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The influence of Stark shift on the Pancharatnam phase when an ideal cavity is filled

with a Kerr-like medium and coupling is affected through a degenerate two-photon
process is studied. The exact results are employed to perform a careful investiga-
tion of the temporal evolution of atomic inversion and Pancharatnam phase. We
invoke the mathematical notion of maximum variation of a function to construct a
measure for Pancharatnam phase fluctuations. It is shown that the Pancharatnam
phase explicity contains information about the statistics of the field and atomic co-
herence. It is shown that the addition of the Kerr medium and the Stark shift has
an important effect on the properties of the Pancharatnam phase. The results show
that, the effect of the Kerr medium and the Stark shift changes the quasiperiod of
the Pancharatnam phase evolution. The general conclusions reached are illustrated
by numerical results.

PACS: 42.50.Vk, 32.80.-t, 03.65.Ge

1 Introduction

In recent years much attention has been paid to the quantum phases such as the Pan-
charatnam phase [1-4] and geometric phase (Berry phase) [5-6]. Physical sciences contain
many examples of objects whose behavior is specified up to a phase by certain parame-
ters. The total phase acquired by the wavefunction of a quantum system in a cyclic or
noncyclic evolution contains two parts, normally, the dynamical phase part and the geo-
metric phase part. As it is well known, the dynamical phase of the state vector of a system
is Hamiltonian dependent, but the geometric phase simply depends on the chosen path
in the space spanned by all the likely quantum states for the system. The Pancharatnam
phase is very important in the propagation of a light beam where its polarization state
is changing periodically [1]. Most experimental demonstrations of Pancharatnam phase
[7,8] involve splitting a laser beam, transporting the state of polarization of one or both
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of the split beams along variable paths on the Poincaré sphere, and detecting the result-
ing change in the phase difference of the beam by interferometric superposition. The
quantum phase, including the total phase as well as its dynamical and geometric parts,
of Pancharatnam type are derived for a general spin system in a time-dependent mag-
netic field based on the quantum invariant theory [3]. Another approach that provides
a unified way to discuss geometric phases in both photon (massless) and other massive
particle system was developed by [9].

One of the simplest non-trivial models of quantum optics is the Jaynes-Cummings
model [10], which describes the interaction of two-level atom with single mode of the
quantized field, is considered to be one of the most successful models in quantum optics.
In addition to the standard Jaynes-Cummings model, some generalized models [11,12]
have been constructed and extensively studied. One of these generalizations (multilevels,
multiphotons) is to replace the mediated photon by a degenerate two-photon, i.e., pho-
tons of the same mode are either emitted or absorbed in pairs by the atom. To make the
two-photon processes closer to the experimental realization, we include the effect of the
dynamic Stark shift in the evolution of the Pancharatnam phase, which is necessary and
interesting. Furthermore, we examine the effect of the dynamic Stark shift in the evolu-
tion of the Pancharatnam phase in the presence and absence of a Kerr-like medium. The
model considered, consists of a single two-level atom undergoing a two-photon processes
in a single-mode field surrounded by a nonlinear Kerr-like medium contained inside a
very good quality cavity. The cavity mode is coupled to the Kerr medium as well as to
the two-level atom. The Kerr medium can be modeled as an anharmonic oscillator with
frequency w. Physically this model may be realized as if the cavity contains two different
species of Rydberg atoms, of which one behaves like a two-level atom undergoing two-
photon transition and the other behaves like an anharmonic oscillator in the single-mode
field of frequency w, [11,12].

Such a model is interesting by itself as another exactly solvable quantum model [13]
that gives nontrivial results, but we can also think of its possible applications. This
Hamiltonian is natural for local modes in molecular physics or for a nonlinear Jahn-
Teller effect, although long-time behavior in either case might be obscured by omnipresent
damping. There may also be optical applications, since this type of nonlinearity may be
realized by letting the electromagnetic radiation pass through a nonlinear Kerr medium
[14]. One can think of an experiment with a Rydberg atom in a nonlinear Kerr-like
cavity. The field of quantum information and computing is based on manipulation of
quantum coherent states [15]. Existing device of quantum optics have been proposed as
experimental implementation and employed to realize quantum computers. A scheme
depending on applications of the displacing operator and propagating a laser beam in a
nonlinear Kerr medium has been proposed to perform quantum gates [16].

The material of this paper is arranged as follows: Section 2, we introduce the model
and write the expressions for the final state vector at any time ¢ > 0 and the Pancharat-
nam phase calculation including the Stark shift and the Kerr-like medium effects. By
a numerical computation, we examine the influence of the Stark shift and the Kerr-like
medium on the atomic inversion and the Pancharatnam phase for a coherent field input
and a variety of initial atomic states in section 3. Take into consideration the total phase
is calculated in this case. Different cases are studied numerically to demonstrate the
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effects due to both Stark and Kerr effects. Finally, conclusions are presented.

2 Basic equation

The total phase has both the dynamical and the geometric phase parts for an arbitrary
quantum evolution of a system from a state at ¢ = 0 to a final state at time ¢. Without
invoking that any initial state vector (0) and the final state vector ¥(t) correspond
to different rays, we use the Pancharatnam phase approach [17] of defining the phase
between them. On subtracting the dynamical phase ¢4 from the Pancharatnam phase
(or the total phase ¢;) we obtain the geometric phase ¢4. The Pancharatnam phase ¢;
between the vectors ¢(0) and ¥ (t) is given by [17]

¢ = arg(Y(0) | P(1)). (1)

The dynamical phase for an arbitrary quantum evolution from time ¢ = 0 to a time
t is given by the time integral of the expectation value of the Hamiltonian over the time
interval [0, ¢],

b= [ w11 o) 2)

So, the geometric phase under Schrédinger evolution is given by ¢4 = ¢ — ¢4. Both
the dynamical as well as the geometric phases studied separately for the quantum optical
system under consideration are not producing significantly interesting results pertaining
to photon statistics of the cavity field and the type of transition the atom is undergoing.
On the other hand, the sum of the two phases reveals interesting results. Hence in
this sense both ¢4 and ¢, are very important in determining the behavior of ¢;. The
phase can be determined experimentally in several ways. It can for instance be measured
with an interferometer, which is a special device using the one-state two-Hamiltonian
strategy, also can be measured by the superposition technique using the two-state one-
Hamiltonian [18] strategy. This technique has been employed [19-20] for determining the
phase acquired by a two-state quantum system in a cyclic evolution.

The model considered here consists of a single-mode interacting with an effective
two-level atom when the dipole forbidden transition is replaced by a two-photon one.
We consider the degenerate case, in which pairs of photons with the same frequency are
created or absorbed and the quantized radiation field in the rotating wave approximation
in an ideal cavity (Q = o) filled with a nonlinear Kerr-like medium. We also assume that
the cavity mode interacts with both the atom and the Kerr-like medium. However, a real
cavity cannot be ideal. But in Ref. [21] the influence of a cavity with finite bandwidth at
nonzero temperature T was studied and it was shown that for new available experimental
values of Q = 2 x 10'° and T = 0.5K the effect of the bandwidth and the temperature
are negligible until the time ¢ ~ 1073(\t = 30) from the start of the interaction. The
excited and ground states of the atom will be designated by | e) and | g), respectively. We
assume that these states have identical parity, whereas the intermediate states, labeled
| Y4 = 3,4, ...), are coupled to | €) and | g) by a direct dipole transition and so located
as to give rise to a significant Stark shift. The intensity dependent Stark effect can be
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employed in quantum nondemolition measurements [22-24]. Kerr effects can be observed
by surrounding the atom by a non-linear medium inside a high Q-cavity [25]. The
effective Hamiltonian of the model under consideration in this paper in the rotating-
wave approximation can be written as [11,26,27] (h = ¢ = 1),

Flogy = w4 gwads a8 | e)e | +61 | 9)(o |
Txaa £ A@%6 + %)), (3)

where w, is the field frequency and w, is the transition frequency between the excited and
ground states of the atom, @ and a', are the annihilation and the creation operators of
the cavity field respectively, 51 and (2 are parameters describing the intensity-dependent
Stark shifts of the two levels that are due to the virtual transitions to the intermediate
relay level, A is the effective coupling constant between the atomic and field mode system,
0, and o4 are the atomic pseudo-spin operators. We denote by x the dispersive part of
the third-order nonlinearity of the Kerr-like medium [27]. The initial state of the total
atom-field system can be written as

[ 9(0)> (a|g)+0b]e) ®ch|n (4)

where a = e~"sin(f), b = cos(f). Equation (4) means that the atom is initially in the
superposition of its two states | g) and | e) and the field is assumed to be initially in a
coherent state where C),, = e(*ﬁ/Q)j—%, and 7 =| a |*> is the mean photon number of
the coherent field. However, at any time ¢ > 0 the atom-field coupling is described by
the entangled state (in the interaction picture),

602 3 (00) | m.0) + 1) .0 )
n=0
where the coefficients a,, and b,, are given by the formulae
an(t) = e~ At <aC’nF;: (t) —ibCp 2R, (t)), (6)
b (t) = e PAtin+2 (anFn+2(t) — iaCn+2Rn+2(t)>, (7)
M= X007 =30 4+3) + Sp+ s,

in A\t
F,(t) = cos Aty — ifnu,

n
sin Atpiy,

R, (t) = v/n(n — 1)7,

:£Z+n(n7 1),
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)

1
én = 5~ 5(2X(2n* 3) +nb1 — (n—2)B),

0 = A/X. With the wave function | ¢ (¢)) calculated, any statistical property related to
the atom or the field can be calculated. With the help of equations (1), (2) and (5) it is
straightforward to find the expressions for ¢, and ¢; in the initial coherent field in the
following form,

= )\t <Z P(n {cos )Nz + &ng2)

+sin?(0) (1, — gn)} + |« |? sin(26) cos(l/)>, (8)

¢y = arg Z(a*C;an(t) +b"Crby(t))
n=0

_ sm1<—y“> ) (9)
VX)) +Y2(t))]

in A\t fin,
Y(t) = Z (cos2 (0)[cos Atpin+o sin Atn, o + Ento % €oS At 42]
n=0 n
Atpin
+ sin?(0)[cos Mt iy, sin M1, — & ———~ sin Aty cos At fiy]
n
g SIN AL plpto .
| o T2 sin(26) cos(v) cos Atnp+2 | P(n),
(10)
> sin A\tp
. n+2 .
X(t) = Z <0052 (0)[cos Atpin 42 sin Xty 12 — &H_Zﬁ sin Atnp42]
n=0 "

sin Atpi,

+ sin? (0)[cos Atft,, cos A, — & —— sin At fi,,]

in M,
—|a? %Sin(%) cos(v) sin )\tnn+2)P(n).
fin
(11)

With P(n) =| Cy |>. In what follows we shall consider the effect of both Kerr and
Stark shift on dynamical behavior of the atomic inversion and the Pancharatnam phase
of the system for two-photon process.

3 Results of calculations

On the basis of the analytical solution presented in the previous section, we shall examine
the evolution in time of the atomic inversion and the scaled Pancharatnam phase ¢;. It



252 Mahmoud Abdel-Aty, Mohamed Ateto

should be emphasized that in computing all infinite series for the atomic wave function
¥(t), we have invoked mathematically sound truncation criteria. To ensure an excellent
accuracy the behavior of each function from (o.) and ¢; has been determined with great
precision. For regions exhibiting strong fluctuation a resolution of 10 point per unit of
time has been employed. For all our plots the initial condition has been chosen, with
coherence parameter « real. Its square is equal to the mean photon number. We recall
that time t has been scaled; one unit of time is given by the inverse of the coupling
constant .

The dynamical phase ¢4 for the initial coherent field with the absence of both Stark
and Kerr-like medium is given by ¢4 = —(a*ba* + aab*)Xt. In this case, both of ¢,
and ¢4 vanish whenever a = 0 or b = 0. From equations (8) and (9), it follows that for
the cavity field in a Fock state | n), the phases are zero. Thus a more general radiation
state, i.e., other than Fock state, and atomic coherence are necessary for development
of the Pancharatnam and dynamical phases. The dynamical phase being linear in t has
periodic saw-tooth kind variation over the time At bounded between the limits 0 and
27. Note also that the dynamical phase ¢4 does not contain any information about the
quantal nature of the cavity field. Similarly, the geometric phase part also does not
give any information about the field distribution. On the other hand, the evolution of
the total phase ¢; is quite revealing. In Fig. 1 we have plotted the atomic inversion
and Pancharatnam phase ¢; as a function of the scaled time At, in the absence of the
Stark shift and the Kerr-like medium, for the mean photon number i = 25. The atomic
inversion Fig. 1a which is clearly exhibiting the periodic collapse and revival phenomenon
of Rabi oscillation with a period of 7. It is important to note that the Pancharatnam
phase ¢; for the two-photon transition is also similar to the periodic collapse-revival
phenomenon of Rabi oscillation but with a period of 27 (see Fig.1b). Thus the behavior
of the Pancharatnam phase ¢; is in contrast with the behavior of the dynamical phase
¢a Eq. (8) as it shows the phenomenon of collapses revivals. In the figures that follow
we investigate the effects of Stark shift and Kerr-like medium. In Fig. 2, we show the
case in which the two levels have unequal Stark shifts (r < 1, in Fig. 2, r = 0.5). We
see that the Stark shift leads to changes in the quasiperiods of the atomic inversion (see
Fig. 2a) and the Pancharatnam phase (see Fig. 2b), we basically see that the Stark shift
produces a large effective detuning, which causes a weak interaction between the field
and the atom which produces the asymmetrical splitting in the Pancharatnam phase. A
quick look at the Rabi frequency for the collapses and revivals of the inversion, in this

case it can be shown that the quasi periods occur at distances 7/4/1 + 14; 2 instead of
7 for the two-photon JCM. Also it is noted that the atomic inversion oscillates around
values < 0 in this case; which means that the atomic system loses some of its mean
energy to the field. While the effect in the phase is rather remarkable especially around
At ~ 3w where it is almost chaotic for a short period, then after that quasi periodic
behavior occurs. In case r = 1(8; = [32), which corresponds to the case in which the
two levels of the atom are equally strongly coupled with the intermediate relay level, we
see that the evolutions of the atomic inversion and the Pancharatnam phase are almost
similar for the case in which » = 0. This may be interpreted physically as follows:- This
result corresponds to the fact that the Stark shift creates an effective intensity dependent
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Fig. 1 (a) Population inversion for a two-level atom undergoing a two-photon transition as a
function of scaled time At with the cavity field initially in the coherent state having n = 25
and the atom is in the symmetric superposition of its two states (a = b = 1/v/2); x/A = 0 and

r = y/B1/B2 = 0. (b) Pancharatnam phase (¢¢ + m/2) as a function of scaled time At for the
same system under similar conditions of parameters.

detuning Ay = B2 — #1. When r = 1, Ay = 0, in this case, the Stark shift does not
affect the time evolution of the atomic inversion or the Pancharatnam phase.

To visualize the influence of the Kerr-like medium in the atomic inversion and the
Pancharatnam phase ¢, we set different values of x/\, while all the other parameters
are the same as in Fig. 1. The outcome is presented in Figures 3 and 4. One can
distinguish between two stages of evolution, each of which has been pictured separately.
It is to be remarked that the atomic inversion has similar behavior but oscillates around
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Fig. 2 (a) Population inversion for a two-level atom undergoing a two-photon transition as a
function of scaled time At with the cavity field initially in the coherent state having n = 25
and the atom is in the symmetric superposition of its two states (a = b = 1/v/2); x/A = 0 and
r = 4/f1/B2 = 0.5. (b) Pancharatnam phase (¢: + m/2) as a function of scaled time At for the
same system under similar conditions of parameters.

positive value Fig. 3a, which means that due to the Kerr nonlinearity more energy is
stored in the atomic system leading to energy inhibition, in contrast to the Stark shift
effect. In other words, by increasing the nonlinearity of the Kerr-like medium there is
a growing tendency of the atom to trap the excitation energy. Physically it is due to
the change in energy-level structure of the system under consideration. The symmetry
shown in the standard two-photon transition Fig. 1b for Pancharatnam phase ¢; is no
longer present once Kerr like medium is added (see Fig. 3b). It is noted that after two
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Fig. 3 (a) Population inversion for a two-level atom undergoing a two-photon transition as a
function of scaled time At with the cavity field initially in the coherent state having n = 25 and
the atom is in the symmetric superposition of its two states (a = b = 1/+/2); x/A = 0.01 and
r = y/B1/B2 = 0. (b) Pancharatnam phase (¢¢ + m/2) as a function of scaled time At for the
same system under similar conditions of parameters.

quasi periods, interference becomes more effective, and one can not distinguish quasi
periods. For larger values of the Kerr medium x/\, the effect in the atomic inversion
and in the Pancharatnam phase ¢; become more pronounced, not only the amplitude
of Rabi oscillation which depend on the inverse of x/\, but also the time average of
the atomic inversion and the Pancharatnam phase ¢, is affected remarkably, only one
period is shown and chaotic behavior starts (see Fig. 4). The influence of Stark shift
in the presence of a Kerr-like medium is plotted in Fig. 5. It is to be noted that
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Fig. 4 (a) Population inversion for a two-level atom undergoing a two-photon transition as a
function of scaled time At with the cavity field initially in the coherent state having n = 25 and
the atom is in the symmetric superposition of its two states (a = b = 1/v/2); x/A = 0.1 and
r = y/B1/B2 = 0. (b) Pancharatnam phase (¢¢ + m/2) as a function of scaled time At for the
same system under similar conditions of parameters.

Stark interaction behaves like the limiting case of the Kerr interaction. This may be
understood in the following way: the Kerr interaction produces two separate effects, (a)
a Kerr one, which splits the field in phase space, producing a Schréodinger cat [28], and
(b) a Stark interaction with the field in a cat state. The atom-field interaction when
the field is initially in a cat state has been shown to be less pure than for the field in
a coherent state. It has been shown [29] that taking into account Stark shifts in the
atom-field interaction aggress with experimental results of micromasers [30]. Such as
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Fig. 5 the same as in Fig. 4 but with x/A = 0.01 and r = \/31/82 = 0.5.

shifted transition lineshapes and those asymmetrically distorted. The phases discussed
here are physically observable interferometrically through a ”structured” approach [31].

In conclusion, we have studied the Pancharatnam phase of a coherent field interacting
with a two-level atom when the dipole forbidden transition is replaced by a two-photon
transition. We considered the degenerate case, in which pairs of photons with the same
frequency are created or absorbed taking into account the presence of the Stark shift
and the Kerr-like medium. Such systems are potentially interesting for their ability to
process information in a novel way and might find application in models of quantum logic
gates. It is observed that the periodicity shown in the standard two-photon processes for
the Pancharatnam phase ¢; is no longer present once Kerr-like medium or Stark shift is
added. Both effects have been studied for the Pegg-Barnett definition for the phase [26].
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In the Pegg-Barnett phase the Stark shift tends to localize the phase while the Kerr effect
on the other hand tend to damp and diffuse the phase distribution. The Pancharatnam
phase explicitly derived here is quite sensitive to the initial conditions of its constituent
sub-system. If the initial conditions are such that they produce some kind of entangle-
ment, then only one observes the Pancharatnam phase ¢; as well as the dynamical phase.
In such cases the phase ¢; can distinguish between different statistics of radiation in the
cavity as well as the type of photon transition involved. Pancharatnam’s ideas in optics
have also led to better understanding of Berry’s phase in quantum mechanics [32].
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