two-level systems, ∆H
H

is the Nith factor [13] for Nb nucleus, g(ω) is the Fourier transform of the correlation function

g(t) =
〈J+(t)J−〉
〈J+J−〉 , and G(ω I − ωJ) =

∞
∫

0

gI(ω)gJ(ω + ωJ −ωI) dω.

The relatively small value of the correlation function

g′(t) =

〈

(J+(t))2(J−(t))2(J+)2(J−)2
〉

〈(J+)2(J−)2(J+)2(J−)2〉

is neglected in expression (6).
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As we have mentioned above, the main aim of the present paper is to demonstrate that the
H relaxation rate is temperature independent because of the cross-relaxation between H and Nb
nuclear spin subsystems. If Nb nuclei could quickly transfer the energy from the dipole system
to TLS subsystem (TLS subsystem is considered to be in thermal equilibrium with the lattice) we
can avoid the ”bottle neck” problem. (It is easy to see that CJ > CI , where CJ = ∂〈HJ〉/∂T ,
CI = ∂〈HI〉/∂T are the heat capacities for Nb and H subsystems.) Owing to the temperature-
independent part in the total relaxation time TJJ , caused by the flip-flop process between Nb and
TLS subsystems, this mechanism is more effective than Korringa mechanism at low temperature
in case of high density of TLS states. In conclusion, we give some numerical estimates. Let us
assume that

∆H

H
∼ 0, 2;

γ3
J

γ3
s

∼ 10−3;
NI

NJ

∼ 10−2;

NI ∼ Nd; J ∼ 2; A ∼ 106 Hz; B ∼ 104 Hz; T ∼ 1 K.

Then, we obtain:

1

TIJ

∼ 104 Hz;
1

TJI

∼ 103 Hz;
1

TII

∼ 103 Hz;
1

TJJ

∼ 3 · 10 Hz,

and for p̄ ≥ 10−12 the temperature-dependent part in the total relaxation time TJJ , caused by
TLS (mechanism of Klauder-Anderson) is more effective than Koringa mechanism:

4

9

Nd

NJ

τ

1 + ω2
I τ2

A2p̄ ln
εmax

e∆0

kBT

h

4πkBT

~

(

∆H

H

)2
γ3

J

γ3
s

> 1.

Below the temperature T < 0.01 K becomes more important another flip-flop mechanism
producing the temperature-independent part in TJJ . Thus, the above estimates suggest that TLS
can significantly affect the relaxation process at low temperatures.
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