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This review concerns with numerical studies of density matrix renormalization group
(DMRG) technique applied to various two- and three-dimensional classical spin lat-
tice models. The main goal is to introduce DMRG as a powerful method suitable
to treat models at the criticality, i. e., to determine critical points, all critical ex-
ponents as well as spatially modulated commensurate and incommensurate phases.
In particular, a generalization of the DMRG algorithm is proposed and applied to
a complete construction of phase diagrams of two-dimensional antiferromagnetic
next-nearest-neighbor Ising (ANNNI) model as well as antiferromagnetic triangu-
lar nearest-neighbor Ising (ATNNI) model. Both models exhibit incommensurate
modulated structures. The nonexistence of the Lifshitz point in the ATNNI model
is conjectured. A proposal how to modify the DMRG method for two-dimensional
classical models with periodic boundary conditions is given. It is shown that this
approach is much more efficient to reveal critical properties of two-dimensional
classical models in connection with a finite-size scaling than that starting from the
standard DMRG when the open or fixed boundary conditions were imposed. A cri-
terion for an optimum strip width is found. It enables to obtain the critical points
as well as all critical exponents with high accuracy. The two-dimensional Ising
and Potts models are studied in detail. A commensurate-disordered (C-D) phase
transition in the ATNNI model has not been studied yet. Therefore, the C-D phase
transition is studied in detail applying the modified DMRG algorithm with periodic
boundary conditions and a finite-size scaling. Critical points (T¢, Hc) as well as all
critical exponents are calculated on the C-D transition line. The Tensor Product
Variational Approach (TPVA) algorithm is employed to treat the first order phase
transition of the three-dimensional ¢=3 and g=4 Potts models by independent ob-
servations of the free energy, internal energy and magnetization for two different
boundary conditions.
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1 Introduction

1.1 Preface

In recent years with increasing progress of computational techniques, the analysis of
statistical mechanical systems as well as of their quantum mechanical analogs has been
focused on the investigation their properties, especially, at the criticality. Since only very
few models are exactly solvable, these investigations have become important. Knowledge
of their critical properties helps us sort these models to various universality classes.

For a two-dimensional classical statistical system, the transfer matrix plays an impor-
tant role. Their largest eigenvalues and corresponding eigenvectors are used to extract
thermodynamic properties of the system. In order to follow the procedure analytically, it
is restricted by the constraint of the integrability satisfying the Yang-Baxter relation [1].

The first paper after Ising who using the transfer matrices was written in 1941 by
Kramers and Wannier who dealt with the Ising model on the square lattice [2]. Their
idea was based on the variational approximation of the largest eigenvalue of the transfer
matrix. With this approach they exceeded the accuracy of mean-field theories as well as
of the Bethe approximation. However, consequent considerations how to extend of their
method were not performed.

In 1968 Baxter introduced a general formulation of the transfer matrix variational
method [3, 4]. He suggested variational trial function in a matrix product form. More-
over, he has shown that not only the transfer matrices were suitable to consider but
row-column symmetries might also have been taken into account. He invented a corner
transfer matrix and created an iterative method for its solution [5, 6] which could be re-
formulated by the self-consistent truncated equation of the corner transfer matrix. That
is why his iterative method is closely related to the real space renormalization group
[7-10].

The numerical real space renormalization group developed by Wilson in 1975 [§]
caused considerable interest in its applying to a variety of problems. It was believed that
this technique could solve much more models than the only one-dimensional quantum
Kondo problem being treated by him in that time. Unfortunately, that approach proved
to be rather unreliable in comparison with the developed Monte Carlo method. Therefore,
the real space renormalization group has been used only occasionally.

A significant progress in computational condensed-matter physics began in 1992 when
White introduced the density matrix renormalization group (DMRG) method [11, 12]
based on the real space renormalization group for one-dimensional quantum models. Its
remarkable accuracy can be seen, for example, in the spin-1 Heisenberg chain: for a
system of hundreds of sites. A relative precision of 10719 for the ground state energy can
be achieved.

Since then it has been applied to a great variety of the systems such as Haldane
systems [13-15], spin ladders [16], highly correlated electron systems [17], superconduct-
ing materials [18], fermionic [19 21] and bosonic [22, 23] systems, analyzing of impurity
systems [24], random systems [25, 26], Bethe lattice systems [27], momentum space [28§],
etc. Nowadays, DMRG has become one of the standard numerical methods for the
one-dimensional quantum systems.
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DMRG is also applicable to two-dimensional classical systems because the path in-
tegral representation [29] of the one-dimensional quantum systems corresponds to two-
dimensional classical system. In particular, an one-dimensional quantum system at finite
temperature can be mapped to a two-dimensional classical system via the Trotter-Suzuki
decomposition [30, 31]. Such modification to the two-dimensional classical system was
performed by Nishino [32] in 1995 where he used the transfer matrix formulations.

In spite of great progress in DMRG, let us explain and clarify the reason why DMRG
is so efficient. The explanation came from Nishino and Okunishi who have shown a
relationship between DMRG and the Baxter’s iterative method of the corner transfer
matrix. The fourth power of the corner transfer matrix is equivalent to the density matrix
used in DMRG. They have shown that both methods had yielded the same results in
the thermodynamic limit and constructed a new efficient algorithm — the corner transfer
matrix renormalization group (CTMRG) method [33-35].

In 2000, a brand-new algorithm, the tensor product variational approach (TPVA), has
been developed for the three-dimensional classical models [36]. Further improvements
in obtaining the critical point in the 3D Ising model of the vertex type has also been
gained [37] where additional degrees of freedom has been considered.

This review is aimed to elucidate principles of the DMRG for the two- and three-
dimensional classical lattice models. It also gives a view on further generalizations and
points out the efficiency, precision and speed of DMRG. It is beyond the scope of this re-
view to compare DMRG with various other techniques, such as Monte Carlo simulations,
series expansions etc.

Sec. 1 is devoted to a brief introduction to the critical phenomena in statistical me-
chanics. In Sec. 2, commensurately and incommensurately modulated structures are
discussed in this article. In Sec. 3, a short review of theoretical background of the nu-
merical renormalization group approaches is discussed, in particular, the DMRG as well
as the CTMRG methods for two-dimensional classical systems are explained and the
tensor product variational approach (TPVA) [36] as a self-consistent method for treat-
ing three-dimensional classical systems is also briefly presented. The finite-size scaling
based on the phenomenological renormalization analysis is presented in Sec. 4. Sec. 5
contains modifications and applications of the above mentioned methods to various two-
and three-dimensional lattice models. They represent the main contribution for studies
of classical spin lattice systems in the thermal equilibrium and presented results were
published by the author last year. In Sec. 6, the results are summarized and discussed.

1.2 Phase transitions and critical points

Statistical mechanics is concerned with systems consisting of a large amount of individ-
ual components (usually atoms or molecules) and describes the average properties of a
mechanical system, e. g., water in a kettle, atoms in a bar magnet and the like. The
observer can obtain information by specifying or measuring the average properties of the
system, such as its temperature, density or magnetization. The aim is to predict the
relations between the observable macroscopic properties of the system knowing only the
microscopic forces between the elements.

Let us suppose we know the interaction forces acting among water molecules. Then,
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we should be able to predict the density p of water at a given temperature 7' and pressure
p. Moreover, we should predict the dramatical decrease by a factor of about 102 of the
density p as the temperature T is increased from 99°C to 101°C at the pressure p=101.325
kPa when the water changes from liquid to vapor. This behavior is known as a phase
transition.

As another example, let us consider an iron bar in a strong magnetic field H. The
iron bar becomes completely magnetized. The measured magnetization M at a room
temperature is +1 (in appropriate units). By decreasing the magnetic field H to zero,
the magnetization M is decreased too, but to a nonzero positive value of a spontaneous
magnetization My >0 3. This behavior is not observed above the critical temperature
Tge ~ 770.8°C. The critical point Tc is also known as the Curie point.

There are two important items in the above-mentioned examples: the phase transition
and the critical point. In both cases, the order parameter can be introduced. The order
parameter separates the ordered (nonzero value of the order parameter) and disordered
(the order parameter is zero) phases.
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Fig. 1 Temperature T Fig. 2 Temperature T

Fig. 1. Magnetization M versus temperature 1" as the order parameters for the Ising model.
Fig. 2. Density p as a function of 7" for the water (in appropriate units).

In Fig. 1 an example of the magnetization as the order parameter for the Ising model *
is shown. The liquid phase and the steam phase of water are described by the order pa-
rameter defined by the subtraction (piiquid(T") — pgas(T')) as depicted in Fig. 2. In the case
of the bar magnet, the ordered ferromagnetic phase (T' < T¢) and the disordered phase

3All the review is written using these special units for the case of simplicity
4This dependence of the magnetization M on the temperature 1" for the Ising model comes from data
obtained by DMRG.
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(T'>Tc) are characterized by the nonzero and zero total spontaneous magnetization My,
respectively.

1.3 Thermodynamic functions and the Ising model

In 1902 John Willard Gibbs defined the partition function as the function of the temper-
ature T and the external ordering (magnetic) field H,

Z(T,H) = ;exp ( fEEST)) (1)

summed over all allowed states s for given Hamiltonian E(s) at temperature T' (kp being
the Boltzmann constant). All thermodynamic functions can be derived from the partition
function Z(T, H). The free energy F' is proportional to the logarithm of the partition
function, in particular,

F(T,H)= —kgTl Z(T, H). (2)

For magnetic systems (using the first thermodynamic low) we can write an infinitesimal
change of the internal energy U

AU = TdS — MdH. (3)

The internal energy U, entropy S, and magnetization M can be derived form the free
energy F' via the following expressions

U = —kBTzaiTan:—TQaiT (;) (4)
s - _<§_§)H (5)
v (),

Calculating the second derivatives of the free energy F' one can obtain specific heats C'
and isothermal susceptibility y

Can = T(¥>H7M, (8)
-,

The probability P(s) of the system in a state s is given as
oxp (E9)

Sew(-E2)

P(s) (10)
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Thus, any observable property X of the system, such as the total energy or the total
magnetization, having a value X (s) in a state s is observed as the average thermodynamic
value through the probability P(s) in Eq. (10) as

5> X(s)exp (—£2)
(x) = = o
Sexp (~5#)

The basic problem of equilibrium statistical mechanics is to calculate the partition
function Z as the sum over all states in Eq. (1) (for continuous systems this sum becomes
an integral and a trace for quantum mechanical ones). This gives the partition function
Z and the free energy F' as functions of temperature T and of any other variables that
may occur in the Hamiltonian F(s), such as a magnetic field H.

Unfortunately, for any realistic interacting system of macroscopic size, the evaluation
of the partition function becomes hopelessly difficult. In order to overcome the difficulty,
we are forced to choose one or both of the following;:

(11)

(1) To replace the real system by some simple idealization, i. e., by a model. In the
mathematical language, it requires the specification of the states s and the Hamil-
tonian function E(s). This approach leads to exactly solvable models and only few
models have been analytically solved so far.

(2) To propose numerical or analytical approximation schemes in order to evaluate the
partition function Z. Let us briefly discuss several kinds of such schemes.
e Cell or cluster approximations. Behavior of the whole system is extrapolated
from that of very few components inside some ’cell’ (approximation being made
for the interaction of the cell with the rest of the system. The examples involve
the mean-field [39, 40], quasi-chemical [41] and the Kikuchi [42] approximations.
They are fairly simple to solve and predict the correct qualitative behavior and
yield reasonably accurate results except near the critical point.
e Approximate integral equations for the correlation functions for the hyper-netted
chain [43] and the Percus-Yevick [44, 45] equations. These give fairly good numer-
ical values for the thermodynamic properties of simple fluids.
e Computer calculations on systems large on a microscopic scale (but not yet of
macroscopic size), such as Monte Carlo simulations. These evaluate the parti-
tion function Z by statistically sampling the terms on the right hand side of the
Eq. (1).
e Series expansions in powers of some approximate variable, such as the inverse
temperature or the density. For the three-dimensional Ising model the expansions
have been obtained up to 40 terms [46, 47].
e Renormalization group approach based on the ideas of Kadanoff [7] and Will-
son [48]. In this method, the sum over states in Eq. (1) is evaluated in succes-
sive stages, a renormalized Hamiltonian function E(s) being defined at each stage.
This defines a mapping in Hamiltonian space. The thermodynamic functions have
branch-point singularities such as the magnetization at T and that the exponents
of the singularities should normally be universal [49, 50].
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e Kramers-Wannier approximation [2] uses the transfer matrix technique for the
two-dimensional Ising model and is of mean-field-like behavior.

e Cluster transfer matrix method [51] was proposed as an iterative algorithm using
overlapped transfer matrix clusters to treat two- and three- dimensional models
with short range interactions.

e Baxter’s transfer matrix variational method [33-35] as well as another Baxter’s
iterative method for the corner transfer matrices [5, 6].

e The density matrix renormalization group (DMRG) analysis [10, 11, 12] for one-
dimensional quantum chains which is very accurate and fast. The density matrix
renormalization is introduced to describe the ground state (as well as several ex-
cited states) of the system. The application to the two-dimensional classical models
was proposed by Nishino [32] and modification for the corner transfer matrices led
to the corner transfer matrix renormalization group (CTMRG) [33]-[35].

e Other modifications based on DMRG are still in progress. Let us mention the
most appropriate candidates: the tensor product variational method (TPVA) for
treating three-dimensional classical models [36, 37, 52|, the puncture renormaliza-
tion group [53] for 1D, 2D, and 3D quantum one-body problems. The vertical
density matrix algorithm for 2D quantum transverse field Ising model as 3D clas-
sical Ising model has been recently proposed [54] or the 2D vertex model studied
by nonsymmetric CTMRG [55]

The Ising model [38] is the simplest idealization of the system which is exactly
solvable in one and two dimensions (in 2D only for the case of H=0). This basic lattice
model can be thought of as a model of a magnet. Let us regard the magnet made up of
molecules which are constrained to lie on the sites of a regular lattice. Suppose there are
N such sites labelled 1=1,2,...,N.

Now let us consider each molecule as a microscopic magnet, which either points
along some preferred axis, or in exactly opposite direction. Thus each molecule ¢ has
two possible configurations, which can be labelled by a spin variable o; with values +1
(parallel to axis) or —1 (antiparallel to axis). The spin is said to be up when o; has value
41 or down when it has value —1. Often these values are written more briefly as + and

—. Let 0 = {01,09,...,0n} denote the set of of N spins. Then there are 2V values of
o, and each such value specifies a state of the system °.
In general, the Hamiltonian is a function E(o1,02,...,0n) of N spins and is made

up of two parts
E(o) = Eo(o) + Er(0), (12)

where Ey(0) is the contribution of the intermolecular forces inside the magnet and E4 (o)
is the contribution from the interactions between the spins and an external magnetic
field H.

In a physical system, the interactions are expected to be invariant under time reversal
which means that the Hamiltonian E(c) is unchanged by reversing all fields and magne-

5For other models, such as the g-state Potts models, the o is g-state variable and, consequently, the
system contains ¢V values.
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tizations, i. e., by negating H and 01,03, ...,0y. From that it follows that Ey(c) must
be an even function of ¢, in particular

Eo(01,02,--+,0n) = Eg(—01,—09,--+,—0nN). (13)

These results define quite general Ising model, special cases of which have already been
solved. From a physicist’s point of view, it is highly simplified, the obvious objection is
that the magnetic moment of a molecule is a vector pointing to any direction, not just up
or down. One can consider this property and obtain the classical Heisenberg model [56]
but this model has not been solved yet even in two dimensions.

However, there are crystals with highly anisotropic interactions such that the molec-
ular magnets effectively point up or down, notably FeCly [57] and FeCO3z [58]. The
three-dimensional Ising should give a good description of these, in fact the universality
implies that it should give exactly the correct values of critical exponents which will be
discussed later.

The first term Eg(o) in Eq. (12) has (in this case) the form of the Ising model
Eo(O') =-J 0i03, (14)
(4,4)

where we sum only the nearest pairs of sites on the lattice. The parameter J represents
the interaction energy between the nearest neighbors which remains constant in the Ising
model. The ferromagnetic and antiferromagnetic models are then defined by J <0 and
J >0, respectively 6.

The next term F1(c) describes the interaction of the external field H with all spins
as follows

Ei(0) = fHZUZ-. (15)

The partition function Z of the Ising model on N lattice sites is given by
J H
ZN:ZeXp kB—TZO'iO'j—i-kB—TZO'i . (16)
4 (4,5) @
Physically, we expect the free energy of a large system to be proportional to the size of
the system, i. e., we expect that the thermodynamic limit

1
f(H.T) = —kpT lim —InZy(H,T) (17)

exists, In such a case f is the free energy per site.

6The ferromagnetic model is characteristic by all spins pointing to the same direction for the model
in the ground state (at low temperatures) and the antiferromagnetic ones by alternating spins.
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1.4 Magnetization and correlation functions

Magnetization M is the average of the magnetic moment per site, i. e., using Eq. (11),
1
M(H.T) = <01+ +oy > (18)

:%%Z(al—i—---—l—m\;) exp [—,CBLT (—JZJZUJ-—H;U@)]- (19)

o (4.4)

Differentiating the partition function in Eq. (16) with respect to H and using Eq. (17)
one obtains that in the thermodynamic limit (N — o0)

M(H,T) = (H,T). (20)

9]
—
OH
Since the summand in Eq. (16) is unchanged by negating H and o, the partition
function Zn as well as the free energy f are even functions of H, so M is an odd
function, i. e.,

M(-H,T)=-M(H,T). (21)
Normalization introduced in Eq. (18) defines magnetization which is in the interval
1< M(H,T)<+1. (22)

Differentiation Eq. (19) with respect to H again and using Eq. (11) yields the suscepti-
bility which is defined as

oM 1

= 51 = WM = (M), (23)

X

where

M= "o (24)

Using the fact that the average of a constant is the same constant, Eq. (23) can be written

1 2.2
= — . 2
X = o (M= (M))) (25)
Thus y is the average of a nonnegative quantity, in particular
oM
=—2>0. 2
X= 57 20 (26)

The correlation between spins ¢; and o; is
gij =< 0i0; > —<0; >< 05 > . (27)

Assuming that Ey(o) is translationally invariant, the average < o; > is the same for all
sites ¢ and therefore

<0 >=<0; >= M(H,T). (28)
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Moreover, the correlation function g;; depends only on the vector distance 75; between
the sites ¢ and j, i. e.,

9ij = 9(Tij). (29)

=y

where ¢(7) is the correlation function. Away from the T¢, the correlation function g(7)
is expected to decay exponentially to zero as 7 becomes large. More precisely speaking,
if k is some fixed unit vector, we expect that

g(zk) ~ " exp (%) as & — 00, (30)

where 7 is some number and £ is the correlation length in the direction k. The correlation
length is a function of H and T', and is expected to become infinite at T, i. e.,

&(H, Te) — oo. (31)

1.5 Critical exponents and universality

Critical exponents play an important role in the theory of phase transitions as they
describe the divergence or singular behavior of some thermodynamic functions in the
very close vicinity of the critical point [59]. When considering the critical behavior it is
convenient to replace T' by

T -Tc

t
Tc

(32)

In general, critical exponent A associated with thermodynamic function Y (¢) is written
as

A= lim 2O
t—0 In|¢|

or more frequently used in the form
A
Y(t) ~ [t (34)
Let us briefly introduce definitions of all critical exponents.

e Exponent a: the specific heat Cg at H = 0 diverges for T' — T¢ as
Cg ~ |t|“. (35)
e Exponent §: for infinitesimally small external magnetic field H, magnetization M
(the order parameter) decays for 0<T <T¢ (see Fig. 1). At T very close to T the

magnetization behaves as

M ~ (—t)". (36)
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Exponent : the magnetic (isothermal) susceptibility x = (4% ), at zero external

magnetic field diverges as a function of temperature according to
X~ 1t (37)

Exponent §: at criticality, magnetization M as a function depending on the external
magnetic field H is not a smooth function of H and it reads

M~HY  or  H~|M|°sign(M). (38)
Exponent v: the correlation function ¢ (for H=0) diverges at T = T¢
E~ It (39)

Exponent 7: the correlation function g(7) still exists at the critical point T¢ but
instead of decaying exponentially it decays according to the power low

g(7) ~ i (40)

where the dimension d has been introduced.

Exponent u: as T approaches Tc (T < Tc) the interfacial tension s goes to zero
and it is expected that

S(T) ~ (—t)". (41)

Whereas the critical point T is sensitive for details of intermolecular interactions,

the critical exponents remains universal as they depend only on fundamental parameters.
For models with short-range interactions, these parameters are of the dimension d of the
system and symmetry of the order parameter. Therefore, it is better to study the simple
Ising model than any complicated Hamiltonian of fluid. Sometimes the scaling is known
as the 'two exponent’ scaling, since if two independent exponents (such as  and v) are
given, all other exponents can be obtained from the following scaling equations

a+28+y=2 (42)
7=p06-1) (43)
2—nv=r (44)
pt+rv=2-—a (45)
dv=2— q. (46)
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1.6 Mean-field theory for the Ising model

The mean-field model describes a statistical mechanical system in which each component
interacts with the average over all components (on the contrary to the standard Ising
model studied in Sec. 1.6) and with the external magnetic field H. Thus the mean-field
Hamiltonian is

N

qJ

E(U):—N_l(zgai(fj—Hz;Ui, (47)
4,7 =

N(N—1)

where the first sum is taken over all distinct pairs (4, j) and ¢ denotes the number
of neighboring sites. There is no dimension in the mean-field model, in particular, there
is no difference between the 3D Ising mean-field model on the cubic lattice and the 2D
Ising mean-field model on the triangular lattice as they both share the same value ¢=6.
The mean-field model is therefore considered to be an infinite dimensional model since
each spin interacts equally with every other 7. Thus it also has the unphysical property
that the interaction coupling depends on the number of particles. Nevertheless, it does
give moderately sensible thermodynamic properties.
Solving the mean-field model [1] one obtains the formula

H = —qJM + kT artanh(M), (48)

being defined for the magnetization M € (—1,+1) and the magnetic field H € (—o0, 00)
as is shown in Fig. 3. The mean-field model yields a nonzero critical point T¢ > 0. Let

1
0.8 qI>k T
0.6 /
s 0.4
S 02
] o0
©
c -0.2
g
S 04 ql<kT
-0.6 .
_0.8 S \
1 | | ! | e e S S SR
-4 -3 -2 -1 0 1 2 3 4

Magnetic field H

Fig. 3. Graphical representation of the equation H = —qJM + kpT arctanh(M) for a reversed
problem, i. e., M as a function of H.

us discuss below three different conditions:

"Most of the numerical algorithms is based on the mean-field approximations that come from the
factorization of the Hamiltonian into small blocks (clusters) and each cluster itself carries information
on the neighboring clusters.
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1. For qJ < kpT the resulting graph describes the high-temperature phase with no
spontaneous magnetization., i. e., the spontaneous magnetization M = 0 for the
zero magnetic field H.

2. For qJ > kgT the M(H) curve in Fig. 3 intersects the vertical axis H =0 three
times. However, this result is unphysical and the spurious solution must be rejected
and replaced by the curve with the discontinuity of the second order at H =0 so
that the the following limits are satisfied

lim M(H) = +M, 49
H—>1 ot ( ) o ( )
lim M(H) = —M,. 50
Hlo— (H) 0 (50)

To be more precise, the part of the M (H) curve lying in the interval (—Mj, M)
must be replaced by a straight line (along the vertical axis H =0) connecting the
magnetizations —My and +Mj.

3. For qJ = kT which is equivalent to Tc = é’i, the mean-field model exhibits a phase
transition between the ordered and the disordered phases. The ordered phase at the
magnetic field H =0 and temperature 7'=0 consists of spins all pointing either up
(M =+41) or down (M =—1) whereas the disordered one at H=0 and temperature
T > T yields zero magnetization, i. e., the spins are arbitrarily pointing up and
down and the average magnetization tends to zero for N — oo. The spontaneous
magnetization M in the ordered phase approaches zero as T' — T¢ at H =0, see
Fig. 1. In the presence of a small nonzero field H, the total magnetization M is
nonzero even in the disordered phase.

Critical exponents of the mean-field model [1] are
1
a=0, ﬂzi, v =1, o=3. (51)

Since each spin interacts equally with every other, correlations are not distance-depen-
dent, nor can the model have two physically separated coexisting phases. Thus the
exponents v, 7, and p are not defined within this model.
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2 Incommensurability

2.1 Introduction

Periodically modulated structures are well-known in condensed-matter physics and may
be observed from the basic (substrate) lattice as another lattice with modulation, a
periodic lattice distortion, a helical or sinusoidal magnetic structure, or as a charge
density wave in one, two, or three dimensions. Periods of modulated structures can be
commensurate or incommensurate with the basic lattice as is shown in Fig. 4. Here, the

Commensurate structure

OO OO OO 0O
A VAVAVAVAVAVAVAVAVAV,

Incommensurate structure

Chaotic structure

O OO O OO ¥ 0O
AVAVAVAVAVAVAVAVAVAV

Fig. 4. The commensurate, incommensurate, and chaotic structures on an one-dimensional
model. The springs represent elastic interaction between atoms of gas that are adsorbed on a
lattice substrate depicted by the periodic potential as the wavy line.

commensurate structure is a simple rational fraction with the period 2a (a being the
period of the periodic potential of a lattice) whereas the period of the incommensurate
one cannot be expressed by a rational number. Yet another structure may appear, a
chaotic structure where the atoms are randomly positioned.

Physically, the atoms are usually the rare-gas atoms adsorbed on a substrate so that at
given temperature, pressure etc., the atoms tend to move towards the periodic potential
minima in order to reach the most appropriate energy. The chaotic state (phase) is the
most probable when the potential is very strong compared with the elastic forces among
atoms. The commensurate phase locks the atoms in the potential minima yielding a
periodic structure. So in general, the periodic potential will tend to lock the system into
a commensurate configuration. On the other hand, the incommensurate phase will not
be locked and the substrate lattice can be shifted without climbing a potential barrier.
So if the atoms were charged, the commensurate phase would be insulating and the
incommensurate phase would be conducting phase [61, 62].

The nature of the structure of the incommensurate phase is quite different in two
and three dimensions. In 3D the incommensurate phase seems to consist of an infinity
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of high-order locked commensurate phases, which may or may not be separated by an
infinity of truly incommensurate phases. In 2D the incommensurate phase (at nonzero
temperature) is known as a floating phase without complete long-range order and does
not lock-in at high-order commensurate phases.

In Sections 5.1 and 5.2, the commensurate and incommensurate phases are studied for
two-dimensional lattice models. A spin magnetization per site will be observed therein
as the modulated structures mentioned above. The magnetization profiles will be clearly
shown.

2.2 The ANNNI model

There is a very simple magnetic model which exhibits phase diagrams with commen-
surate, incommensurate, floating, and chaotic phases: the anisotropic next-nearest-
neighbor Ising (ANNNI) model. There are competing the nearest- and next-nearest-
neighbor interactions. Although the model is too simple to mimic real magnetic systems,
it does reproduce most of the features encountered in experiments [63]. The Hamiltonian
of the ANNNI model ® defined on the square lattice is given by

H= Z J1(04,j0i41,5 + 04,500 j41) + Z J204,j0it2,5 (52)
©,J 2y

where the two-state spins o; ; ==1 sitting at the lattice positions (¢, j) interact through
a ferromagnetic nearest-neighbor interaction J; and an antiferromagnetic next-nearest-
neighbor interaction J; only in one particular direction. In 3D there is the J; interaction
acting on all three directions whereas the J; interaction acts on one fixed direction only.

The competition between J; and Js stabilizes the various periodic phases. The pres-
ence of the modulated structure can be observed by, e. g., magnetization per site. The
resulting graphs exhibiting the incommensurate phase will be presented later. ® Domain
walls (or solitons, in the language of the sine-Gordon equation) observed in these periodic
magnetization structures are characterized by changes of the magnetizations from their
maximal to minimal values and vice versa.

2.3 The commensurate-incommensurate transition

The possibility of floating phases in 2D was pointed out by Wegner [64] for XY magnets
and by Jancovici [65] for harmonic crystals. The correlation functions (o(0)o (7)) as the
order parameter take the following forms in various commensurate and incommensurate
phases (¢ being the wave vector of the phase) at long distances

incommensurate : (o(0)o(r)) ~ cos(q- T+ ), (53)
floating incommensurate : (a(0)a(r)) ~r Tcos(q-r+ @), (54)
commensurate : (a(0)a(r)) ~ cos(qo - 1), (55)

8The 2D ANNNI model in the triangular lattice is also defined in Sec. 5.1.
9The incommensurate phases of spin lattice models are depicted in Figs. 21, 22, and 24 for different
interaction constants Ji, J2, and temperature 7.
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qo being the commensurate (locked) phase wave vector. The floating phase (with incom-
mensurate or accidently unlocked commensurate wave vector and corresponding power
law decay) is believed to exist only in two dimensions. The other phases may exists also
in three dimensions. The commensurate-incommensurate transition is subjected to an
instability with respect to the presence of domain walls. Pokrovsky and Talapov [66]
found the power law correlation function characteristic for the floating phase. In an
experiment on Xe absorbed on Cu(110), Jaubert et al. [67] found the critical exponent
8= % which is in agreement with the Pokrovsky-Talapov theory. The critical exponent 3
corresponds to a soliton density ¢ (or also equivalently, the domain wall density). Inside
the incommensurate phase, near the commensurate phase, the soliton density is found
to be low.

The two-dimensional generalization of the Frank and Van der Merwe theory [68] leads
to the Pokrovsky-Talapov Hamiltonian

_ 1 [(0¢ S o3 2
H—/dxdy 57(8—!/) +§<%— ) + V cos(py) (56)

where the phase ¢ is a shift of atoms relative to the potential minima, § = (27 /b)(a — b)
is the relative natural misfit between the two lattices with lattice spacings a and b. The
periodic potential is denoted as V' and p > 1 describes a transition to a commensurate
phase of order p.

Using the transfer matrix method it can be shown that the calculation of the free
energy of the two-dimensional model amounts to the calculation of the ground-state
energy of the 1D quantum Hamiltonian H [63]. Performing the first linearized term of
the free energy near § =4., we can obtain the domain wall density critical exponent 3

g~ (6. —0)’ ﬂz% (57)

which will be in agreement with the results reported in Sec. 5.1.4.
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3 Numerical renormalization group analysis

3.1 DMRG method for 2D classical models

The DMRG method has been developed and applied to various one-dimensional quantum
systems. It is also possible to treat two-dimensional classical systems since d-dimensional
quantum systems are closely related to the classical ones in d 4 1 dimensions through the
Suzuki-Trotter decomposition [30-32].

In 1995 Nishino has shown, as the first one, how to formulate DMRG for the two-
dimensional spin models using transfer matrix formulations for the Ising models. Then,
the 2D classical lattice models are numerically solvable by DMRG when introducing a
transfer matrix 7.

As it is well-known, the partition function Z of a particular model can be evaluated
by multiplication of the transfer matrices summed over all spin sites. In order to obtain
thermodynamic properties of an infinitely large two-dimensional lattice, the partition
function is expressed

Z= lim Trace T¥ (o1---on|o}---oly) (58)
M,N—oco
where the power M denotes the number of lattice rows and N is the number of sites in
each lattice row.

Let us assume that there is a gap between the largest and the second largest eigenvalue
of the transfer matrix TH/. Then the free energy per site of the infinite system is given
as f = —kgTIn A\yax, where A« is the largest eigenvalue of the transfer matrix 7.
Therefore, if we were able to calculate the largest eigenvalue of the transfer matrix, we
could solve the particular model. Unfortunately, this is not possible for many models.
For example, some of those that are analytically solvable are shown in [1].

At present, the computational technique is in great progress, but it is still very difficult
to calculate (if at all) the the largest eigenvalue from the transfer matrix of the 2D Ising
model for N > 30. The computational time is enormous. The DMRG method can
be of use for such problems. DMRG is based on the Wilson renormalization group
analysis [8] which is employed to approximate transfer matrices of large sizes so that
the highly excited states are integrated out (thrown away) while the transfer matrix
dimension remains fixed. The largest eigenvalues of the obtained renormalized transfer
matrices can be easily evaluated (even several successive excited states). However, the
approximation decreases with increasing of the size N of the studied model.

Knowledge of two largest eigenvalues and corresponding eigenvectors of approximated
transfer matrices enables to obtain all thermodynamic functions, such as the free energy,
magnetization, internal energy, correlation length etc. Moreover, the critical points as
well as all critical exponents can be obtained from a particular model.

Let us consider a g-state Potts model of an interaction round a face (IRF) type 0
[1]. We shall construct transfer matrices from the single blocks (small transfer matrices)
called the Boltzmann weights Wg. The Boltzmann weight of the IRF type consists of
four g-state spin variables o :=0,1,...,qg—1 at each corner as depicted in Fig. 5.

100ne can alternatively consider the vertex type, too.
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Oiy1

O; Gi+1

Fig. 5. The IRF Boltzmann weight constructed from the four g-state variables o.

Thus, the transfer matrix 7N defined on two adjacent rows (each contains 2N
sites) for open boundary conditions is then given by the product of the local Boltzmann
weights Wp

2N -1
TGN (o1 0onlot - oby) = [] Waloioinlojoli) (59)
i=1

where W defined for the 2D classical g-state Potts model reads

J
Wg(0i0it1]0j0(,,) = exp {_kB—T <5aiai+1 00107, F 0oior + 50i+1"£+1)} (60)

J, kg and T being the interaction constant, the Boltzmann constant and temperature,
respectively, and 6,4+ denotes the Kronecker function.
Let us write down a renormalized transfer matrix 7) in a product form of a left

)

transfer matrix TéN , the Boltzmann weight Wp, and a right transfer matrix Tl(%N) as

TN (erororER|Er o) oREr) = T[(,N)(gLULKILU/L)
X Wa(oror|o,op) TS (orErloReR), (61)

where ¢ is the multi-spin variable coming from a renormalization process which will
be discussed in detail later within this section. The multi-spin variables £, and &g
correspond to g-state grouped spins {o1---ony_1} and {on42 - oan}, respectively.

The DMRG renormalization process is developed to describe ground state properties
of various models. Although the grouped spins {0 ---on} characterize the ¢/ state
variable, the renormalization process enables us to keep the size of the multi-spin variable
¢ fixed while N increases. Then, ¢ contains m values for arbitrary N. The renormalization
is designed to enlarge the transfer matrix size by two g¢-state sites at each row within
one step of the renormalization process. A mapping from T32N) to T2N+2) for large N
keeps m fixed while the condition m < ¢V remains satisfied.

The renormalization process ! starts with N =2 and n=g¢ in order to construct 7(*)
properly according to Eq. (61) as

TW = WeWeWp = TP WpTY. (62)

1111 each renormalization step we perform n «— n(q+ 1) while n < m, otherwise we keep fixed n=m
for successively increasing N.
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The successive renormalization mapping
7@ = 7@ _, 7€) _, . _, pCN=2) _ p(2N) (63)

allows us in high precision to approximate the ground state properties of the transfer
matrix TN such as the free energy, the spin magnetization, the spin-spin correlation
function, etc.

At each renormalization step, the block-spin transformations {ro1} — &3¢V and
{026r} — &&Y in the Ty, and Tr, respectively, are required to be carried out, as shown
in Fig. 6.

new
E L O-L O-R E R E L O-L O-R R

&L Oy o, Or O &R
Fig. 6. The DMRG renormalization process TN) — TEN+2),

Now, let us explain the details of the renormalization process for the left transfer
matrix 77, only. The same procedure is required for the Tx. If the transfer matrix of
the model is symmetric, then T, and T are mirror symmetric.

Firstly, we have to solve the eigenvalue problem

Z T(2N)(§LULUR£R|£/LU/LU;’%£3%)\IJ(£ZOJLU§?£33) = )\max\p(gLaLURgR)v (64)

§L0L9RER

where A\ .x is the largest eigenvalue and W is its corresponding right eigenvector. In the
same way we obtain the left 12 eigenvector ® satisfying > PTCN) = PAax. A partial
product of ¥ and ® characterizes the density matrix. The left and right density matrices
obey the relations

pL(€rorléror) = > ®(ELoLohln) W (€L oL ohER) (65)
oRéR

12For the symmetric transfer matrix T(2N), both eigenvectors, ¥ and ®, are identical.
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pr(0RERIORER) = Y B(EL07oréR) V(S 07 0RER) (66)

1"t
L

By the complete diagonalization of the density matrix, we obtain the projection op-
erators O and Q. In particular, for the pr we get

Y OGil¢ror)pr(érorléror)QELorli) = widij, (67)

§ronépop

with O and Q being the complete sets of the left and the right eigenvectors '3 which
correspond to the diagonal matrix w; consisting of all eigenvalues ordered decreasingly
(W1 >we > 2> wqm). The indices ¢ and j run from 1 up to gm. Discarding the lowest
eigenvalues w; and corresponding left and right eigenvectors in O and @), respectively,
we obtain an m by gm rectangular matrix O as well as a ¢gm by m rectangular ma-
trix @, called projection operators because they are responsible for the renormalization
(block-spin) transformation {{y 01} — &7°". The projection operators enter the linear

transformation of the left transfer matrix 7' L( ) to a new T(NH)
N new - new new (N
TV E@olepo) = X 0@ leLo) T (ELonl€nol)
o1 o
X W (o101]0107)Q(ELo1 [€1). (68)

Analogously, the mapping TJ(QN) — T}(%NH) has to be carried out. By the construction

of the product of TéNH)WBTI(%NH), the transfer matrix T2N*2) is defined and the
renormalization process given by the Eq. (63) is then completed.

DMRG is a very accurate numerical algorithm used to calculate not only the ground
state properties. For instance, in one-dimensional case, we can extract the lowest energy
(the ground state) of the Hamiltonian as well as several excited energies (states). The
same approach can be applied to the two-dimensional classical system at finite temper-
atures'# [12].

DMRG enables easily to observe almost all properties of statistical systems even at
the criticality at which we frequently search information in order to extract the critical
exponents. Although DMRG yields the mean-field-like behavior for small m, it is possible
to obtain the correct critical exponents by increasing m in a vicinity of the criticality
or by introducing a finite-size scaling to the system described by approximated transfer
matrices [69, 70].

In order to obtain a spin magnetization per site () at the center of the system, the
following calculation is of use

(or) =Y  ®(¢rororér)or¥(Erororr). (69)

{LoLoréR

13For the DMRG technique it is very important to satisfy the condition OQ =1.

14 These considerations are, however, discussed for one-dimensional quantum models only and point
out the reader how to treat the density matrices. Generalization to the two-dimensional classical models
is straightforward.
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The nearest-neighbor spin-spin correlation function is given by

<ULUR> = Z ‘I)(fLO'LO’RgR)O'LO'R\I/(gLO'LO'RfR>. (70)

ELoLoRER

3.2 CTMRG method for 2D classical models

After Nishino formulated DMRG for two-dimensional classical models [32], the Corner
Transfer Matrix Renormalization Group (CTMRG) method was proposed by Nishino
and Okunishi [34, 35]. When applied to two-dimensional classical models, CTMRG is
much faster than the DMRG method. The CTMRG is based on a unified scheme of
the Baxter corner transfer matrix method [5, 6] and the White DMRG method [11, 12].
The key point is that a product of four the Baxter corner transfer matrices coincides
with the DMRG density matrix [1, 3, 4]. Moreover, the DMRG as well as Baxter’s
variational methods on CTM have many common aspects, in particular, both of them
are of a natural extension of the Kramers-Wannier approximation [2].

We will proceed similarly as in the previous section on DMRG method. Let us
consider the g-state Potts model of the IRF type. The row-to-row transfer matrix is also
expressed by Eq. (59). In order to simplify discussion, we assume the Boltzmann weight
to be symmetric and isotropic, i. e.,

Wg(0i0it1loi0i1) = Wa(0i10i]0i107)

= WB(UQUZ'|U£+1U¢+1)
= Wg(0110i|0ir10:). (71)

The renormalization of the transfer matrix can be expressed in the DMRG method as
T(0102--on|otoh - - o) = Pr(éroil€L07) Pr(0ilr|oiéh) (72)

o and £ being the g-state and m-state multi-spin variables, respectively. The renormalized
transfer matrix T for the lattice with two additional columns has to be constructed as a
scalar product of two Boltzmann weights Wg and two half row transfer matrices P, in
particular, T = Pp, - Wg - Wg - Pr. The eigenvalue equation for T is then

. > . Pp(£L01/€7,01)Wr(0102]010) Wi (0205]0505) Pr(03¢ R|05ER)
LO10203CR

X V(€L0102038R) = AmaxV (§L,0105058R) (73)

where Amax is the largest non-degenerate eigenvalue of 7' and V is the corresponding
eigenvector. The density matrix p is defined as a partial product of the two eigenvectors

prolror) = Y V(£L010203ER)V (EL010205¢R)- (74)

0203&R

We have used the fact that V is real. The assumption that the model is symmetric
and isotropic leads to Py = Pr and that the right and left eigenvectors are equivalent,
too. The DMRG method is a systematic iterative procedure to obtain P by using the
information coming from the density matrix p.
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Nishino and Okunishi gave their physical view on the density matrix p [33]. Since
Amax in Eq. (73) is the largest eigenvalue, the corresponding eigenvector V is given by
the large L limit of the (T)LX , X being the vector that is not orthogonal to V. The
vector V (£,010203ER), therefore, represents the large Boltzmann weight for the lower (or
upper) half-infinite two-dimensional lattice with the spin configuration {£;010203{r} on
the horizontal boundary. The density matrix equation (74) shows that p is created by
a partial connection of the two halves of the lattice as shown in Fig. 7. Therefore, the
density matrix p represents the entire system with a cut.

O niensity

D>
*’

Fig. 7. The graphical representation of the density matrix p.

The physical background of the density matrix enables us to avoid the eigenvalue
problem described by Eq. (73). What is really necessary in the construction of the
density matriz p, is the large Boltzmann weight that stands for the upper (or the lower)
half-infinite lattice, and not the eigenvector V. of the transfer matriz T. How can we get
p then? We have to introduce the Baxter corner transfer matrix (CTM) [1, 3, 4]. His
expression for the half-infinite lattice V' is given by the product of two CTMs denoted
by C’

V(£L0102036R) & Y C'(0201€L]0204ma1) C' (020 4m0| 02038 ), (75)

NMOo4

where C” is the CTM representing the large Boltzmann weight for a quadrant (a corner)
of the two-dimensional lattice. The graphical interpretation is shown in Fig. 8. The CTM
element C'(0102€|0% 0%¢’) is zero if o1 # 0. The notation ‘~’ denotes that the right hand
side of Eq. (75) is not the same as the eigenvector in Eq. (73), but is approximately exact.
Further we decompose V into a product form V ~ (P-Wg-Wp-P)(C-P-P-C), as is
shown also in Fig. 8. The relation between C and O’ is

C'(o201éLlo205mm) = Y. Wa(ouos|o102) P(0alL]o1€L)

Croanr
x P(onp|osn)C(oals|oany), (76)

where the symmetry of the Boltzmann weight Wp was used. The factor Wg - P-Pin
Eq. (76) is a kind of the transfer matrix acting on C and it increases the size of the
corner. Substituting Eq. (75) into Eq. (74), we obtain new expression for the density
matrix p

p§roilépor) = > C' (020181 |0204m0r )C' (0204m1r|0203MR)

{nMnNNNRO2030405}
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N Tm Nr
Fig. 8. The eigenvector V' can be approximately expressed as the product of two corner transfer
matrices, either by C’s according to Eq. (75) or by C’s according to Eq. (76).

><C~"(0203773|02057]N)C~"(020517N|020’10’L). (77)

Thus, the density matrix is a product of four CTMs. The relation between p and C' in
Eq. (77) unifies the Baxter CTM method and the White DMRG one.

Now, we explain the key point of the new numerical method, which is hidden in a
self-consistent relation between C' and C’. The relation consists of the mapping from C
to C” as seen in Eq. (76) and the renormalization process from C’ to C for all four CTMs
(well-known in DMRG)

> 0T(¢lo1€L)C (02018 Ll0204man)O(oamar|(') — C(oa¢lo2(’) (78)

§rnmoios
together with the renormalization process of P

> 0" (nLlo1éL)Wa (o201 |0hor)

Er€poi0]
x P(01€1]01€1)0(01€L 1) — Ploanzloynf). (79)

The orthogonal matrix O represents the projection operator acting on the spin transfor-
mation and is obtained from the diagonalization of the density matrix p

> 0T (nlénor)p(ELor|€rot)O(ELat1C) = Syewn, (80)

’ ’
§ro1fp oy

where OT is the matrix transpose of the O and w is the diagonal matrix containing m
eigenvalues of the p after a truncation.

Both methods, DMRG and CTMRG yield the same results in the thermodynamic
limit, however, the CTMRG method is much faster than DMRG. It is because the
CTMRG creates p by using Eq. (77) which consists of the n*m-dimensional matrix multi-
plication whereas the DMRG method requires to solve the n?m?2-dimensional eigenvalue
problem [32].
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3.3 TPVA method for 3D classical models

The use of DMRG method has become very popular, especially for one-dimensional
quantum and for two-dimensional classical systems. Nowadays, we observe first attempts
to extend its numerical algorithm to higher dimensions, in particular, to two-dimensional
quantum and to three-dimensional classical systems. In work of Liang and Pang [71],
only the finite system algorithm for the two-dimensional quantum model was efficiently
treated. So far, we do not know the answer how to solve two dimensional quantum
models by infinite DMRG algorithm at zero temperature.

In 1999, Nishino and Okunishi proposed a way of extending DMRG to three-dimen-
sional classical systems, the corner transfer tensor renormalization group (CTTRG) [72]
as a three-dimensional generalization of the transfer matrix DMRG [10, 32] and the
CTMRG [33] for the two-dimensional classical systems. There were two significant prob-
lems that occurred in the CTTRG algorithm: 4) the calculated transition temperature
Tc was much higher than the most reliable T¢ obtained by the Monte Carlo simulations
[73, 74]; ii) a very slow decay of the density-matrix eigenvalues [22] which was responsible
for the low efficiency of the spin renormalization transformation.

It seems to be important to investigate the variational structure of DMRG when
we attempt to focus on the generalization of DMRG to higher dimensions where the
variational state of the transfer matrix or the Hamiltonian is written in a product of
orthogonal matrices [75, 76].

Let us demonstrate the Tensor Product Variational Approach (TPVA) algorithm on
the three-dimensional ¢-state Potts model of the IRF type. The variational energy and
the variational partition function for a two-dimensional tensor product state V are given
by the Reyleigh ratios

vy vy
M=oy M ey (8

‘H and T being the Hamiltonian for a two-dimensional quantum system and the transfer
matrix for a three-dimensional classical system, respectively. Let us call such a variational
estimate the Tensor Product Variational Approximation (TPVA) in the following. The
key point in the TPVA is to find a good variational state V. Recently, Okunishi and
Nishino [77] assumed a specific form '5 of V| which contains two variational parameters
and tried to find the best V.

Let us consider a simple cubic lattice of the size 2N x 2N X oo in z, y, and z
directions, respectively, where free or fixed boundary conditions are imposed to both x
and y directions. As we are interested in the bulk properties of the model, we suppose that
the system size 2N is sufficiently large. We assume ferromagnetic interactions between
the nearest neighbors. The transfer matrix is defined between two spin layers [¢o] and [7]

15The authors assumed V in the form of the Kramers-Wannier approximation and applied it to the
3D Ising model. However, they were not able to extend this approach to treat wider class of models, e.
g., this problem is still open for the 3D Potts model.
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each of the 2N x 2N size. One spin layer [0] is given by a set of 4N? spins

01,1 O1,N O1,2N
[O’]: O'N71 UN,N UN,2N . (82)
O2N,1 *** O2N,N *** O2N2N

The layer-to-layer transfer matrix is expressed as a product of the Boltzmann weights

2N—-12N-1
T[a\&] H H Xz] = H Xij = H X{O-ij|a-ij}7 (83)
=1 j=1 {ij} {ij}

X;; being a local cube as seen in Fig. 9.

Fig. 9. Distribution of the spin variables in the Boltzmann weight X;;. For further simplification,
we introduce the notation {yu;;}={0;|5:;} as well as i’ =i+1 and j'=j+1.

Let us focus on the simplest construction of the tensor product state of V| i. e.,

;. 4 ;. 4/
Vil = [Tws =TTw (20 77 ) =T wiow) &)
{i3) {i3) e {is}

where the local tensor W;; has ¢* parameters for the case of the g-state Potts model 16 and
in the simplest formulation, W;; is position independent and it represents a plaquette
of four neighboring spins in a layer. Using T'[¢|g] and Vo], the variational partition
function per layer according to Eq. (81) is expressed as

>, ViolTlolalVial 52 T Wioi;} X{ou1a:; }W{ai;}
P [o][o] [o]la] {is}

> (Vio))? > I (W{oi;})?
o] o] {ij}

16Let us recall that the case ¢=2 is equivalent to 3D Ising model.
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> 11 Gi{oijloi}
(0[] {ij} 7

_ 4 85
> 11 Goloa) ~ Z (83)
[o] {ij}
where we introduced Gg and G, as
Go{oij} = (W{oy})*, (86)
G1{0456:;} = W{oi;} X{0i;|5:5 } W {545} (87)

Above, Zj is the partition function of an IRF type on the 2N x 2N square and Z; is that
of the two-layer lattice model of the same size.

Let us explain the self-consistent equation for the variational state V]o]. Eq. (85) is
satisfied when \ is maximized. Therefore, we consider a variation of A with respect to
variations of local tensors, in particular,

LERS RS (58)

under the condition that the system is large enough and the effect of boundaries is
negligible. Then most of the terms on the right-hand-side of Eq. (88) are almost identical
and it is sufficient to consider the variation of A with respect to the local change Wy —
Wnn + Wyn at the center of the system, where Wy represents the central local
tensor.1”

Therefore, the variation 6 A\/6 Wy can be explicitly written down by two matrices
A{onn} and B{onn|onn}. The first one is the diagonal matrix

Monny=>_ [I Goloy} (89)
[0]" (ij)#(NN)

where Z[a], denotes the spin configuration sum for all the spins in the layer [o] except
for the central spin plaquette {onxn}. '® From definition (85)

Zy = Z Go{onn}A{onn}. (90)
{onn}
The second matrix is
B{onnlonn}t = X{onnlonn} Y, [ Gifoileil, (91)
[o)'[3)’ (i)#(NN)
which is related to Z; as
A= Z W{O’NN}B{UNN|(7NN}W{ETNN}. (92)

{onnHonn}

7compare Eqgs. (82) and (84).
18We interpret A{onn} as a 16-dimensional matrix M{onxn|6nn} where M{onn|onn} = A{onn}
and is zero when {onn} # {GNN}-
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With these definitions of A{ony} and B{onn|dnN} we can calculate A via

Y.  W{onn}B{onnlonn}W{onn}
. é {onnHonn}

A= = . 93
Zg Z W{O'NN}A{O'NN}W{O'NN} ( )
{onn}
The condition § A/§ Wy n = 0 leads to the eigenvalue problem
1
> = B{olo}W{s} = A\W{o}. (94)
o1 Ao}

We have dropped the subscript from onxy and ony. We consider W{c} as a 16-
dimensional vector. The Eq. (94) is the self-consistent equation that an optimized tensor
product state V[o] should satisfy.

In order to apply the self-consistent relation (94), we have to obtain A{c} and B{c|7}
for very large N. Although it is impossible to obtain them exactly, we use the CTMRG
[33] which enables us to calculate them numerically with high precision for large N. We
introduce the notation

pij = (035 . i) (95)

that groups a pair of adjacent spins o;; and ¢;;. Knowing p;; we can rewrite the stack
of two plaquette spins {0;;]7;;} in the form

[ MG Mg
)= (s ), (96)
X{0;|5i;} to X{pi;}, and G1{0;;|7:;} to Gi{ui;}. Analogously, we drop the subscript
from {u;;} to write it as {¢} in the following when its position is apparent.

The matrices A{c} and B{u} can be expressed as a combination of the corner transfer
matrices (CTMs) and the half-row transfer matrices (HRTMs) which appear when we
apply CTMRG to both the numerator as well as the denominator in Eq. (85) in order to
obtain Z; and Zj [77], respectively.

Let us write the CTM used for the calculation of Z; and Zg as C1({u¢’) and Co(£0€’),
respectively, where &, €, ¢, and ¢’ are m-state multi-spin variables and p is a ¢?-state
variable. Similarly, let us write HRTM as P; (up'¢’) and Py(€o0’¢’) in the same manner.
Note that Go{c} is necessary for the creation of Cy(¢0¢’) and Py(€o0’¢’) and Gy1{u} for
C1(Cu¢’) and Py (Cpp’C’). In particular, A{c} and B{u} are constructed as

A{o} = D Po(£10a06)Co(&200€3) Po(€3060¢£4)Co(a0cés)
£162--€s
Po(€50.0486)Co(E60dé7) Po(§7040a€8)Co(E80aén) (97)

Bi{u}=X{p} D Po(Ciar2)ColCatsCa)Po(CapnticCs)ColCapels)
C]<2"'48

Po(CspreraCe)Co(Coalr) Po(CrprattaCs) Co(Cattalr) (98)
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6 5

Fig. 10. The four white circles denote ¢ and ¢>-state variables of the plaquette spins {o} and
{u}, respectively, and the black squares are the summed m-state multi-spin variables £ and ¢
used in the CTMRG technique.

where the positions of the spin variables are shown in Fig. 10.

Thus constructed A{c} and B{u} enter the self-consistent Eq. (94) and by an iterative
procedure [36], the W{o} is improved. The extension of the system size is performed
by CTMRG. After W{o} reaches its fixed point we can measure thermodynamic bulk
properties such as the three-dimensional magnetization per one site (the order parameter)

_ q<50,a> -1
M= o1 (99)
where
Yo 00,aC1(C11aC2)C1(C21aC3)C1(C310aCa) Cr (CattaCr)
500 = HaC1C2¢3Ca , (100)
’ > Ci(CipaC2)C1(C2ttal3)Cr(Ca1taCa) C1(Cattala)

1€1¢2C3C

the internal energy [77] per site
Eint = _<5Ui,j70¢/,]‘> - <5Ui,j70i,j/> - <5Ui,j75'i,j>7 (101)
or the free energy [77] per site

ZIN+4 5 IN+2] /IN2) 5[N] )
[

ZINH [N [N A2 [N]

1
F=—ckpT lim In ( (102)

N—o0

where Z([)N} denotes the system size of N x N.
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4 Finite-size scaling

4.1 Phenomenological renormalization

The DMRG algorithm can be used in two ways. The first one is the infinite system
method (ISM), which enlarges the system size to an arbitrary size. Then, the spontaneous
symmetry-breaking occurs if the system is below the critical temperature. Thus we can
obtain properties of the system in the thermodynamic limit.

In the second way, the finite system method (FSM), it is used when we are interested
in properties of the finite-sized system. Results obtained by this way can enter, e. g.,
the finite-size scaling. These ideas come from the Nightingale’s phenomenological renor-
malization [95] (or by other words, the finite-size scaling). The combination of finite-size
scaling with the transfer matrix technique yields a powerful tool for investigation of
the critical behavior. In particular, it has been widely used to study two-dimensional
statistical mechanical systems and one-dimensional quantum mechanical ones.

Although, finite systems themselves do not display any critical behavior, they enable
to detect critical points as well as critical exponents. For this purpose, let us consider the
Ising model on a simple square lattice where spins are coupled among nearest neighbors
only. For the lattice size of n x oo, the eigenvalues of the transfer matrix

A s A s s A (103)

yield the free energy per site
_ 1 (n)
fn kgT'In A, (104)
n

and the inverse correlation length

s Ag”
1

A system approaching its critical point is characterized by a temperature-like field (i.
e., non-ordering field) and an ordering field, denoted by ¢ and h, respectively. Assume
€ =h =0 to be the critical point. For the finite-sized systems a third condition implies:
n~1—0.

Kadanoft’s well-known scaling relations [7] for a d-dimensional system can be gener-
alized for the free energy and the inverse correlation length to include 1/n as

Ldf(E,h,%) :Ld.gL(Evh)+f(EL’hL7%)7 (106)
Li(e, h, %) — k(er, he, %). (107)

where L is the arbitrary linear dimension of the Kadanoff blocks; gy, is their internal free
energy per site and is related to the regular part of the free energy. The €5, and hp are
the renormalized temperature and ordering (magnetic) field. Under scaling the system



Lattice models studied by numerical renormalization group approaches 99

size n reduces to n/L, implying that 1/n is a scaling field with exponent equal to 1.
Close to the critical point we can write

er(e,0) = eLV* + O(£?), (108)
hr(0,h) = hLY" + O(h?). (109)

4.2 Critical exponents

All critical exponents can be expressed in terms of two fundamental thermal and magnetic
exponents y and yy, respectively. From Egs. (106) through (109) we can derive how the
specific heat c,, susceptibility x,, and the inverse correlation length k,, its derivatives
with respect to temperature 7' and field h squared k. and k! behave as a function of
system size 19 at e=h=0:

cn ~ n2¥Td (110)
Xn ~ nPd (111)
Kp ~ not (112)
KL o~ opyrl (113)
kD~ punTl (114)

Once the free energy, inverse correlation length, and their derivatives have been cal-
culated for finite systems, the relations (110) through (114) may be employed to obtain
critical properties.

In order to obtain the critical point of a particular model, we use Eq. (112) for
several different lattice sizes n. The larger n we take, the more accurate K we obtain,
see Fig. 11. The K* is the point, where two curves nk, as functions of temperature 7' (or
the inverse temperature K) for two different lattice sizes n and m intersect each other,
we call K*. In DMRG treatment we usually take m=n+2, as the system size is enlarged
by 2 sites at each iteration step.

Analogously, we can calculate critical exponents. Thus, e. g., the thermal critical
exponent yr can be extracted from Eq. (113) as it can be read off from the slopes of the
curves K, and K,42 at their intersection point as

T
neK n
=In| —2—)/In|{ —— 115
T ((”"‘2)“};%)/ (n+2> (115)
or the magnetic exponent y can be derived from Eq. (111) as
d

n%xn n
I — 22X Yo (), 116
n =i (rga) e () o)

where we will use the dimension d =2 and x, comes out from Eq. (111). All critical
exponents can be derived from yr and yy [107], i. e.,
2
a = 2- =, (117)
Yyt

assuming a vanishing first-order derivative with respect to h in the view of h — —h symmetry.

19
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Fig. 11. Typical plots of the phenomenological renormalization for the inverse correlation length
krn multiplied by n as a function of inverse temperature K

2—n
B = o (118)
Yy = w5 (119)
5§ = ~/B+1, (120)
n = 2-yr, (121)
v Yr ' (122)

Since DMRG method enables to obtain the two largest eigenvalues of a large approx-
imated transfer matrix of size n, the finite-size scaling analysis becomes a very useful
tool to investigate critical properties of various kinds of two-dimensional models.
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5 Applications to 2D and 3D classical models

5.1 Phase diagrams of ANNNI and ATNNI models

We will investigate two classical spin lattice models that exhibit incommensurate (IC)
phases, namely the Anisotropic Next-Nearest-Neighbor Ising (ANNNI) model [78] and
the Antiferromagnetic Triangular Nearest-Neighbor Ising (ATNNI) model [80]. The in-
commensurate phases were studied by many various theoretical approaches. The free
fermion approximation revealed IC phase in 2D classical ANNNI model [81] (also in
ATNNI model [80]) and in 2D incommensurate crystals [82]. Incommensurate structures
have been discussed in various topics: 2D C-IC phase transition [83], 2D quantum ANNNI
model [84], ANNNI model in d > 2 dimensions [85], and by analyzing 1D sine-Gordon
model [86], where the authors found no Lifshitz point.

We develop modified DMRG method which can be applied to more complicated sys-
tems, namely to the ANNNI and ATNNI models. Both models are characterized by
non-symmetric transfer matrices. The way how to use the DMRG in that case will
be described in this Section. We show the modification of the DMRG for treating non-
symmetric transfer matrix in the ATNNI model and discuss it in light of other approaches
to the non-symmetric transfer matrices or non-hermitian quantum Hamiltonians [82-88].
In particular, the existence or non-existence of the Lifshitz point in the ATNNI model
will be studied and its phase diagrams will be constructed.

5.1.1 The DMRG technique for 2D spin systems

For special values of interaction constants, both the ATNNI and ANNNI models can
be reduced to the Ising one. In this case we can compare our approximate DMRG
calculations with the exact results for infinite 2D models.

Exact results can be relatively easily obtained for 1D models, e.g. strips of finite
width. They provide also a good opportunity for testing our methods.

The DMRG technique, as a numerical real-space method, is in fact always applied to
finite systems. However, in dependence on the size of the system, it can yield approximate
descriptions of 1D or 2D infinite systems.

An 1D model at non-zero temperature does not display any phase transitions. Nev-
ertheless, the value of the critical temperature for the corresponding 2D model can be
found from considerations of the phenomenological renormalization [95] which we here
call the finite-size scaling (FSS). This approach represents the first of two methods we
shall use for determination of the critical temperature. For the Ising model, derived from
comparing two rescaled semi-infinite strips of width L=12 and 14 with periodic boundary
conditions, 20 the critical temperatures are the following:

i) T. = 2.26987 from exact eigenvalues of the transfer matrices of sizes 2!? and
2 which correspond to the transfer matrix dimensions N = 4096 and N = 16384,
respectively,

20 Details of periodic boundary conditions applied to DMRG for two-dimensional classical lattice models
are discussed in Sec. 5.2.
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ii) T, = 2.27008 from eigenvalues of the DMRG superblock transfer matrices with
the dimension of only N = 1024
comparing to the exact critical temperature of 2D Ising model T, = 2.26918... [1].

The second method for determination of the critical temperature is provided by
DMRG calculations on 2D systems, large in both directions. Here, below the critical
temperature a spontaneous symmetry breaking occurs, i.e. the order parameter acquires
non-zero values and tends to zero at the critical point. The DMRG method behaves in a
mean-field-like manner. Now the critical temperature 7. can be determined directly and
therefore no finite-size scaling is necessary. Its accuracy improves with the size N =2
(or multi-spin variable m discussed in Sec. 3.1) of the superblock transfer matrix:

T.=2275 m=16 N=1024
T.=2272 m=30 N=3600
T.=2.2692 m=70 N=19600

For lower orders of approximation, the accuracy of the second method is worse than
of the first one, but it converges faster to the exact value. For the ATNNI and ANNNI
models in the phases with broken symmetry, the method explicitly gives the structure of
a commensurate as well as an of incommensurate phase. In contrast to the FSS method,
it is also applicable to the high magnetic field region in the ATNNI model and we were
able to investigate nearly the whole phase diagram of the model.

5.1.2 The ATNNI and ANNNI models

We consider the two-dimensional classical Ising model with antiferromagnetic interactions
between nearest neighbors on a triangular lattice (the ATNNI model). Its Hamiltonian
is

H = Z J Z 00, 5T aoio; 5 | — HZ o; (123)
i N i

=12
with J > 0, 0 < a < 1, and the directions 1, 2, 3 where ; = +1 as depicted in Fig. 12(a).

The partition function Z = Z{U} e P" where f = (kBT)fl, can be written as a
product of two types of Boltzmann weights. Each Boltzmann weight Wg(o103|0]0%) is
composed of four spins which interact among themselves as seen in Fig. 13.

The model is exactly solvable for external magnetic field H = 0. At nonzero tempera-
ture (T, = 1.55 for o = 0.4 [80]), it exhibits a second order phase transition. Throughout
this Section all numerical calculations are performed at the fixed a = 0.4, J = 1. The di-
mensionless temperature 7'/J and dimensionless ratio H/T are used in order to compare
our results with those obtained in [80].

The numerical calculations are based on a diagonalization of two transfer matrices
(in next Section, we will offer a more detailed description of their construction). For this
purpose we used a rectangular lattice depicted in Fig. 12(b) which is related to the initial
triangular lattice of the ATNNI model as seen in Fig. 12(a). We identify direction 3 with
the interaction aJ (Figs. 12(a) and 12(b)). Along this direction, the incommensurate
modulation should appear. We will use the row-to-row transfer matrices [80].
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(a) (b)

Fig. 12. (a) the triangular lattice of the ATNNI model. The incommensurate structure appears
along the direction 3 (dashed lines). (b) for more convenient calculation, the triangular lattice
was transformed to a rectangular one. The transfer matrices are of the row-to-row type. Now,
directions 1, 2 in (a) correspond to thick and thin lines in (b), respectively.

& @
WB WB

o

o’

Fig. 13. Two kinds of the Boltzmann weights differing by orientation of diagonal interactions.

The ANNNI model is defined on the 2D triangular lattice (Fig. 14). The model is
characterized by the nearest-neighbor ferromagnetic interactions J; < 0 for all three
directions and a next-nearest-neighbor antiferromagnetic interaction Js > 0 in one of
three directions only. Its Hamiltonian can be written as

H:Z Z J10i0i+(§ +J20i0i+21 . (124)

5=1,2,3

The ANNNI model is usually defined on the square lattice where the next-nearest-
neighbor interactions are, in fact, equal to zero and the third-nearest-neighbor ones are
non-zero and antiferromagnetic. Thus, the ANNNI model on triangular lattice is the gen-
uine Anisotropic Next-Nearest-Neighbor Interaction model with non-zero next-nearest-
neighbor interactions and vanishing the third-nearest-neighbor ones. A frustration of
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Fig. 14. The 2D ANNNI model on the triangular lattice. Directions 1, 2, and 3 characterize
the ferromagnetic interaction Ji. The next-nearest-neighbor antiferromagnetic interaction Js
(dashed line) acts in the direction 4 in which the incommensurate phase appears.

the ANNNI model appears due to the competing interactions. The ANNNI model was
mostly studied on the square lattice [96, 97] but it was shown by [78] that the properties
of the ANNNI model on the triangular lattices remain essentially unchanged. The Boltz-
mann weight is composed of six spins Wg(o10203|0)050%) an it is graphically shown in
Fig. 15.

Fig. 15. The six-spin Boltzmann weights of the ANNNI model differing from each other by
orientation of the diagonal interactions. In the DMRG calculation the Boltzmann weight defined
on the eight-spin cluster was used. It is composed of two overlapping six-spin Boltzmann weights.

The phase diagram of the ANNNI model (will be discussed in Sec. 2.1.4) consists of
four regions: a ferromagnetic phase with non-zero total magnetization, a commensurate
phase (2) with periodically alternating spin signs (---+ 4+ — — 4+ 4+ — —--+), a param-
agnetic phase, and an incommensurate phase located between the commensurate and
paramagnetic phases.



Lattice models studied by numerical renormalization group approaches 105

5.1.3 Modification of the DMRG algorithm

The DMRG algorithm for quantum models introduced by White [11, 12] was modified
and applied for 2D classical lattice models by Nishino [32]. Since the ATNNI and ANNNI
models on the triangular lattice lead to non-symmetric transfer matrices and incommen-
surate phases, the Nishino’s approach has to be modified further. We shall pursue the
second approach discussed in Section 2 the DMRG method applied to very wide strips
where the spontaneous symmetry breaking occurs.

The DMRG method replaces the exact row-to-row transfer matrix of a strip, which is
a product of plaquette Boltzmann weights by a set of much smaller superblock transfer
matrices for every plaquette. The superblock transfer matrix consists of the Boltzmann
weight ‘W of the plaquette ¢ multiplied by left and right transfer matrices (blocks) 77,
iTr which replace all the remaining plaquette Boltzmann weights of the exact transfer
matrix to the left and right from the plaquette. The left and right transfer matrices are
indexed by left and right spins o g = £1 of the plaquette, respectively, and by block-
spin variables ¢ = 1,...,m. The number of spin components m determines the order of
the approximation. For a modulated phase, "7y and T differ for each plagquette. In
the Finite System Method (FSM), they are calculated self-consistently from the transfer
matrices corresponding to the neighboring plaquettes. The left block *17Ty is obtained
from “Tr, *Wpg after a reduction of its matrix size to the original value in a proper way.
The right block "7y is similarly calculated from ‘Wg Txr. A calculation of the left
and right transfer matrices is performed iteratively in the course of a number of sweeps
across the strip.

The reduction of the size of the transfer matrices is based on density matrices that
are constructed from the left and right eigenvectors (see also Figs. 12(b) and 16) of the
superblock matrix [12].

g, o o A g
W=y,
—I—L(2) WB(Z) TR(Z)
38 E. W= W,
_I_L(l) ‘ WB(l) -I-R(l)
lplz_ W,
& oL Ok &

Fig. 16. W, ¥, are the right and left eigenvectors that correspond to the largest eigenvalue
of the superblock transfer matrices T = iTL(l)i }(31) iTg) and ‘T? = Z'TL(Z) @ 32) iT}(f),
respectively. Vectors Wy and Wo are used for the calculation of the density matrix in each
DMRG iteration.

The procedure described above for homogeneous phases and symmetric transfer ma-
trices is explained in the Section 1.1 in detail. For the ATNNI and ANNNI models the
method should be slightly modified because the transfer matrices are not symmetric and
the structure is modulated in both directions (in one of the directions, it is modulated
incommensurately). It is convenient to choose the strip perpendicularly to the direction
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of the incommensurate modulation with commensurate structure along the strip, i.e. the
strip is orientated in the vertical direction of the lattice shown in Fig. 12(b). It is seen
that there are two different row-to-row non-symmetric transfer matrices in the strip. One

transfer matrix is constructed from the Boltzmann weight Wl(gl) and the other one from

the W (Figs. 12(b) and 16).

The number of superblock transfer matrices should be equal to 2 (at least), since
there are the 2 different Boltzmann weights in the model. For the DMRG with spon-
taneous symmetry breaking and spatially modulated structures, they may be different
for each plaquette of the lattice. The density matrices can be constructed either from
the eigenvectors of the superblock transfer matrices or from functions obtained by an
iterative procedure ¥; = Hizl TEg, starting from U;,;; given by suitable boundary
conditions. For a homogeneous structure and large j the function ¥; is identical to the
eigenvector of the superblock T

All the commensurate structures have the period 2 for the ATNNI model in the direc-
tion of the strip. Therefore, we use two superblock transfer matrices 7(*) = Tél)Wél)Tg)

and T(?) = TL(2)WJ(B2)T1(%2) shown in Fig. 16. They are dependent on the position of the
plaquette in the horizontal direction (perpendicular to the strip). Similarly, as a result
of the iteration procedure we obtain two different functions ¥; for sufficiently large j.
Let us denote ¥y to be the eigenvector of the matrix 77 for even 7 and U5 to be
another eigenvector of the matrix product 7M7) for odd j. Both these combined ma-
trices are already symmetric and their right and left eigenvectors ¥ and WU, respectively,
are identical.
Writing spin variables explicitly, the right eigenvectors are given by

Y T olorérléiororér) Vi (ELororén) = AU (L 07 0RER), (125)
éLoLorér

where

T(¢[010RERIELOLORER)

= Y Tl oheRlEL ot oReR) TN (€L oL oRRléLoLortn). (126)

€L0LoRER
The eigenvectors at odd rows Vs follow directly from Wy
Ty =T, (127)

The optimum size reduction of the matrix *Ty, !Wp is performed by its multiplying at
both sides by rectangular matrices consisting of several eigenvectors of a density matrix
that corresponds to its largest eigenvalues [12, 32]. The density matrix at a row j is
constructed from the left and right eigenvectors ¥, Wj [79] of transfer matrices with their
left and right spins, respectively, within the lattice row. For modulated commensurate
structures of a period p, the successive functions ¥; are not the eigenvectors of one
transfer matrix but of a product of p transfer matrices. As for ATNNI model we have
two different kinds of rows and different left and right transfer matrices in superblocks,
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we need four different density matrices. The left density matrices have the following
forms:

(5 LUL Z‘I’ (€101 oRER)V 1(52020635162) (128)
R£R

PP (Eratieta)= 3 Wa(eloltales)Ua(clololsels) (129)
,CE

In the expressions for the right ones, the summation is performed over the left spins. The
functions ¥; and Ej are identical. That is why the density matrices in Eqs. (128) and
(129) are symmetric. Here we should emphasize that the right blocks T are not mirror
reflections of the left blocks T, as they were in the standard approach [11, 12].

The choice of the density matrices according to Egs. (128) and (129) corresponds to
the requirement of the best approximation of density matrices at each row in further
calculations. In this case the density matrices might be generally non-symmetric. In
1D calculations with non-symmetric Hamiltonian [82-88] the density matrices were also
chosen as symmetric but different for each side of the Hamiltonian or the same, but taken
as an average of the left and right ones. This choice is closer to the original White’s
approach where the goal is to find the best possible approximation for the left and right
eigenvectors of the Hamiltonian (transfer matrix). For two-dimensional models with non-
zero temperature the calculation is aimed to thermal averages of physical quanties, for
which good values of density matrix are decisive. Thus, our approach with potentially
non-symmetric transfer matrices we reckon as the best one.

By diagonalization of the left symmetric density matrix one obtains a matrix of
orthonormal eigenvectors Op,:

Qr(k[¢a)pi) (€ol€'a")OL(E o' |0) = widie, (130)

where @, is transposed Oy, and the eigenvalues wy, satisfy the relation
> wp =1 (131)
k

Analogously, we repeat this procedure for the density matrices p(L2) and pg) in order

to obtain matrices Q, O, Qr, and O%. Discarding half eigenvectors in the matrices

@ and O that correspond to the smallest eigenvalues wy, the matrices O and ) can be

. . . . ; 1 .
used as the reduction matrices in calculation of Z+1T£ Jnew via

H—lT(l new(ganewo_l new|§new zew) — Z ZQ/L(ginewmlLo_/L)

ELéporal
XIT (€L pon) WE (0o, " loro i ) OL (Lo |Efe) (132)

Generalization for the right block is straightforward. The graphical representation of
Eq. (132) is in Fig. 17.
Notice that at this step (Fig. 17) the reduction matrix Oy, is obtained by diagonaliza-

tion of the density matrix p(Ll) whereas the matrix @7, results from the diagonalization of
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E,Lnew
|(?,L
E I_new O_,Lnew g . O"L O"L 0_,Lnew
O g, 0o O O
o — o
O 3 Oo O O
new new . O. new
{L o} EL E.YL o, 0, & G, L o,
IOL
ELHEW
Fig. 17. Schematically written equation (132) which is used for computing the new left renor-
malized transfer matrix 7™ from the old one T|".

the density matrix p(LZ). Various physical quantities can be found knowing the functions

Uy, Uy, Uy, and Wy, e. g. site magnetization used in further calculations

<op >= Z U1 (€L0L0RER)O LY (ELOLORER). (133)

ELoLoRréR

The superblock transfer matrix needs to be slightly changed for the ANNNI model.
The left and the right block transfer matrices have two spins more. The Boltzmann
weight is defined on a plaquette of six spins. We have constructed the superblock transfer

matrix T from the two block transfer matrices and the two overlapped Boltzmann weight
(Fig. 15)

T(5L01020304€R‘520/10/203051533) = TL(5L0102|52010§)

x W (010203|01 0405 W (020304| 040404 Tr(0304ER|0h0itR)  (134)

5.1.4 Results

Properties of the ANNNI model on the triangular lattice were calculated recently [78]
using the cluster transfer matrix method [51]. The results were consistent with numerous
calculations of the ANNNI model on the square lattice. To compare performance of the
DMRG method for incommensurate (IC) structures with other methods we calculated
the phase diagram of the ANNNI model shown in Fig. 18. The resulting diagram is in
accord with previous calculations [78] (Fig. 19). We have thus confirmed general opinion
that there is no Lifshitz point on the ferro-para phase transition line.

The region of the IC structure comes out from the DMRG to be rather wide, however,
we have used a low-order approximation (N = 400). The IC—phase region becomes
narrower for higher-order approximations.

Not only the critical temperature and the free energy were calculated, also the crit-
ical exponents of Ising and ANNNI model. As expected, DMRG as an effective-field
approximation yields classical values for all the critical exponents of the Ising model.
Nevertheless, the critical exponent  of the domain wall density at C-IC phase transition
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ANNNI model on the triangular lattice
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Fig. 18. The schematic phase diagram of the ANNNI model obtained by the DMRG method for
relatively small superblock transfer-matrix size (N = 400). After the superblock transfer-matrix
size is increased, the IC region becomes narrower and the para-IC phase transition line is shifted

to lower temperatures.
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Fig. 19. The ANNNTI phase diagram obtained from the cluster transfer matrix method.

obtained from our DMRG approach has a non-classical value § = 0.502 &+ 0.003 close to
the Pokrovsky-Talapov value 1/2 [98], which is assumed to be exact (also see Sec. 2.3).
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Standard mean-field approximations give a logarithmic singularity at the critical line
[63]. We explain this by correct treatment of narrow-domain-wall meandering near the
phase transition line by our large clusters. The resulting mean domain walls are straight,
but due to the summation over all spin values of the clusters the wall meandering is
involved in the calculation. The DMRG method reproduces well the results of the domain
wall theory, though no domain walls are explicitly introduced within it.

ATNNI model on the triangular lattice

Disordered phase

15

Commensurate phase <I> Incommensurate phase

Temperature [ T ]
H

05 - Commensurate phase <

+ - o+ o+
+ o+ -+

+ - + +
+ o+ -+

+ - o+ o+

0 L | L | L | L L
0 1 2 3 4 5

External magnetic field [ H ]

Fig. 20. The entire phase diagram of the ATNNI model is constructed by the DMRG technique.
The incommensurate phase appears in narrow region (so narrow that it is depicted as a line
only in the scale used) located between the disordered phase and the commensurate phase (I7)
for 2.4 < H < 4.8. The ATNNI model is highly degenerated for H = 2.4.

The phase diagram of the ATNNT model (Fig. 20) consists of four regions (two differ-
ent commensurate phases, the incommensurate and the disordered phases). Character-
istic spin structures of both commensurate phases (I) and (II) of the triangular lattice
(Fig. 12(a)) are shown in the insets of the same phase diagram.

The phases (I) and (II) consist of two and three different sublattices with constant
magnetization, respectively. In the IC phase, the magnetization of each sublattice is
periodically modulated and the sublattices become equivalent to each other. That is
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Fig. 21. Magnetization measured per each third spin site using Eq. (133) inside the incom-
mensurate phase as a function of the spin position on the lattice for H = 2.5 and T' = 0.5256.
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Fig. 22. Magnetization vs. position measured on the lattice inside the IC phase on each third
site for H = 3.02 and T' = 0.73.

why we plot only the magnetization of one of the sublattices (in Figs. 21 and 22).

The phase diagram was obtained from our calculation of magnetization. The DMRG
method with spontaneous symmetry breaking yields directly the space modulation of
magnetization, which enables us to identify the phase unambiguously. In practical calcu-
lations, it is enough to observe the behavior of the largest eigenvalues of the superblock
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matrix. The period of their spatial modulation is the same as the period of the structure.

The incommensurate structure is floating, i.e. it is not fixed to the underlying lat-
tice. In our calculation with spontaneous symmetry breaking, one of the infinitely many
positions of the incommensurate wave is chosen at the beginning of the calculation and
it remains fixed during whole further calculation.

We have found the incommensurate structure practically along whole border between
the commensurate (IT) phase and the disordered phase. However, in two regions the
calculations were inconclusive:

(i) The high degeneracy of the ground state at H = 2.4 and 7" < 0.4 [80] has also
caused highly degenerate largest eigenvalues of the superblock transfer matrix, and our
method did not converge to any periodic structure for magnetic fields between 2.40 and
2.41 at low temperatures.

(%) Another region is located at the high-magnetic-field end H ~ 4.8 and T' < 0.1
of the phase diagram. Here, the incommensurate phase is extremely narrow as seen in
Fig. 23.
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Fig. 23. The width of the incommensurate phase measured in units of temperature vs. external
magnetic field H. With increasing field H the distance between the disordered and commensu-
rate phases (IT) decreases.

Therefore, the ATNNI model exhibits a very large period shown in Fig. 24. Moreover,
due to the proximity of the second-order phase transition line, the convergence is very
slow. We have started the calculations with the Infinite System Method (ISM) where
the superblock transfer matrix is constructed from left and right transfer matrices of
the previous iteration step. After a large number of iterations performed, we obtained
the final result for commensurate structures including the disordered phase. For the
incommensurate structure it is necessary to perform afterwards some sweeps of the FSM
in order to improve results that smooth the magnetization profile of the spin wave. The
IC structure appears already after the application of the ISM but the correct shape of
the magnetization is acquired after the FSM, only.

The shape of period of the IC structure changes with magnetic field H and tempera-
ture T'. The period of the IC structure increases with the increasing magnetic field and
decreasing temperature. At low temperatures (close to the (II)-IC phase transition line)
the structure consists of wide domains of the phase (II) separated by narrow domain
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Fig. 24. The IC phase (obtained for a high magnetic field H = 4.6) was found within temper-
atures 0.166158 < T' < 0.166162. The magnetization is measured on each site. All three spin
waves are plotted.

walls. At higher temperatures near to disorder—IC transition, the domain walls become
wider, the period shorter and the structure acquires a sinusoidal-like shape.

Both phase transitions are continuous. Inverse period of the structure and wave
amplitude tend to zero at the (II)-IC and the disorder-IC phase transition lines, re-
spectively. It should be noted that the notions of low and high temperatures must be
understood within an extremely narrow temperature interval where the IC phase exists.

The effect of magnetic field on the IC phase is similar to the temperature effects but of
opposite direction. Low magnetic field (near 2.4) enhances the high temperature effects,
while the high magnetic field (near 4.8) the low temperature ones.

For the magnetic field H close to the value of 4.8, the period is very long, that is
why we were able to perform the ISM only using an incorrect magnetization shape which
would need further improvements within the FSM (Fig. 24).

Our calculations converged to the stable periodic solution at the most of the part
of the commensurate (IT)-disordered phase borders. Here the IC phase has been found
everywhere. This fact leads us to a conjecture (in contrary to [80]) that the Lifshitz point
does not exists in the ATNNI model.

We used the DMRG method to investigate incommensurate structures in 2D classical
model for the first time. We found that it reproduces well the previous results for the
ANNNI model. In the case of the ATNNI model it has shown much better performance
in the regions where the previous approaches (the cluster transfer matrix method [51, 99]
near H = 2.4 and the free-fermion approximation [80] for H > 3) failed.

On the basis of scaling properties of Monte Carlo calculations and the exact diag-
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onalization of finite strips, the authors [80] concluded that at H 2 3 the IC structure
disappears and at higher fields H the direct phase transition between commensurate (I7)
and disordered phases is continuous.

We have observed the IC phase to exists everywhere between the disordered and
commensurate (IT) phases, i.e. we have not found any Lifshitz point, i. e., the point where
the three phases, namely the commensurate, the incommensurate and the disordered one
meet. Nevertheless, measured widths of the IC phase are extremely small at large H and
they exponentially tend to zero at H = 4.8. As the width of the IC phase gets narrower
for the high-order approximations we cannot completely exclude the scenario of Domany
and Schaub [80].

Our belief in correct description of incommensurate phases by the DMRG technique
is supported by the reproduction of the ANNNI phase diagram with generally expected
features.

5.2 Periodic boundary conditions in 2D models using DMRG

It was shown that the DRMG method yields very accurate estimations of ground state
energy of finite quantum chains and free energy of classical strips of finite width with open
boundary conditions. We have developed the DMRG method with periodic boundary
conditions for strips of classical spins and shown that, similarly as for quantum chains,
it yields these quantities with much lower degree of accuracy. Nevertheless, the DMRG
method is mostly used for prediction of physical quantities and critical properties of
infinite systems in connection with finite size scaling or extrapolation of the results from
finite-size systems to infinite ones. The objective is to study the DMRG and exact
methods with two different boundary conditions for finite strips of various widths and
compare their results with known exact results for infinite 2D system. It is shown that
while for the exact diagonalization of finite-strip transfer matrices scaling properties of
the system improve, for DMRG approach there exists an optimum width for each degree
of approximation. The developed approach is tested on 2D Ising model.

5.2.1 DMRG with open boundary conditions

The transfer matrix approach is a powerful method for exact numerical calculation of
thermodynamic properties of lattice spin models defined on finite-width strips. If the
width of the strip is too large and the capacity of the computer is exceeded, the DMRG
method is found to be useful for an effective reduction of the transfer matrix size. It
can be used for calculation of global quantities such as free energy as well as of a spatial
dependence across the strip of local quantities, e.g. spin correlation functions.

The properties of an infinite strip of finite width L are given by the solution of ‘left’
eigenvectors and corresponding eigenvalues of the transfer matrix equation

> V(o T ({o}l{o'}) = A¥ ({o'}). (135)
{o}

where {0} is a set of L spins {o1,09,...,0} defined on a row and {0’} is a set of L
spins on the adjacent row. The transfer matrix is a product of the Boltzmann weights
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given by the lattice Hamiltonian. For non-symmetric transfer matrices besides the left
eigenvectors Wi, the right eigenvectors W should be also calculated.

Reducing the size of the transfer matrix the standard DMRG technique proceeds in
two regimes:

Regime 1. In the process of iterations, the infinite system method (ISM) pushes both
ends of the transfer matrix further so that each step of the ISM enlarges the lattice size
by two. The transfer matrix (superblock) is constructed from three blocks: left 7; and
right T} transfer matrices (blocks) and the Boltzmann weight Wg

Tojia = 1 WeTW), (136)

where the subscript on the left hand side denotes the number of sites in one row of the
whole superblock T at the jth step of iteration. The Boltzmann weight is usually a
function of several spins interacting together, e. g. the Boltzmann weight for the Ising
model with nearest-neighbor interactions has the form

Wg(o102|010%) = exp { (0102 + 00 + 0107 + agaé)} . (137)

kT
In the first step of the ISM (for details, see [12, 32]) Tl(l) = TY = Wg. The whole
procedure is of L/2 — 1 steps

TOWETD = TOWET@ — .. - TE 2Dy rL/2-1), (138)

and stops when the desired strip width of L sites is reached.

Several first steps of the iteration scheme in Eq. (138) are exact, but if the superblock
matrix T becomes too large, a reduction procedure to keep the size of superblock constant
should be introduced.

The first step of Eq. (138) introduces open boundary conditions at the strip bound-
aries. If the temperature of the system is lower than the critical one and the strip width
is wide enough, the symmetry of the system is spontaneously broken (order parameter
becomes non-zero), and after reaching the fixed point of the iteration procedure, the
system does not depend on the boundary conditions any more. The calculations with
periodic boundary conditions described in the next Section give the same result in this
regime as with the free ones.

Regime 2. The finite system method (FSM) improves numerical accuracy of ISM
result by left and right moves (sweeps) according to the following prescription:

Tl(L/Qfl)WBTﬁLﬂfl) . TZ(L/Z)WBTT(L/H) SN TZ<L*3>WBTT<1>, (139)
TEDWer® — T DWwer® o pE 2 Vyypr/2-1), (140)

In the right sweep of Eq. (140) the left blocks T} are calculated in the previous step
of the sweep and the right blocks T, are taken from the previous left sweep (in the first
right sweep from ISM); similarly for the left sweep.

The values of local thermodynamic quantities given by particular superblocks in the
final sweep (after the steady state is reached) are spatially dependent. The values given
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by the superblock in the middle of the strip TI(L/%UWBTﬁL/Q*l) are the closest to the
bulk ones. In this sense, the best transfer matrix eigenvalues as well as eigenvectors are
those of the above-mentioned central superblock. The two largest eigenvalues are used
for further finite-size scaling or extrapolation treatment.

5.2.2 DMRG with periodic boundary conditions

The translational invariance of the infinite lattice is preserved in finite strips with periodic
boundary conditions when strip boundaries are connected with bulk intersite interactions.
In this case the strip forms an infinitely long cylinder. If the radius of the cylinder is small
enough, the model can be easily solved by exact numerical diagonalization methods.

In DMRG language, imposing periodic boundary conditions means that we have
to introduce properly the connection of both ends of the superblock transfer matrix
T. Thus, in distinction to the open-boundary case the superblock is constructed from
two Boltzmann weights connecting two blocks at both ends (see Fig. 25, the rightmost
diagram).

Tigja) (016105440436, 02|01 60" 40 5600%) = TV (016105 44|01€[0% 1 4)

X Wp (014054300} 401 3) T (05438 02|07 5€L.05) W (0201 |0h01), (141)
where the block spin variable £ = {1, 2,...,m}, and the primed variables are denoted by
filled circles and ovals, respectively, in Fig. 25.

In the first few steps the lattice is enlarged to the desired size; no degrees-of-freedom
reduction is performed and the superblock transfer matrix remains equivalent to the
exact one. As depicted in Fig. 25, the ISM starts with 7(6) = Tl(l)WBTr(l)WB defined

on twelve sites where Tl(l) = T}l) = WpWpg. One Boltzmann weight, i.e. four new sites
are added in each of further steps.

Fig. 25. The first j steps of the ISM for the strip with the periodic boundary conditions.

If 29 > m, the number of degrees of freedom should be reduced at each jth step to
keep the order of the superblock matrix constant and equal to 2* - m2.
Summation over the eigenequation of Eq. (135) of the transfer matrix in Eq. (141)

can be performed in two steps

O(01810544054307 5600501) = Y To(0j43802|0), 56,05 Wr (0201|0504 (142)
57‘0'2

U(01£0j140j436:02)

X
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Fig. 26. Graphical representation of Eqs. (142) and (143). The variables represented by filled
circles and rectangles are summed over. The spins o1 and o} at both ends of the superblock
must be identified due to the periodic boundary conditions.

V(0161051400 56005) = > Ti(01640544]0180%4) (143)
"j+ﬂ41§j'+3

Wi(0j4405+3]01407,3)2(01£074+40513075 1 38.0507).

X

The steps are also depicted graphically in Fig. 26.

This procedure uses the left and right transfer matrix blocks to calculate properly the
left and right eigenvectors ¥; and V¥, of the whole superblock for the periodic boundary
conditions, respectively. Once we have the ¥; and W,., the left and right density matrices
can be constructed

p(&ojral€ioji) = Y Wi(01605140513609) 0, (01807, 40513600)  (144)

010;4+38r02

pr(0j 438010751 36) = Z V(0161054401 38r02) V(01601407 3€1.02), (145)

0181054402

and by the complete diagonalization

Oi( lnew|510j+4)Pl (510j+4|51/09+4)Ql(51/03'+4|§l/ new) = w;dij (146)

we obtain the sets of left and right eigenvectors stored in O; and Q; matrices, respectively.
Analogously, for the p,., we obtain matrices O, and @Q,.. The indices i, j (i,7=1,2,...,2m)
run over all states of m-state multi-spin variable ¢ and two-state variable o. For the last
steps of ISM and all FSM steps, half of the eigenvectors (corresponding to their lowest
eigenvalues) is discarded from the matrices O and @), and the information on the system
carried by the density matrix is reduced. However, remaining eigenvectors (if m is large
enough) usually describe the system with a sufficient accuracy. The truncation error &
defined as

e= Y w (147)

{discarded}
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is then very small (0 < e < 1). In Eq. (147), >0,y w = 1, as the eigenvectors are
assumed to be normalized. The matrices O and @ enter the linear transformation as
projectors mapping two blocks 7;W g onto one block 7; through the following procedure

-
TZ(J )(Ulflnewaﬁa\aifll "olis) = > Ou(§"|&0j1a)
5;";+4
§195+4
< T (0161054410610} OWE (04401510} 440} 5)QUE T 4 4l€] ™). (148)

Application to the right block T;. is straightforward. As it is seen, we calculate the blocks
T; and T,. separately not using the standard mirror-reflection of 7; to 7T,.. This procedure
is necessary when dealing with anisotropic and/or inhomogeneous systems.

The calculated new blocks TI(J 1 and TT(] 1 are used in the next step of the ISM for
construction of the new superblock

Tjye) = TV WETI D Wa, (149)
Within the FSM, e.g., for a sweep to the right only the left blocks are calculated for

a sweep to the right and TT(L/ 2-k) 45 taken from the previous left sweep
Ty = Tl(L/273+k)WBT7§L/2717k)WB‘ (150)

The variable k (indexing the steps within a sweep) runs over the values (—ko, —ko +
1,..., ko — 1, kg), where 2k0 < 25/2=2 _ . In the process of sweeping, one of the Boltz-
mann weights is fixed (the upper one in Fig. 25) and the second one changes its position
within the interval of 2kq lattice sites. The local physical quantities are calculated at
the lattice sites of the fixed Boltzmann weight. Due to the rotational invariance of the
problem they are valid for all the rows of the periodic lattice.

5.2.3 Results for 2D Ising and ¢-state Potts models

It is well known that the DMRG algorithm describes better a strip with open boundary
conditions than that with the periodic boundary conditions [12]. It is because the pre-
cision of the largest eigenvalue of the superblock matrix is proportional to m for open
boundary conditions while for periodic boundary conditions it is proportional only as
Vm.

In case of relatively narrow strips, the DMRG calculations are consistent with the
exact calculations: they yield zero-order parameter and reproduce well the two largest
eigenvalues of the transfer matrix of the system. Comparison of the exact and approxi-
mate values for Ising and ATNNI models on a semi-infinite strip of width L = 16 with
open boundary conditions for various approximations are given in Tables I and II, re-
spectively.  Analogously, results of calculations for the Ising and ATNNI models with
the periodic boundary conditions are given in Tables III and IV, respectively.

We see that the first two eigenvalues of the superblock transfer matrices in the DMRG
method are very close to the exact values despite small sizes of superblock matrices
(N x N) that are much less than the size of the exact T-matrix (65536 x 65536) defined
on 16 sites. The dimension of the transfer matrix N depends on the size of the block-spin
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variable [32]. The calculations for ATNNI model were performed at a moderate magnetic
field H = 2. At higher magnetic fields we frequently encountered problems with complex
conjugated pairs of two largest transfer matrix eigenvalues in the DMRG calculations.
However, if we are not interested in the largest eigenvalue of a finite-strip transfer
matrix but in the estimation of the free energy of the whole 2D lattice (per spin), it
is more effective to use a strip with periodic boundary conditions than that with open
boundaries, as demonstrated in Table V. The results with m = 25 practically exactly
reproduce the exact values for L = 16. The estimation of the free energy for 2D models
performed by DMRG can be improved by increasing the width of the strip. For given m
the best results are obtained by ISM for L — oo, but in this case, for T'= 2.1 (i.e. below
the critical temperature), the symmetry of the system is spontaneously broken. The free
energy for both PBC and OBC is the same in the L — oo limit, but the value given in
Table V was actually calculated for PBC, as it converged to fR2MRS already for L = 50

exact)

while OBC needed L > 10*. Exact free energy per site fénsager was taken from [60].

The critical temperature and the properties of the infinite 2D system near the critical
temperature should be derived from finite-size scaling ideas (as the finite-width strip is
at criticality for 7' = 0 ouly).

For calculation of the critical temperature, the phenomenological renormalization ap-
proach of Nightingale [95] has been used. Here the scaling properties of the correlation
length, found as a logarithm of the ratio of two largest eigenvalues of the exact or su-
perblock matrix are exploited. The product of the inverse correlation length K and the
strip width L should not depend on L at critical temperature T5(L)

LKy,
(L+2)Kp49
The accuracy of the approximate critical temperature improves with size of the strip

in the case of exact diagonalization. For DMRG calculations this statement is no longer
valid, as for very large L the symmetry of the system spontaneously breaks, and the

=1. (151)

Table I. The largest eigenvalue A1 and the second largest eigenvalue A2 of the transfer matrices
calculated with the DMRG technique for the Ising model with open boundary conditions. The
dimension of the transfer matrix N depends on the size of the block-spin variable [32]. The
last line of the table contains the eigenvalues of the transfer matrix obtained by the exact
diagonalization method. DMRG is much faster than the exact diagonalization method.

Ising model with open boundary conditions
Ordered phase Disordered phase
m N T=21 T=24
A1 A2 A1 A2

5 400 | 4.11311663x10°% | 3.9310449x10°% | 1.2954416770x10° | 1.0620492x 10°

10 | 1600 | 4.13211349x10°% | 3.9895804x10°% | 1.2965251439%x10° | 1.0906563x10°

15 | 3600 | 4.13211552x10° | 3.9896518x10° | 1.2965253478x10° | 1.0910038x10°

20 | 6400 | 4.13214516x10°% | 3.9898654x10° | 1.2965262430x10° | 1.0913165x10°

25 | 10000 | 4.13214516x10° | 3.9898655x10° | 1.2965262430x10° | 1.0913166x10°
| — [ 65536 | 4.13214526x10° | 3.9898681x10° [ 1.2965262432x10° | 1.0913187x10°
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Table II. The two largest eigenvalues A\; and A2 of the transfer matrix for the ATNNI model
are calculated with the DMRG technique for open boundary conditions. Data obtained by the
exact diagonalization method are shown in the last line.

ATNNI model with open boundary conditions

Commensurate phase Disordered phase

m N T=09, H=20 T =12 H=20

pY) Az by 2
5 400 | 8.50337x10™ | 2.0014x10™ | 2.97329%x10° | 2.0156x10°
10 | 1600 | 9.47434x10"" | 7.6805x10"" | 3.02362x10° | 1.5450%10°
15 | 3600 | 9.45896x10' | 7.6335x10%! | 3.02193x10° | 1.5078x10°
20 | 6400 | 9.44951x10'" | 7.5767x 10" | 3.02096x10° | 1.4635x10°
25 | 10000 | 9.44951x10' | 7.5761x 10 | 3.02096x10° | 1.4606x10°

| — ] 65536 | 9.44948x10™" [ 7.5749x10'" | 3.02094x10” | 1.4531x10” ]

phenomenological renormalization is not applicable any more. Thus an optimum value
of the strip width L°P! exists for given order of approximation m. This can be estimated
from the following considerations: For exact diagonalization or DMRG calculations with
m close to 2£/272 the difference of the approximate critical temperature from the exact
critical temperature TéexaCt) = 2In (1 + v/2) [1] scales with the width of the strip
as [101]:

Té (L) . Téexact)

~ —1/v
T((jexa‘ct) L ’ (152)
i.e. the ratio
_ e _ v (153)
=5
%TC(L) v+1

The optimum width L°Pt should be less than L¢, the value for which the ratio of the
derivatives R(L¢) (153) substantially deviates from the originally linear behavior. In our
calculations we have considered the DMRG results to be incorrect for R = 0 or co. In

Table TI1. The same as shown in Table 1 but for the case of periodic boundary conditions.

Ising model with periodic boundary conditions
Ordered phase Disordered phase
m N T=21 T=24
pY] A2 pY] Az

5 400 | 7.00331679x10° | 6.9180364x10° | 1.76379494x10° | 1.5477034x10°

10 | 1600 | 7.03990343x10°% | 6.9742292x10°% | 1.76702461x10° | 1.5769844x10°

15 | 3600 | 7.03991836x10°% | 6.9742595%x10% | 1.76704324x10° | 1.5771406x 106

20 | 6400 | 7.04001144x10°% | 6.9743133x10° | 1.76710592x10°% | 1.5771736x10°

25 | 10000 | 7.04001146x10° | 6.9743135x10° | 1.76710593x10¢ | 1.5771740x10°
| — [ 65536 | 7.04001165x10° | 6.9743146x10° | 1.76710598x10° | 1.5771799x10°
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Table IV. The same description as shown in Table 2 for the ATNNI model but we imposed
periodic boundary conditions.

ATNNI model with periodic boundary conditions
Commensurate phase Disordered phase
m N T=0.9 H=20 T=12 H=20
A1 A2 A1 A2
5 400 | 3.8724x10™ | 2.4898x10™ | 5.8940x10° | 1.0267x10°
10 | 1600 | 4.0818x10' | 3.7378x10'? | 6.9274x10° | 4.5860%10°
15 | 3600 | 4.0503x10'% | 3.7013x10'? | 6.9235x10° | 4.5697x10°
20 | 6400 | 4.0560x10*2 | 3.7033x10'? | 6.9330x10° | 4.5120x10°
25 | 10000 | 4.0556x10' | 3.6996x10"% | 6.9328x10° | 4.4892x10°
| — ] 65536 | 4.0530x10™ | 3.6884x10™ [ 6.9312x10° | 4.4368x10° |

Table V. Free energy per site fism for the Ising model calculated with the standard DMRG
method only with the ISM is compared with the free energy per site calculated by the modified
DMRG algorithm as well as by the exact diagonalization method (EDM). N is the order of
either the superblock of DMRG or the exact transfer matrix in EDM.

Free energy per site T=2.1 T=24 N m | L
DMRG 1.999502815 | 2.111279868776 | 10000 | 25 | 16
open 1.999502828 | 2.111279868799 | 65536 | — | 16

fone 2.069434546 | 2.157728055 10000 | 25 | 16
S iedic 2.069434550 | 2.157728059 65536 16
DMRG 2.0688412 2.15660 10000 | 25 | oo

fomaen), 2.0688415 | 2.15661

the case of R = 0, the precise value of L°P* is not much important as the first derivative
or change of T5(L) is very small. Near R = oo, a sharp drop of the second derivative of
T¢ (L) to zero is required; indeed, the change of the distance from the line -5 L by more
than one order of magnitude takes place within one step of strip-width enlargement.

In Fig. 27 plots of strip-width-dependent critical temperatures T¢(L) for two different
boundary conditions and various block sizes m are given. The estimates of the exact
critical temperature for periodic and open boundary conditions were found as the values
of TE(L — 2) if the first or second derivative of TG(L) changed their signs with respect
to the value in the previous step. The curves for PBC cross the exact value of T, éexaCt).

The maximum of the OBC curve is far from Téexaﬁ)

very slowly with increasing L.

The accuracy of the results for periodic boundary conditions (Fig. 28) is very high
already at small values of m and it exceeds by an order the critical temperature estimation
for maximum computer-accessible m when using open boundary conditions. The critical
temperature for not extremely large m = 80 is given to seven digits. As the width of

and T{ approaches the exact value
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Fig. 27. Critical temperatures T¢: for the Ising model as functions of lattice size L for various
sizes of multi-spin variables m from DMRG and finite-size scaling. The results for open boundary
conditions (OBC) are plotted as triangles while the results for the periodic boundary conditions
(PBC) are plotted as circles. The exact critical temperature is drawn by the dot-dashed line.
The OBC plot for m = 30 is indistinguishable from the curve for m = 64 in this figure.

the strip can be increased only in discrete steps, the accuracy of the critical temperature
determination should be taken as large as a single step change of T¢,(L). The accuracy
estimates together with deviations of our results from the exact critical temperature are
given in Table VL

It should be noted that only ISM was performed in the calculations of T (L) shown
in Figs. 27 and 28. The calculations within the FSM has also been done near the L°Pt,
but only slight improvements of critical temperature were obtained. In calculation of the
thermal and the magnetic critical exponents [95], a similar accuracy has been reached
as that for T5. The obtained thermal critical exponent yT = 1.00000088 and magnetic
exponent yg = 1.8750019 are in good agreement with the exact values yr = 1.0 and

Table VI. Changes of T¢(L) per one step of strip-width enlargement as well as the differences
between our results and the exact critical temperature Tc(exaCt) for various parameters m.

m 20 | 26 | 32 | 44 | 60 | 80
ALTE(L) x 107 560 | 434 | 166 | 46 | 33 | 15

(TC*(L"pt)fTéexa“))xw? 707 | 121 | 117 | 13| 7| 2
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Fig. 28. Critical temperatures T¢ of the Ising model vs. lattice size L for different m when
the periodic boundary conditions (PBC) are imposed. Filled circles represent the accepted data
whereas the open circles are taken as incorrect due to the violation of the condition (153).
The critical temperature estimations in the inset are given by the rightmost filled circles for
respective m.

yu = 1.875 [1], respectively. Both critical exponents were calculated for m = 80. The
accuracy of both critical exponents is highly sensitive to precise determination of 7,
and the precise value of critical temperature (reached for m = 80) was necessary to get
the presented values of the critical exponents.

In order to check the efficiency of our method we have made additional calculations
for the g-state Potts model for ¢ = 2,3, and 4. We have calculated thermal as well as
magnetic critical exponents, see Table VII.

Because of larger number of spin components in the ¢ > 2 Potts model and logarithmic
corrections to scaling at ¢ = 4, the values of critical exponents are less accurate than
those for the Ising model (¢ = 2).

The best reliable results obtained from the DMRG and FSS procedure are listed as yr
and yg in Table VII. Another possibility to estimate the critical exponents is to calculate
yt and yy for a set of strip widths L < L(°P%) and extrapolate them to L — oo. These
results, denoted as y=5T and yB5T, (see Table VII) were obtained by BST extrapolation

algorithm [102].

In case of the ¢ = 4 Potts model, the scaling laws involve logarithmic corrections [98
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Table VII. The thermal and magnetic critical exponents yr and ym, respectively for the g-state
Potts model obtained via DMRG method with the PBC for ¢ = 2,3, and 4. The symbol }
denotes conjectured critical exponents. The values y,(FBST) and yI({BST) were obtained by BST
extrapolation algorithm for yr(L) and yu (L), L < L°P*, ¢ is the truncation error. (Values of
multi-spin variables m for the ¢ = 3 and 4 Potts models were taken as the maximum values
permitted by our computational technique. It is, however, possible to take m > 200 for the

q = 4 Potts model in order to obtain more accurate results.)

(exact) (BST) (exact) (BST)
m € yr Y7 Yo Yu Yu Yu
2| 60 | 10712 | 1.000002 | 1.0 1.8757 | 1.875 1.875003
3| 121 | 10719 | 1.1948 1.2f 1.2004 | 1.8684 | 1.86666% | 1.86667
4| 63| 1077 | 1.4337 1.5 1.5008 | 1.8797 | 1.875" 1.8746
100]:
3 3 1 s 5 1 1 9
= - — - Ol(log L , =—— ——— +0J(log L . 154
V=5~ Tiogr T Ol D) wn = = e +Ollos D) (154)

To take them into account, we extrapolated yr + 2 (log L) ! and yg+ = (log L) ! instead
of usually employed yr and yg. In Table VII the calculated results are compared with
the exact and conjectured ones [106].

The DMRG method for classical spin lattice strips with periodic boundaries was
developed and applied to 2D Ising and Potts models. It was shown that this approach
leads to more accurate results for 2D infinite lattice than DMRG with open boundary
conditions. It was demonstrated that applying finite size scaling to strips treated by
DMRG, an optimal width of the strip depending on the order of approximation existed,
and a prescription how to find T¢(L°P*) was given. For the Ising model it was shown
by computations that the value of the critical temperature was for a given m closest

to the exact one for these L°P*(m). As our approach does not involve any information

about the exact critical temperature TéexaCt) and the universality class of the model, we

believe that it is applicable to many different classes of spin lattice models. This belief
is supported by analogous calculation for the Anisotropic Triangular Nearest-Neighbor
Ising model (ATNNI), see Section 5.3, with two different antiferromagnetic interactions
Jy and Jz (the model was discussed in Section 5.1). The transfer matrix is non-symmetric
for this model and the phase diagram is quite different from that of the standard Ising
model. For the periodic boundary conditions, the plot of critical temperatures is not
monotonously decreasing as it was in the case of the Ising model (Fig. 28) but it turns
up for large L. Nevertheless, the accuracy of the critical temperature for the exactly
solvable case (for external magnetic field H = 0) reaches high precision, too.

5.3 C-D phase transition in ATNNI model

Analysis of semi-finite systems of small size in one or more directions has been used as
a powerful tool in extracting of critical properties of two-dimensional classical models
and corresponding one-dimensional quantum models. Although finite or 1D systems
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themselves do not display any critical behavior, it is, however, possible to extract critical
parameter values as well as critical exponents. Temperature, ordering magnetic field,
and finite-size deviations from criticality are all described by the same set of the critical
exponents [95]. These calculations are focused on infinite strips of finite width where the
relevant numerical data are obtained from the transfer matrix methods, in particular,
the Density Matrix Renormalization Group (DMRG) method.

In Section 5.2, we have proposed a modification of the DMRG method for the 2D
classical models, imposing periodic boundary conditions (PBC) on strip boundaries, and
found a relation that helped to determine an optimal strip width L°P! in order to obtain
correct values of critical temperature and exponents, Eq. (153), using the finite-size
scaling (FSS). We have obtained results of very high accuracy exceeding that of the
DMRG method with standard open boundary conditions. Our method does not require
any extrapolation analysis of the data.

The use of DMRG for 2D classical models may follow one of two different approaches:

(i) DMRG method is applied to strips of finite width and from the two largest transfer-
matrix eigenvalues or the free energy estimated with high precision, the critical properties
of the system are calculated by the FSS analysis (this is the approach we use here).

(%) The strip width is enlarged until a steady state is reached (in the thermodynamic
limit) when the output from the DMRG does not depend on the lattice size. Then, the
DMRG yields properties of the 2D infinite system with spontaneously broken symmetry
and mean-field-like behavior close to the criticality. This approach was used recently to
study the high-field part of the ATNNI-model phase diagram (in Section 5.1, Fig. 20),
where approach (i) ran into convergence problems. We were able to show that the phase
transition between the commensurate phase and the disordered phase proceeds via a
narrow strip of an incommensurate phase. This approach gives also accurately the low-
field part of the phase diagram, but it is not convenient for determination of the critical
properties of the system by FSS. In distinction to the finite-width approach (i), the
system described here within this approach explicitly undergoes the phase transition,
but its critical behavior is a mean-field-like and the speed of calculation suffers from
critical slowing-down at the phase transition line. Therefore, we use here approach (i)
to find the low-field critical behavior of the ATNNI model.

The FSS approach should give the correct critical properties of the system in the limit
of infinite strip width. Nevertheless, it was shown (in Section 5.2) that in approximate
DMRG treatment for a given size of the transfer matrix (limited by computer capacity),
an enlargement of the strip width to large sizes is not useful because the DMRG results
do not satisfy the scaling laws assumed by the F'SS. Thus, an optimal width, up to which
the results systematically improve, must exist. It was also shown that the estimation of
critical properties of the Ising and Potts models by DMRG with the periodic boundary
conditions are much better than those with the open ones, despite the latter yields better
results for the finite-width strips, see Section 5.2.3.
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5.3.1 Posing a problem
Below the optimal strip width L°P* the ratio
o *
ar Le(L)

R
=T (L)

(155)

is almost linear function of L while above it, it is not. (L in Eq. (155) is the width of the
strip and T¢(L) is the critical temperature for given L.)

The deviation of R from linearity above the optimal strip width is very fast and the
ratio R becomes zero or infinity within enlargement of the strip by one lattice constant.
Thus, if R = 0 or R — oo (i.e. if the numerator or the denominator tends to zero or
changes its sign), we accept that L as the strip width for further calculations and call
it the optimal width L°P* of the strip. The critical temperature for the optimal width
TE(LCPY) is taken as the best approximation of the critical temperature of the 2D system
studied, and at this temperature the critical exponents of the system are calculated. The
values of the critical exponents are sensitive to 1¢; and must be determined with a due
care.

In the FSS approach, the critical exponents are derived from the scaling behavior of
the correlation length and free energy at critical point, where they depend on strip width
L in the following way [95]:

ko~ L2 KT ol (156)
where Ii}: and Ii}i are the derivatives of inverse correlation length x with respect to tem-
perature T and second derivative with respect to ordering (magnetic) field h, respectively,
and cr, is the specific heat, i.e. the second derivative of the free energy with respect to
temperature. The two temperature exponents y&?‘) and y(TV) should be equal to each
other. The exponents y1 and y, determine the critical behavior of all statistical quanti-
ties characterizing the system. The critical exponents of specific heat, magnetization and
correlation length can be calculated from yr and gy, as follows: a =2 — le, 0= 2—;%,
vV =9yr !, Other critical exponents can be obtained from the scaling equations [107] or
from Egs. (117)-(122).

Further, we demonstrate the capabilities of our approach to find the critical properties
of 2D spin lattice model on Ising model with different symmetries of the lattice, where
critical temperatures and critical indices are known from exact solutions, and ATNNI
model where the phase diagram is generally unknown and the critical indices are predicted
from symmetry considerations.

The ATNNI model was studied by Domany and Schaub [80] and in [100], and it was
shown that its phase diagram, as a plot of temperature 7" and external magnetic field H
(for a = 0.4), exhibits four different phases: two commensurate phases (I) and (II), a
disordered phase, and an incommensurate phase, see Fig. 20. Commensurate phase (I)
occurs at magnetic field H < 2.4. This structure satisfies the Lifshitz condition, and it is
characterized by a one-dimensional representation of the lattice symmetry group, i.e. its
phase transition is predicted to belong to the Ising universality class [108, 109]. Domany
and Schaub tried to confirm this prediction by numerical calculation of the exponent yr,
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but due to the low-order approximation it differed from the expected value by more than
10% and the magnetic exponent was not calculated at all.

We have calculated critical properties of the ATNNI model at the phase transition line
between the commensurate (I) and disordered (C-D) phase. To illustrate the accuracy
of the method, we have calculated critical properties of the exactly solvable models:
the ferromagnetic and the antiferromagnetic Ising models on both square and triangular
lattices at zero magnetic field. The zero-magnetic-field ATNNI model is also exactly
solvable and the critical temperature is given by the equation [1]

2J 4aJ
sinh? <T_O) = exp (—;—C> . (157)

We have used the FSS analysis of DMRG results with superblock consisting of 8 Ising
spins and 4 multi-spin variable, each acquiring m = 85, see Section 5.2. The computa-
tional effort at this approximation is less than for the classical transfer matrix method
of strip width equal to 17 lattice constants. However, the DMRG enables to treat wider
strip (of tens of lattice constants) up to the optimal width further improving the values
of the critical parameters.

5.3.2 Calculation of the critical points and exponents

The first, important step of the calculations is determination of the critical temperature
T¢,, see Table VIIL The best estimate for given m is T¢(L°P?) and it is calculated from
F'SS approach, see Section 5.2.3. At this temperature the values of critical exponents are
derived from the scaling laws (see Eq. (156)).

Table VIII. Critical temperatures T obtained from Eq. (155) with DMRG compared to the

exact ones Téexad). The symbols O and A describe square and triangular lattices, respectively.
model H T Téexa“)
O Ising 0.0 | 2.2691851 | 2.2691853
O AF Ising | 0.0 | 2.2691848 | 2.2691853
A Ising 0.0 | 3.640955 3.640957

A ATNNI | 0.0 | 1.55352 1.55362

A ATNNI 0.5 | 1.52867 unknown
/A ATNNI 1.0 | 1.45135 unknown
/A ATNNI 1.5 | 1.31105 unknown
/A ATNNI 2.0 | 1.07009 unknown

As the quantities appearing in Eq. (156) are the first and the second derivatives of
the free energy and of correlation length, the effect of approximation starts to manifest
at lower strip width than L°Pt. The criterion determining strip width at which the value
of the critical exponent may be still acceptable, was taken completely analogous to that
for critical temperature, Eq. (155). The accepted values of the critical exponents are
denoted by filled symbols in Figs. 29 and 29. »

«

The critical exponent yr is determined more precisely from the free energy y * than

from the correlation length ygj) , as for the evaluation of the former one only the largest
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Fig. 29. The plot of thermal critical exponents yr(ra) for different magnetic fields H in the ATNNI
model. The filled symbols denote the accepted critical exponents satisfying Eq. (155). The inset

shows the detail of the critical exponent yéa) at H=1.0.

eigenvalue of the superblock matrix is needed in distinction to the correlation length, to
calculation of which the ratio of the largest and the second largest eigenvalues is necessary.
This point is irrelevant for the models with a symmetric transfer matrix (Ising models in
Table VIII), but significant for the ATNNI model with a non-symmetric transfer matrix
[84-88]. The plot of thermal critical exponent yr(fa) vs. strip width is shown in Fig. 29.
For increasing lattice size they both tend to the Ising value 1. The convergence also
depends on the magnetic field. Tt gets worse for magnetic field close to the multi-critical
point H = 2.4. Here the reliability of the DMRG breaks down also at rather small strip
width. The accepted values depicted by black symbols are listed in Table IX.

The critical exponent yl({g ) describes the decay of the order parameter at the phase

transition line from the commensurate phase (I} to the disordered phase. The structure
(I) consists of two ferromagnetically ordered sublattices each with different magnetiza-
tion. As the external magnetic field H is generally non-zero in ATNNI model, the total
magnetization (sum of both sublattice magnetizations) is non-zero, as well. The differ-
ence between the two magnetization is taken as the order parameter in this case. The
small ordering field h used for calculation of the derivative K 2 acquires opposite sign at
each of the two sublattices. The accuracy of the calculations of the magnetic exponent
is smaller than that of the thermal exponent in case of exactly solvable models listed in
Table IX. Thus, we can expect a lower accuracy also for ATNNI model. All the expo-

nents depicted in Fig. 30 are below yl(f)zl.871. Extrapolations to L — oo for H=0.5
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Fig. 30. The plot of magnetic critical exponents y}(f} ). The filled symbols denote the accepted
critical exponents satisfying Eq. (155)

Table IX. Critical exponents of various 2D spin models calculated by the DMRG method with
PBC and FSS analysis. The exact critical exponents of the Ising models are yr = 1 and
yn = 1.875. Notation of the models is the same as in the preceding Table.

model H ') y') y? a gt v

O Ising 0.0 | 1.0000009 | 0.99999994 | 1.875002 | 0.0000017 | 8.00012 | 1.00000006
O AF Ising | 0.0 | 1.0000009 | 0.99999994 | 1.875126 | 0.0000017 | 8.00804 | 1.00000006
A Ising 0.0 | 1.0000014 | 0.99999943 | 1.875030 | 0.0000027 | 8.00192 | 1.00000057
A ATNNI 0.0 | 1.0000022 | 0.9947 1.87005 0.000004 7.70 1.00527

A ATNNI 0.5 | 1.0000280 | 0.9902 1.87098 0.000056 7.75 1.00993

A ATNNI 1.0 | 1.0000580 | 0.9902 1.87062 0.000116 7.73 1.00993

A ATNNI 1.5 | 1.0000767 | 0.9911 1.86939 0.000153 7.66 1.00893

/A ATNNI 2.0 | 0.9998366 | 1.0122 1.86902 0.000327 7.63 0.98795

to 1.5 give values of y}(f ) about 1.872, i.e. 1/4=7.81, which still differs from the Ising
value yl(f ) = 1.875 and corresponding 1/5=8. Note that the value of yl(lﬁ ) is extremely

sensitive to the correct determination of the critical temperature. A very small decrease

of its value would shift y(ﬂ ) to the expected Ising value. At modest magnetic field, where

h
our calculations are assumed to be more accurate, the plots of y}(lﬂ ) for different mag-

netic field lie on the same curve what suggests that not only y}(fa ) is a universal quantity

independent of H, but the corrections to it for finite L are universal.
In conclusion, it can be stated that the DMRG method with periodic boundary
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conditions reproduces with a high accuracy the critical properties of exactly solvable
models and confirms the prediction that the C-D phase transition for magnetic fields
H=0 to 2.4 belongs to the universality class of the Ising model.

5.4 3D g=3 and g=4 state Potts models

Throughout this Section we will follow considerations described in Sec. 3.3 for three-
dimensional classical models. The self-consistent tensor product variational approach
(TPVA) has been developed by Nishino et al. [36] as a numerical variational method for
three-dimensional classical lattice models. The variational state is constructed as a prod-
uct of local tensors and of the corner transfer matrix renormalization group (CTMRG)
method was used to improve the variational state. In particular, the CTMRG method
is applied twice within the TPVA. Once, when we look for the variational state of 2D
plane and twice when we apply CTMRG to a layer-to-layer transfer matrix. These two
procedures are tied up by the self-consistent equation (94).

Okunishi and Nishino used the Kramers-Wannier approximation for the three-dimen-
sional Ising model using CTMRG and they obtained the critical point K. = 0.2184 [77].
The next tests carried out by Nishino et al. [36] using TPVA yielded the critical point
K. = 0.2188 of the Ising model of the IRF type which is by about 1.3% less than the
Monte Carlo result KMC = 0.2216544 [73, 74].

Further improvements of TPVA continued by additional considerations in Ref. [37].
The authors assumed 3D Ising model of the vertex type and, moreover, the variational
2D state V was constructed from a product of tensors which carried additional degrees
of freedom to the model and thus improved the variational state by the self-consitent
algorithm. The obtained critical point K. = 0.2203 was only about 0.61% less than that
of Monte Carlo simulations.

5.4.1 Thermodynamic functions

The free energy F per site is closely related to the largest eigenvalue of the 3D layer-to-
layer transfer matrix 7. In the thermodynamic limit, it reads

2

F(T,H) = —kpT lim ln(Apax)

N —o0

<VN|TN|VN>> %7 (158)

(VN |Vn)

where the number of CTMRG iterations as well as the dimension of the system are both

described by the term IN. The free energy F' is normalized in each iteration in order to

observe its convergence at finite N. The converged state (fixed point) is equivalent to the

thermodynamic limit (IV — oo) because of the fixed precision of numerical calculations.
Let us define the free energy Fn of an N x N square system

Fx = —kpT [faN?+ AN+ fo + O(N Y], (159)

= —kgT lim ln<
N—oo

where we have taken into account the surface energy and higher corrections. By use
of new notations for the corner transfer matrices Cy and Dy that correspond to the
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numerator (Vy |7y |Vy) and denominator (Vy|Vy) of the Reyleigh ratio (Eq. (81)), re-
spectively [33, 77], we can derive an accelerated formula for the calculation of the free
energy F' per site. Inserting Eq. (159) into the numerator,

(Vx| Tw|Vw) = Tr {D}‘V/z} = exp {B>sN? + BiN + By + O(N 1)}, (160)
and the denominator,
(Vi |Vy) = Tr {0;4v/2} — oxp {AaN? + Ay N + Ay + O(N )}, (161)

of the Reyleigh ratio, let us use

(VN-1Tv -1y VN-1)(VN+1] Ty 1) Vv 1)
(VNITNIVN ) (VN TN | V)

= exp {8B2} = By (162)

and

(Vn-1lVN—1) (VN+1|VN+1)
(VN VN (VN |VN)

= exp {84z} = An, (163)

as they do not depend on the lattice size N up to the higher-term corrections O(N~1).
Hence, the accelerated formula for the numerical calculation of the free energy F(T, H)
per site is then given by

1 Bn
F(TI'H)=—=kgT lim In{—|. 164
(1. 10) =~ gho'? im0 () (164)

We have applied the TPVA algorithm for the more precise determination of the ¢=3
and g=4 state Potts models, and in particular, we kept the parameter m = 20 in TPVA
for both the models. The internal energy per site is defined as

. OlnZ o (F
int _ __m2 ¥ [
B = -5 = =T ( ) (165)

Z and F are the partition function and the free energy, respectively. In the TPVA
language the internal energy per site can be expressed as

int
E - _<60'i,j0'i/,j> - <60'i,j0'i’j/> - <5O'¢,j5'i1j>a (166)
which is in agreement with Eq. (165) and the notation corresponds to that shown in

Fig. 9.

5.4.2 Results

The self-consistent equation (94) must be slightly modified, otherwise the algorithm
becomes rather unstable. Therefore, the calculation of W proceeds in several steps and
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the small parameter ¢ is introduced in order to improve W in smaller smooth steps. 2!

B

(1) Wi =7Wou, (167)
(2) normalize W7, (168)
(3) Whew = Woia +eWn, (169)
(4) normalize Whey-. (170)

In our calculations we set € = 0.1 (any smaller value of £ may be used without significant
influence to these results).
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Fig. 31. The crossover of the free energy as the function of the inverse temperature K for the
three-dimensional ¢ = 3 state Potts model.

As CTMRG and consequently TPVA are sensitive to the choice of boundary con-
ditions, it is necessary to perform calculations both for the open boundary conditions
(OBC) and fixed boundary conditions (FBC), i. e., we calculate the free energy per site.
We determine the transition point K as the point where the curves of free energies (as
functions of inverse temperature K) for the OBC and FBC intersect each other because
the free energy curve must remain continuous. For the ¢g=3 state Potts model, the free
energy crossover is depicted in Fig. 31.

The plot of the internal energy E'™ is depicted in inset of Fig. 32 if the fixed and
free boundary conditions are imposed. The calculated transition point Ky = 0.549562 is
almost the same as that for m < 15 in Ref. [36] We have measured the latent heat [110]
which is proportional to the internal energy gap as

= (B - gint), (171)

21The original Wy,q is changed to Whew according to Egs. (167 to 170) and then the Whew is replaced
back to Wy 4.
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Fig. 32. The internal energy per unit cell as the function of the inverse temperature K for the
3D ¢=3 state Potts model. The internal energy per unit cell equals one third of the internal
energy per site defined in Eq. (166).
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Fig. 33. The crossover of the free energy as the function of the inverse temperature K for the
three-dimensional ¢ = 3 state Potts model. The transition point Ky = 0.6283.

Our calculation of the internal energy Ei,; jump yields [ = 0.2280 which is 41% larger
than the result from Monte Carlo simulations inc = 0.1616 [110).

The result of the numerical calculations of the transition point Ky for the ¢g=4 state
Potts model (for m = 20) is shown in Fig. 33.
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We have found that the fixed boundary conditions stabilize the ordered phase of
the model while the open boundary conditions stabilize the disordered phase. At the
close vicinity of the transition points, the free energies differed for the OBC and FBC.
The transition point K is defined as the free energy crossover in the sense of the Landau
theory. Therefore, it was necessary to extrapolate the free energy data for both OBC and
FBC. The correct latent heat [ has been obtained from internal energies £ extrapolated
to the calculated transition point Ky. The calculation of latent heat for the case ¢q=4
is in progress. The three-dimensional ¢=3 state Potts model exhibits a weak first-order
phase transition which can be seen in Fig. 31 as a smooth crossing of the free energy
curves. On the other hand the 3D ¢=4 state Potts model displays the regular first-order
phase transition and therefore we expect to obtain the latent heat | much more larger
than that for the case of ¢=3. Studying these models in detail, we found that the TPVA
algorithm was stable when the parameter £ <0.1 was introduced.

6 Summary and discussion

Numerical studies of classical lattice models play an important role, especially, in the
cases when the models are not exactly solvable. In this review article, it has been shown
that numerical renormalization group approaches, in particular, DMRG and its modi-
fications, were suitable candidates to treat various 2D and 3D classical lattice models.
The DMRG has become a powerful tool exceeding the classical Monte Carlo simulations
in speed and size of the systems that can treat [111]. DMRG also yields more accurate
results for one-dimensional quantum models than Monte Carlo. Moreover, DMRG is free
of sign problems appearing in quantum Monte Carlo simulations for fermionic systems
and can also be employed to study incommensurate modulated structures because Monte
Carlo suffers from large fluctuations which come from the frustration. DMRG calcula-
tions yield the critical points of any studied models faster than those of the Monte Carlo
simulation if compared with computational CPU times.

Within the infinite system method (ISM), the DMRG method displays the mean-
field-like behavior. The ISM has been applied to study the incommensurate floating spin
structures in the ATNNI and ANNNI models and we were able to detect the complete
phase diagrams where the other methods [80, 99] failed.

The finite system method (FSM) improves approximated ground state properties of
large transfer matrices with higher accuracy, however, the larger lattice size is taken the
lower accuracy can be reached. Such approximated transfer matrices can enter the finite-
size scaling (FSS) approach to obtain information on critical points as well as all critical
exponents. However, FSS yields better results for larger matrices. Therefore, there must
exist an optimum transfer matrix (strip) size L°P* at which the connection of the DMRG
and FSS gives the best results. We have shown how to obtain L°Pt. We have also been
the first ones who proposed the DMRG algorithm with periodic boundary conditions for
the two-dimensional classical models. Combining the theory of finding out the optimal
strip size L°P*, DMRG with the periodic boundary conditions, and FSS analysis together
we were able to solve several models with very high precision. In particular, we applied
the approach to the two-dimensional ferromagnetic and antiferromagnetic Ising model
on the square and triangular lattices as well as to the 2D g-state Potts model for g=2,
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3 and 4. We detected the critical temperatures 7. as well as all corresponding critical
exponents. We have applied this new technique to the more complicated ATNNI model
and investigated the commensurate-disordered (C-D) phase transition in detail. We
had to include additional considerations how to treat nonsymmetric transfer matrices as
well as how to extract magnetic critical exponent from two sublattices of the ATNNI
model exhibiting different spin magnetizations within the commensurate phase. Thus
we obtained full information on the C-D phase transition line. Since the ATNNI model
is not exactly solvable, we calculated several critical points (T¢, Hc) on the transition
line at which we determined all critical exponents. We concluded that the C-D phase
transition belonged to the Ising universality class and thus confirmed the prediction
published in [108, 109].

Three-dimensional classical models have been studied using recently developed TPVA
algorithm. [36, 37] We calculated the three-dimensional classical ¢-state Potts model for
q=3 and ¢=4 and observed properties of the free energy and the internal energy in the
close vicinity of the transition point K; in these models. The latent heats have been
obtained because they reflect the discontinuity in the internal energy at the transition
point K. The predictions that these models exhibit the first-order phase transitions was
confirmed.

There are many models not yet solved neither analytically nor numerically. The tech-
niques discussed in this review are now open for further applications to various kinds of
two- and three-dimensional models. Since TPVA was applied only to symmetric models
like 3D Ising and ¢-state Potts models are, nowadays the main interests are focused on
generalizaton of TPVA for nonsymmetric problems. For example, the three-dimensional
frustrated Ising defined on the other than cubic lattice has not been studied yet. It
requires to consider ferromagnetic nearest-neighbor interactions and antiferromagnetic
next-nearest-neighbor interactions. This model exhibits a complex phase diagram includ-
ing commensurate, long-range commensurate, incommensurate, and disordered phases.

Another problem which has not been solved yet concerns with infinite two-dimensional
quantum lattice models. For example, the two-dimensional quantum Heisenberg model
on the triangular lattice with non-hermitian Hamiltonian, still remains as the unsolved
problem. The solution could be hidden in TPVA using the Suzuki-Trotter mapping. To
propose a brand-new and efficient algorithm based on DMRG ideas for higher dimensions,
it is still the challenging problem.
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