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The high-energy double-folding optical potential approximation to the exact nucleus-nucleus
multiple scattering series derived by Wilson has been used to calculate the optical potential
and the elastic scattering differential cross-section for the interactions of α-particle with 12

C

and Ca isotopes at energy 1370 MeV. The Pauli correlation effect has been considered. The
first- and second-order corrections to the optical potential and to the eikonal phase shifts have
been calculated for our reactions. Also, the transparency function has been calculated.

PACS: 24.10.-i, 25.60.Bx, 25.70.-z

1 Introduction

Investigation of the scattering of alpha particles is a very active and important field of research.
It is realized [1] that entrance channel alpha-particle measurements give information about the
interaction near the nuclear surface, and the qualitative fact that the alpha particle absorption in
the nuclear interior must be strong. There is a similarity between alpha particle and heavy ion
scattering [1]. The elastic scattering of alpha particle from heavy ion target has been studied in
the framework of the local density dependence of the effective nucleon-nucleon interaction [2].
The effective interaction is based on, what is termed, a low-energy approach where the interact-
ing nucleons have been considered as being bound close to the Fermi surface. The interactions of
α-particle with 12C and 40Ca nuclei have been studied at low energy using the density-dependent
interactions [3,4] and realistic interactions. It is shown [5] that when the absorption is increased
a smooth exponential-like falloff associated with diffractive scattering is obtained. For higher
energies the angular distribution has been studied for the interactions of α-particle with 12C [6]
and Ca isotopes [7] at energy 1370 MeV. The optical potential has been studied in the energy
range from 200 MeV to 700 MeV both phenomenologically and in the folding approach [8].
This study suggests that the real potential should change from attractive to repulsive at about
1 GeV. It is found [9] that the optical potential must be weakly attractive to reproduce the min-
ima observed in the elastic angular distributions for α + 12C and the Ca isotopes at 1370 MeV.
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Studying the optical potential for the interactions of alpha particle with 12C nucleus and 40Ca
nucleus at energy 1370 MeV shows that no evidence is found for deviations of the real part from
the usual Woods-Saxon shape [10]. Study angular distribution of the interactions of alpha par-
ticle with 12C and 40Ca nuclei in terms of a phenomenological optical potential shows that the
angular distribution is not sensitive to details of the potential shape [10,11]. And the best fit
potential has a “Mexican-hat” shape which is characterized by a long-ranged and weak attrac-
tive part in the surface region and a repulsion in the central region [12]. A further increase in
nuclear transparency is found compared to 700 MeV. The theory of composite particle scattering
at high energy has been examined for the interactions of alpha particle with Ca isotopes [13].
The agreement with experiment is extremely good. These two interactions have been studied by
expanding the S-matrix for elastic nucleus-nucleus collisions within the framework of Glauber
multiple scattering theory [14]. The first term of the expansion series corresponds to the well
known optical limit. The other terms depend respectively on two-three and other many body
densities of the two colliding nuclei. Including the two-body density term in 40Ca leads to a
considerable improvement in the theoretical situation. The disagreement present at large mo-
mentum transferee is due to neglecting higher order terms which are expected to be important in
higher momentum transferee regions. The situation for 12C is not so good. There is a sizable
discrepancy in the region of the first minimum. Glauber calculation [15,16] based on the “rigid
projectile” [15] assumption and using empirical nucleon-nucleon amplitude and experimental
one-body form factors as an input represents rather well the interactions of alpha particle with
40Ca nucleus. This model fails to describe the scattering of alpha particle from 12C nucleus.
Long-range correlations which are reflected in the presence of strong low-lying collective states
in 12C may play an important role in 4He–12C scattering. Using Glauber theory, collactive ex-
citations to one phonon level have been treated using the Tassie model [17]. The effect of the
coupling between the elastic and inelastic channels has been considered. The elastic scattering
differential cross-section has been calculated for the interactions of 4He + 12C at 1370 MeV on
the basis of multiple diffraction scattering theory and α-cluster model with dispersion [18]. Ac-
cording to this model the carbon nucleus is considered as made up of three α-clusters arranged
at the vertices of equilateral triangle. This approach does not give satisfactory agreement with
the experimental data.

The eikonal phase shifts and its higher order corrections have been used to calculate the
interaction of α-particle with heavy ion nuclei at low energies [19,20]. The transparency function
has been calculated for these reactions [20]. It is found that above 100 MeV nuclei are more
transparent for α-particle, which can probe the interior of the nuclei.

In this work the high energy double-folding optical potential approximation to the exact
nucleus-nucleus multiple scattering series derived by Wilson has been used in the context of
the eikonal approximation to calculate the elastic scattering differential cross-section for the
interactions of α-particle with 12C and Ca isotopes at energy 1370 MeV. The optical potential
has been calculated for these interactions. The first and second order corrections to the eikonal
phase shifts have been included in our calculations. The 12C nucleus is considered to have a static
quadrupole deformation. The transparency function has been calculated for our reactions taking
into consideration the second order correction to the eikonal phase shifts. Section 2 presents the
formalism, section 3 is devoted to the results and discussion and the conclusions are given in
section 4.
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2 The Formalism

The elastic scattering amplitude considering the Coulomb effect is given by

f(θ) = fc(θ) + (2ik)−1
∑

l

(2l + 1) exp(2iηl)(Sl − 1)Pl(cos θ) , (1)

fc(θ) is the usual point charge Coulomb amplitude, ηl is the point charge Coulomb scattering
phase shift, and Sl is given by

Sl = exp(2iδl) , (2)

where δl is the complex nuclear phase shift, which is obtained from [21]

δl =
1

2
χ(b) . (3)

According to Wallace [22], the expansion of the phase shift function χ(b), as a power series in
the strength of potential scattering is given by

χj(b) =

j
∑

n=0

χ(n)(b) ,

χ(n)(b) = − µn+1

k(n + 1)!

(

b

k2

∂

∂b
− ∂

∂k

1

k

)n ∫

∞

−∞

V n+1(r)dz , (4)

where

r = b + k̂z ,

V is the optical potential, b is the impact parameter, µ is the reduced mass, and k is the momentum
in the c.m. system (~ = c = 1). The zero order term in equation (4) gives the eikonal phase shift

χ(0)(b) = −µ

k

∫

∞

−∞

V (r)dz . (5)

For local potential the first and second order corrections are given, respectively, by [23]

χ(1)(b) = − µ2

2k3

(

1 + b
∂

∂b

)
∫

∞

−∞

V 2(r)dz , (6)

χ(2)(b) = − µ3

6k5

(

3 + 5b
∂

∂b
+ b2 ∂2

∂b2

)
∫

∞

−∞

V 3(r)dz . (7)

The phase shift function χj(b) is given by [19]

χj(b) = −µ

k

∫

∞

−∞

Uj(r)dz (8)

with

Uj(r) =

j
∑

n=0

U (n)(r) ,
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U (n)(r) =
µn

(n + 1)!

[

1

k2

(

1 + r
∂

∂r

)

− ∂

∂k

1

k

]n

V n+1(r) . (9)

Uj(r) is an effective potential of the j-th order. The first and second order corrections to the
effective potential are given by

U (1)(r) =
µ

2k2

(

2 + r
∂

∂r

)

V 2(r) , (10)

U (2)(r) =
µ

6k4

(

8 + 7 r
∂

∂r
+ r2 ∂2

∂r2

)

V 3(r) . (11)

In our calculations V (r) is the optical potential. The nucleus-nucleus optical potential as
derived by Wilson takes the form [24],

V (r) = ApAT

∫

d3rTρT(rT)

∫

d3yρp(r + y + rT)t(e, y)[1 − C(y)] , (12)

where Ai (i = p, T) are the mass numbers of the projectile and the target, ρi are the ground
state single particle nuclear densities for the colliding nuclei; t(e, y) is the energy dependent
constituent-averaged two-nucleon transition amplitude obtained from scattering experiments, e
is the NN kinetic energy in the c.m. frame, y is the NN relative separation and C(y) is the Pauli
correlation function, given by

C(y) ≈ 1

4
exp(−k2

Fy2/10) and kF = 1.36 fm−1 . (13)

This six dimensional integral (12) is calculated using the momentum space method as derived
by Walter Greiner [25]. If the Fourier transform of a function f(x) is denoted by f̃(k), the folded
potential is given by

V (r) = (2π)−3

∫

d3k exp(−ikr)ρ̃P(+k)ρ̃T(−k)t̃′(e, k) , (14)

where

t′(e, Y ) = t(e, Y )[1 − C(y)] ,

i. e., the Fourier transformed integrand reduces to a product of the Fourier transforms of the
two densities and the transition nucleon-nucleon scattering amplitude. If the target nucleus is
considered to have a static quadrupole deformation, following the same steps and notations as in
ref. [25], we obtain



First and second order corrections to. . . 27

V (r) =
2

π

∫

∞

0

dk k2j0(kr)t̃′(e, k)A
′(1)
00 (k) + A

′(2)
00 (k) +

+
2
√

5

π

∫

∞

0

dk k2j2(kr)t̃′(e, k)A
′(1)
00 (k)A

′(2)
20 (k)P2(cos β2) , (15)

where

A′

ln = δn0

∫

∞

0

dr′r′2ρl0(r
′)jl(kr′)

and β2 is the Euler angle.

2.1 The density parameters

In our work we used nuclear single particle matter densities which are extracted from the charge
density.

A harmonic oscillator matter density for 12 C.
The harmonic well charge density has the form [26]

ρc(r) = ρ0[1 + ν(r/a)2] exp(−r2/a2) . (16)

The constants a and ν are fitting parameters to electron scattering data [26] and ρ0 is determined
by the normalization condition

∫

ρ(r)dr = 1 . (17)

The matter density is extracted from the charge density by the method discussed in ref. [27],
which gives for the harmonic well matter density

ρm(r) =
ρ0a

3

8s3

(

1 +
3ν

2
− 3νa2

8s2
+

νa2r2

16s4

)

exp(−r2/4s2) , (18)

with

s2 =
a2

4
−

r2
p

6
,

where rp is the proton rms radius and is equal to 0.87 fm.

A one term Gaussian density for α-particle.
The Gaussian density has the form

ρc(r) = ρ0 exp(−r2/a2) , (19)

where

ρ0 = 1/(a
√

π)3 (20)

and

a = 〈r2〉1/2(1.5)−1/2 . (21)
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The corresponding matter density is

ρm(r) =
ρ0a

3

8s3
exp(−r2/4s2) , (22)

with

s2 =
a2

4
−

r2
p

6
.

The density for Ca isotopes.
The nuclear density distribution is of the form [28]

ρ(r) = ρ(0)e−(r/a)2 . (23)

The parameters ρ(0) and a are given by

a2 =
4ct + t2

k
(24)

and

ρ(0) =
1

2
ρ0 exp(c/a)2 , (25)

where

ρ0 =
3A

4πc3[1 + (π2t2/19.36c2)]
(26)

and

k = 4(ln 5) = 6.43775 .

The parameters c and t are given by 1.07A1/3 and 2.4 fm respectively. The corresponding matter
density is

ρm(r) =
ρ(0)a3

8s3
exp(−r2/4s2) (27)

with

s2 =
a2

4
−

r2
p

6

The nucleus deformation.
The density of a nucleus with an axially symmetric deformation, may be written as [29]

ρ(r) = ρ00(r) − r
dρ00(r)

dr

∑

l

Bl0Yl0(θ, φ) , (28)
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Fig. 1. The real (a) and the imaginary (b) parts of the optical potential for the interactions of α – 12
C. The

short dashed curves represent the zero order calculations for the optical potential. The long dashed and the
solid curves represent the first and the second order corrections for the optical potential.

where ρ00(r) parametrized the spherical part of the nucleus and Bl0 is the deformation parameter
of the nucleus matter distribution. To calculate the deformation parameter B20, let us consider
the transition density

ρtr(r) = Bl0r
l−1 dρ00(r)

dr
. (29)

The normalization constant B20 is determined by assuming that the proton transition density is
(Z/A) times the mass transition density and choosing B20 to give the measured value of B(E2)
for the given nucleus [30], i.e.,

∫

Aρtr(r)r
l+2dr = (A/Ze)(B(El))1/2 , (30)

where A and Z are the mass number and the charge number. The deformed nucleus considered
in this work is 12C. The measured value of B(E2) for this nucleus is [31] B(E2) = 42e2 fm4.

3 Results and Discussion

3.1 The optical potential

The optical potential has been calculated for the interactions of α-particle with 12C nucleus and
Ca isotopes. The 12C nucleus is considered as a deformed nucleus and the orientation angle
is considered to be 60◦ [32]. Fig. 1.a,b shows the real and the imaginary parts of the optical
potential calculated for α – 12C reactions. The first and second order corrections to the opti-
cal potential have been considered in our calculations. The short dashed curves represent the
zero-order calculations, the long dashed curves and the solid curves represent the first and the
second order corrections to the optical potential. We can see from Fig. 1 that the first and the
second-order corrections to the optical potential coincide completely with each other. Fig. 1.a
shows that the real potential becomes deeper on introducing the first and the second order cor-
rections to the optical potential. The imaginary potential does not affect by including the first
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Fig. 2. The same as Fig. 1 but for the interactions of α-particle with Ca isotopes.

and the second order corrections to the optical potential as can be seen from Fig. 1.b. It is also
seen from Fig. 1.a,b that the imaginary potential is deeper than the real potential.

The optical potential has been calculated for the interactions of α-particle with Ca isotopes.
The first and the second order corrections to the optical potential have been considered in our
calculations. Fig. 2.a,b shows the real and the imaginary parts of the optical potential for the
interactions of α-particle with Ca isotopes. Fig. 2.a,b shows that the second order calculations
overlap the first order calculations and the imaginary potential is deeper than the real potential.
Fig. 2.a shows that the real potential does not have substantial change when increasing the mass
number of the target. Including the first and the second order corrections to the optical potential
increases the depth of the real potential. Fig. 2.b shows that the imaginary potential becomes
shallower when including the first and the second order corrections to the optical potential. The
imaginary potential becomes deeper for heavier nuclei.

3.2 The elastic scattering differential cross-section

The elastic scattering differential cross-section has been calculated for the interactions of α-
particle with 12C and Ca isotopes. In our calculations we consider 12C nucleus to be deformed
nucleus and the orientation angle is considered to be 60◦. Fig. 3 shows the elastic scattering
differential cross-section for α – 12C reactions compared with the experimental data [6]. Fig. 3
shows that the first maximum is well reproduced. The positions of the second and third maxima
are shifted to the right of the experimental data. Also Fig. 3 shows that even considering the 12C
nucleus as a deformed nucleus, the agreement between the theoretical calculations and the exper-
imental data is not so good at large scattering angle θ > 11◦. The elastic scattering differential
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Fig. 3. The elastic scattering differential cross-sections for the reactions of α – 12
C. The short-dashed

curve represents the zero-order correction to the eikonal phase shifts. The long dashed and the solid curves
represent the calculations for the first and the second-order corrections to the eikonal phase shifts.

cross-section has been calculated including the first order correction to the eikonal phase shifts
(long dashed curve) and the second order correction to the eikonal phase shifts (solid curve). The
short dashed curve is the result for the zero-order eikonal phase shifts. As seen from Fig. 3, the
differences between the short-dashed, long dashed and the solid curves are not substantial when
compared to the experimental results. These differences give some variations in the depths of the
minima. The differences between the results from the first and second-order corrections are too
small so that the long-dashed curve overlap with the solid curve. As a whole we can find from
Fig. 3 that the first and the second-order corrections do not improve the agreement between the
theoretical calculations and the experimental data.

The elastic scattering differential cross-section has been calculated for the interactions of α-
particle with Ca isotopes. Fig. 4 shows the elastic scattering differential cross-section for the in-

Fig. 4. The same as Fig. 3 but for the interactions of α-particle with Ca isotopes.
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Fig. 5. The transparency function for the reactions of

α – 12C including the second order corrections to the
eikonal phase shifts.

Fig. 6. The same as Fig. 5 but for the interactions of
α-particle with Ca isotopes.

teractions of α-particle with Ca isotopes compared with the experimental data [7]. The short
dashed curves represent the results for the zero-order eikonal phase shifts. The elastic scattering
differential cross-section including the first (long dashed curves) and the second (solid curves)
order corrections to the eikonal phase shifts is shown in Fig. 4. Fig. 4 shows that our calculation
agree well with the experimental data for the four reactions. The positions of the maxima and
the minima are the same as those of the experimental data. However the values of the calculated
cross-sections at the maxima are larger than the values of the experimental data. Including the
first and the second order corrections to the eikonal phase shifts gives some variations in the
depth of the minima. The differences between the results from the first and the second order-
corrections to the eikonal phase shifts are too small so that the long dashed curves overlap the
solid curves. We can find from Fig. 4 that including the first and the second order corrections to
the eikonal phase shifts does not improve the agreement between the experimental data and the
theoretical calculations.

The transparency function has been calculated for our reactions. The transparency function
is given from the total reaction cross-section which is given by

σR = 2π

∫

[1 − exp(−2χI(b))]b db = 2π

∫

[1 − T (b)]b db , (31)

where χI(b) is the imaginary part of the phase shift function and T (b) is the transparency func-
tion at an impact parameter b. The transparency function is calculated using the second order
correction to the eikonal phase shifts. Fig. 5 shows the transparency function for the interactions
of α – 12C system at energy 1370 MeV. Fig. 6 shows the transparency function for the interac-
tions of α-particle with Ca isotopes. We can see from Figs. 5 and 6 that the absorption increases
with increasing the mass number of the target.
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4 Conclusion

The optical potential and the elastic scattering differential cross-section have been calculated for
the interactions of α-particle with 12C and Ca isotopes at energy 1370 MeV. The 12C nucleus is
considered to be a deformed nucleus. The first and the second-order corrections to the optical
potential and the eikonal phase shifts have been considered in our calculations. We can see from
our calculations that the optical potential becomes deeper on increasing the mass number of the
target nucleus. Introducing the first and the second-order corrections to the optical potential
increases the depth of the real potential and decreases the depth of the imaginary potential. The
elastic scattering calculated by our model does not satisfy the experimental data for α – 12C
reactions at large scattering angle even when considering the 12C nucleus as a deformed nucleus.
However our calculations for the elastic scattering satisfy well the experimental data for the
interactions of α-particle with Ca isotopes. To improve our calculations, may be it is important
to include the 3 state of 12C nucleus. Also, if we consider more sophisticated density form
for Ca isotopes, we can obtain a better agreement between the theoretical calculations and the
experimental data for the interactions of α-particle with Ca isotopes.

Including the first and the second order corrections to the eikonal phase shifts does not im-
prove much the agreement between the theoretical calculations and the experimental data in this
case. Calculating the transparency function shows that the absorption increases with increasing
the mass, number of the target.
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