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In a ��������������� quark chiral model of the Nambu–Jona-Lasinio (NJL) type with the ’t Hooft
interaction, the ground scalar isoscalar mesons and a scalar glueball are described. The glue-
ball (dilaton) is introduced into the effective meson Lagrangian written in a chirally symmetric
form on the base of scale invariance. The singlet-octet mixing of scalar isoscalar mesons and
their mixing with the glueball are taken into account. Mass spectra of the scalar mesons and
glueball and their strong decays are described.

PACS: 12.39.Ki, 12.39.Mk, 13.25.-k, 14.40.-n

1 Introduction

The self-interaction of gluons, a peculiarity of QCD, gave an idea that gluons can form bound
states that can propagate particlelike in the space. Unfortunately, because of theoretical problems,
there is still no exact answer on the question: ”Do these states really exist or not?”. However,
from recent lattice simulations [1–3] one can conclude that it is most probably that glueballs are
the reality of our world. Having assumed that glueballs exist, one can try to construct a model
to describe their interaction with other mesons, their properties, such as, e.g., the mass and the
decay width, and to identify them with observed resonances.

An exact microscopic description of bound gluon states cannot be done systematically in
the framework of QCD. In this situation, QCD-motivated phenomenological models are the tool
which can help to deal with glueballs as well as with quarkonia which form the most of observed
meson states. However, using these models to describe glueballs, we encounter many difficulties
concerning, e.g., the ambiguity of the ways of including glueballs into models and identification
of experimentally observed meson states. This justifies the variety of points of view on this
problem.�

E-mail address: fyzinami@nic.savba.sk�
E-mail address: volkov@thsun1.jinr.ru�
E-mail address: yudichev@thsun1.jinr.ru

0323-0465/00 c
�

Institute of Physics, SAS, Bratislava, Slovakia 643



644 M Nagy, M K Volkov, V L Yudichev

First of all, we do not know the exact mass of a glueball. From the quenched QCD lattice
simulations, Weingarten (see e.g. [1, 3]) concluded that the lightest scalar glueball is expected
around 1.7 GeV. Amsler [4] considered the state

���������
	�	��
as a candidate for the scalar glueball.

QCD sum rules [5] and K-matrix method [6] showed that both
��������
	�	��

and
������������	��

are mixed
states with large admixture of the glueball component.

All the bound isoscalar ���� states are subject to mixing with glueballs, and their spectrum has
many interpretations made by different authors. For instance, Palano [7] suggested a scenario, in
which the states � � ������	�� , ���� ��������	�� , � � ������	�� , and

� � ������	�	��
form a nonet. The state

� � ����
	�	��
is considered as the scalar glueball. Törnqvist et al. [8] looked upon the states

� � ������	��
and� � ��������	��

as manifestations of the ground and excited  �� states, and the state
� � �!��	�	#"$�%
	�	��

as the ground &'�& state. Eef van Beveren et al. [9] considered the states
� � �!��	�	(")��%
	�	��

and������������	��
as ground &'�& states, and the states

�
��������	��
and

���������	�	��
as ground  �� states. Two

states for each �*�� system occur due to pole doubling, which takes place for scalar mesons in
their model. Shakin et al. [10] obtained from a nonlocal confinement model that the

�����+����	��
resonance is the ground &,�& state and

�
���������
	��
is the ground  �� state. The state

�
������
	�	��
is

considered as a radial excitation of
�
��������	��

. They believe the mass of scalar glueball to be 1770
MeV.

In our recent papers [11–13], following the methods given in Refs. [14–17], we showed that
all experimentally observed scalar meson states with masses in the interval from 0.4 GeV till 1.7
GeV can be interpreted as members of two scalar meson nonets — the ground meson nonet and
its first radial excitation. We considered all scalar mesons as �*�� states and took into account the
singlet-octet mixing caused by the ’t Hooft interaction. However, we did not describe the scalar
state

� � ����
	�	��
. We supposed that this state contained a significant component of the scalar

glueball (see [5, 6]).
In this work, we introduce the glueball field into our effective Lagrangian as a dilaton and de-

scribe it and its mixing with the scalar isoscalar �*�� states. We consider only ground �*�� states. As
a result, we describe three scalar mesons

� � ����	�	-".��%�	�	��
,
� � �+����	��

, and
� � �����
	�	��

(or
� � ����/��	��

).
Let us note that the model we present here is just a tentative one. In this model, we probe one of
the possible ways of including the scalar glueball into a model that would describe the glueball
state and quarkonia simultaneously.

In various works (see e.g. [18–21]), the authors introduced the glueball into meson La-
grangians using the principle of scale invariance and the dilaton model. For example, 0'1 �+%��32
0'1 �+%�� models were considered [18, 19, 21] and the 1 �+���-2 1 ����� model, however, without the
’t Hooft interaction was investigated in [20]. Here we follow these works and introduce the scalar
glueball state into the Lagrangian constructed in [14, 15, 22].

In this paper, we introduce the dilaton field into the phenomenological meson Lagrangian ob-
tained from the effective quark interaction of the NJL type after bosonization. We take the meson
Lagrangian in a chirally symmetric form (before the spontaneous breaking of chiral symmetry),
where only quadratic meson terms are of scale-noninvariant form, therefore, we introduce the
dilaton field only into these (massive) terms. To this Lagrangian, we add the potential describing
the dilaton self-interaction in the form given in Ref. [23] and dilaton kinetic term.

After introducing the glueball into our effective Lagrangian we describe the mixing of three
scalar mesons: two scalar isoscalar

� ���� � states and the glueball. As a result, we obtain the mass
spectrum of these scalar meson states and also describe their main strong decays.

We emphasize once more that we do not claim this model to give a quantitative description
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of experimental data. We do not take into account the states
�����������
	��

and one of the states��������
	�	��
,
������������	��

which could not be neglected if the real meson spectrum were our goal. We
intend to obtain rather qualitative estimates that will allow us to choose a more reasonable way
of including the scalar glueball field into the effective meson Lagrangian.

In Section 2, we discuss an effective meson Lagrangian with the ’t Hooft interaction. In
Section 3, we introduce a dilaton field into the Lagrangian. In Section 4, we derive gap equations
for the masses of & � � � and  quarks. We also deduce a set of equations allowing us to bind two of
the three new parameters connected with the dilaton field. In Section 5, we obtain mass formulae
for scalar mesons and the dilaton and describe the singlet-octet mixing among quarkonia and the
mixing of the dilaton with two isosinglet scalar mesons. Here we fix the new model parameters
and give their numerical estimates as well as the estimates for the masses of scalar mesons and
the glueball. In Section 6, we calculate the widths of main strong decays of the scalar mesons
and the glueball. In the Conclusion, we discuss obtained results.

2 Chiral effective Lagrangian with ’t Hooft interaction

A 1 ����� 2 1 ����� chiral Lagrangian with the ’t Hooft interaction was investigated in paper [22].
It consists of three terms as shown in formula (1). The first term represents the free quark
Lagrangian, the second is composed of four-quark vertices as in the NJL model, and the last one
describes the six-quark ’t Hooft interaction that is necessary to solve the 1�� ����� problem.

� � �� �����	 "�
 � � �� �
%

��
��� ��� � ���� � � � � � � �� ����� � � � � ��� " (1)

" ���� �!#" � �� ��� � ����� � � �$ �!#" � �� ���3"%����� � ��&�'
Here � � � � � ��( ')'*' ( ��� are the Gell-Mann matrices and � � �,+ %.-
�

1, with 1 being the unit
matrix;


 �
is a current quark mass matrix with diagonal elements


 � /
,

 � 0

,

 � 1 �2
 � /43 
 � 0 �

.
The standard treatment for local quark models consists in replacing the four-quark vertices

with bosonic fields (bosonization). The final effective bosonic Lagrangian appears as a result of
the calculation of the quark determinant. First of all, using the method described in [22, 24, 25],
we go from Lagrangian (1) to a Lagrangian which contains only four-quark vertices 5

�$� �� �����	 " 
 � � �6� �
% 7��98 :;� 
 �

�=<2>@?�#: � ���A � � ��� ���A : � � � �=<)BC?�#: � �� �;� � A � � � � �� �;� � A : � � � ( (2)

where

A � � � � � � � ��( ')'*' ( �
�#( A � � �ED % � � �$� � �F-�D ��( (3)A 7
� ��" � � � D % � � �F- D ��(� <*GH?

 


� � <*GC?
���

� � <*GC?
���

� �JI.� � 
 1LK.M


�2
 1 ��(

�=<*GH?5L5 � �=<*GC?�F� � �=<*GC?NFN � �=<OGC?PLP � �QI � � 
 / K.M


�2
 / ��(R

In addition to the one-loop corrections of constants of four-quark vertices, we allow for two-loop contributions from
the ’t Hooft interaction that modify the current quark masses. Thus, we avoid the problem of double counting of the
’t Hooft contribution in gap equations which was encountered by the author in [25].
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� <*GH?�L� � � � � � 
 1FK M


�2
 1 ��( � <*GC?

7F7
� � (

� <*GH?�
7
� � <*GC?

7
� � I � D % � 
 / K M



�2
 / �� �#: � 	 � �������� � ( � � ��( '�' ' ( ����(


 � / � 
 � / " ��% � 
 / 
 1 K M


��
 / � K M



�2
 1 ��(

(4)
 � 1 � 
 � 1 " ��% � 
 �/ K�M
 ��

/ � � ' (5)

Here

 /

and

 1

are constituent quark masses and the integralsK�M� ��
 � � � �
	�+%�� � 5  � 5 ����� ��� � " � � �� � � � 
 � � � � (6)

are calculated (for simplicity) in the Euclidean metric and regularized by a simple � �!��� -symmetric
ultra-violet cutoff

�
. The mass


 � can be

 /

or

 1

.
Now it is necessary to bosonize Lagrangian (2). After bosonization and renormalization of

the meson fields, we obtain [14, 15, 22]

� ���@(��*� � " 7���8 :�� 
��
�
�
:% � � � ��� <2>@? � > 
�#: � : ��� � � ��� <)BH? � > 
�#: � :�� (7)

"6�! �"$#&%(' � � �� �	 "�
 7���� 
 �
� A � ��� � � �;� � D � � � ��) (

where
��� <*GC? � > 
 is the inverse of

� <OGC? , and
� � and

� � are the pseudoscalar and scalar fields,
respectively.

�
�

�
�
��
�
�
��
�
�
�� �

�
�/ � � � K.M� �2


/ � � > 
 ( (8)

� �5
�
� �
� �

� �
N �

� �
P � � � K M� �2


/ ( 
 1 � � > 
 (

�
�7
�
�
�1 � � � K�M� ��


1 � � > 
 (K M
�
�2
 / (F
 1 � � � 	�+%�� � 5  � 5 � � � ��� � " � � �� � � � 
 �/ � � � � � 
 � 1 � �� �
�!�*� � � ��
 � 1 " 
 �/ �,+ 
 � 1 #&%�- � �
 � 1 � �/. " 
 �/ #&%�- � �
 �/ � �/.10 (

� � - �3"32 
 /4 ��65 . > 
 3 � ' ��� ( (9)

where
4 � 5 is the mass of the axial-vector meson.

In the one-loop approximation the meson Lagrangian looks as follows
�

� ���@(��*� � �
% 7���� 
 �

� 	87 � � � � � � 	87 � � � ��� � (10)9
The expression under Tr in (10) is written formally for the reason of being concise and is not ready for practical use.

One will find which :<; should be taken, considering the corresponding quark-loop diagrams.
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� + ��
 / " �
 � / � ��� <2> ? � > 
�F� " 
 1 " �
 � 1D % ��� <2>@? � > 
7
� " � 
 / K M



�2
 / � 0

�
� � � "

� + ��
 / " �
 � / � ��� <2> ? � > 
� 7
" 
 1 " �
 � 1D % ��� <2>@? � > 
7L7 � � 
 1D % K M
 ��


1 � 0
� 7
�
7
"

" �% 7��98 :;� 
 �
�
�
: � � � ��� <2> ? � > 
�#: � : � � � � ��� <)BC? � > 
�#: � :�� �

�
�  �" ' � ���

� K M


��
 ����� � � � � � � "

" - � � " � 4 (�� & B
�

��� � � . � � + - � " 4
�
. (<� 0 � >�� ) (� � � 	 � � � �.( ' '�' ( �
��(�� � � ��(��

7
� " �D % ' (11)

It is useful to notice that Lagrangian (10) can be given a chirally symmetric form. For this
purpose, we introduce fields

�
	 � � " 

�
> 
 that have nonzero expectation values, � ��	� � �� 	

[15]. Here

�
�
�
� A � " � 7 A 7D % � 
 � 
 / A � � 
 1 A 7% ' (12)

This is the form of the effective Lagrangian in the case of unbroken chiral symmetry:

� ��� 	 (��*� � �
% 7��#� 
 �

� 	87 � 	 � � � � � 	 7 � � � � � (13)

" �% 7��98 :;� 

� �
�
� � 	� ��� � ����� <2>@? � > 
��: � � :

� 	: ��� : � � � �
�
�
: � � ��� <*BC? � > 
�#: � :�� �

� �
�  �"���� � �

� K M


�2
 � � 
 � K M� ��
 � � ��� 	 � ��� � � � " � � �

��� 	 � � � � � � � " � � � 	 (�� � � > ��� (� � � 	 � � � �.( ' '�' ( �
�#( � � � �
 � / ( � 7 � " �
 � 1D % ( (14)

where
��	 ��� 7 �#� 
 � � A � and

� ��� 7 ��� 
 � � A � . From (13), one can see that, in the one-loop
approximation, our Lagrangian does not violate chiral symmetry if


 � � 	
, and the ’t Hooft

interaction is switched off. Let us require the chiral and scale invariance both to be properties
of the effective Lagrangian. We remind that the QCD Lagrangian satisfies this requirement in
the chiral limit (


 � � 	
). The scale invariance of the effective meson Lagrangian is restored

by means of a dilaton field [18–20] introduced into the Lagrangian so that it provides a proper
dimension for each Lagrangian term. The dilaton field is introduced only into the mass terms.
We also introduce the dilaton potential intended to reproduce QCD scale anomaly [21, 26, 27].
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3 Nambu–Jona-Lasinio model with dilaton

Following earlier works devoted to dilatons, we introduce a color singlet dilaton field � that
experiences a potential� � � � ��� - �� � . 5 � #&%�- �� � . 5 " � � ' (15)

It has a minimum at � � � � , and the parameter
�

represents the vacuum energy, when there are
no quarks. The curvature of the potential at its minimum determines the bare glueball mass


�� � � D �� � ' (16)

To introduce the dilaton field into the effective meson Lagrangian (13), we use the following
principle. Insofar as the QCD Lagrangian, with the current quark masses equal to zero, is chiral
and scale invariant, we suppose that our effective meson Lagrangian, motivated by QCD, has
also to be chiral and scale invariant in the case when the current quark masses and the ’t Hooft
interaction are equal to zero. Then, instead of Lagrangian (13), we obtain

� ��� 	 (�� ( � � � �
% 7���� 
 �

� 	87 � 	 � � � � � 	87 � � � � � (17)

� � �% 7���8 :�� 

� �
�
� � 	� ��� � ����� <2> ? � > 
�#: � � :

� 	: ��� : � ��� �
�
�
: � � ��� <)BC? � > 
�#: � :��

" ��  �" � � � �
� K.M


�2
 � � 
 � K�M� ��
 � � ��� 	 � ��� � � � ��� - �� 	 . �

" ��  �" � � � �
��� 	 � ��� � � � � " � � � 	 (<� � � > � � � �

% � 	87 � � � " � � � �#(
where � 	 is the vacuum expectation value of dilaton fields � � �� � � 	 , � � �� � � 	 and �
�� �� � 	

.
N

By rewriting this Lagrangian in terms of quantum fields
�

and �� with vacuum expectations
equal zero, we finally obtain� ���@(�� ( �� � �J� ���@(<� � �
	 � ���@(�� ( �� �#( (18)

where
� ���@(<�*�

equals Lagrangian (10), and 	 � ���@(�� ( �� � has the form

	 � ���@(�� ( �� � � �
% � 	 7 �� � � " � 	 � �� � � 	 � � ��� 	 - % � ��� 	 . (19)

2 � " �
�
� 
 �/ K.M� �2


/ � � � � �

� 7

 � 1 K M� ��


1 �D % �
7

" �% 7��98 :;� 
 �
�
�
: � � � ��� <2> ? � > 
�#: � : � � � � ��� <)BC? � > 
�#: � :���

Since the mass of current quark explicitly breaks the scale invariance of the model, there is no need to make these
terms scale invariant, using the dilaton fields.
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� � 7���� 
 � �
� � � ��� �� ��� � � � � ) (

where � � � K.M


�2
 / � � 
 �/ K�M� ��


/ ��( � � � ��( %�( ��( ����(
(20)� � � �

% - K M


��
 / � � K M



��
 1 � � ��
 / � 
 1 � ��

K M
�
��
 / ( 
 1 � . ( � � � ��( ��( 2 ( ����(

�
7
� K M



��
 1 � � 
 � 1 K M� �2


1 ��(
and we used gap equations (25) in the terms linear over

� � . The potential
� 	 � � � � � � � � +� � - � 	 � ��� , where

� � �
%

��
��8 :�� 
 � � � ���� <2>@? � > 
�#: � � :  " � � � 
 �/ " % �

7

 � 1 ' (21)

From this Lagrangian, one can obtain the system of equations determining constituent quark
masses (gap equations) and dilaton potential parameters � � , � 	 and

�
.

4 Equations for the quark masses (gap equations) and dilaton potential parameters��������� and 	
The conditions for linear terms being absent in our Lagrangian
 �
 � � ���� � 8  8��� � � � 	 ( 
 �
 �

7
������ 8  8��� � � � 	 ( 
 �
 � ���� � 8  8����� � � 	

(22)

lead us to the following equations

�2
 / " �
 � / � ��� <2> ? � > 
�L� " 
 1 " �
 � 1D % ��� <2> ? � > 
� 7
" � 
 /.K M



�2
 / � � 	�(

(23)

�2
 1 " �
 � 1 ����� <2>@? � > 
7L7
" D % �2
 / " �
 � / � ��� <2> ? � > 
7

� " � 
 1 K M


��
 1 � � 	�(

(24)

"3� � - � 	� � . � �� � # % - � 	� � . 5 " % �� 	 � 	 ' (25)

An additional equation follows from the relation between the divergence of dilaton current 0 7
and the gluon condensate

� 	87 0 7  � � - � 	 � 		 � "�� � 	 . ����� � ����� � - ���%�� � 	 " �
��% ��� .���� � � �7���� � � � � ( (26)

� � - � 	� � . 5 " % � �!� � ' (27)
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� � � ��� � ����� � 	 � � � �GeV 5 � 
��
(a) 516 1027 1500 208 217 0.007 1430
(b) 518 1042 1710 180 187 0.007 1660

Table 1. The masses (in MeV) of physical scalar meson states ��� , ����� , ������� and parameter 	�
 for two
cases: (a) ������������������ MeV and (b) ������������������ MeV.

Using (4) and (5), one can rewrite the gap equations (23) and (24) in a well-known form [25]
 � / � 
 / " ��� 
 / K M


�2
 / � "���% � 
 / 
 1 K M



�2
 / � K M



��
 1 ��(

(28)
 � 1 � 
 1 "��.� 
 1 K.M


�2
 1 � " ��% � �2
 / K.M



�2
 / � � � ' (29)

To define all three parameters of the dilaton potential
� � � ( � 	 ( � � , we have to use, in addition

to equations (23)–(26), the equation for the bare glueball mass to be be given in the next Section.

5 Mass formulae for scalar isoscalar mesons and glueball

The free part of the Lagrangian (18) has the form

� < � ? ���@(<� ( �� � � " �% � �
� � ��� <�> ? � > 
�L� " � K M



��
 / � � ��
 �/ � � �� (30)

" �
% � �7 �

��� <�> ? � > 
7F7
" � K M



�2
 1 � � �.
 � 1 � � �7"

�
�
� 7
��� <�> ? � > 
� 7

� � �
7
"�� � � � ��� � - ��� 	 . �

" � 2� 	 + �
� 
 �/ K M� �2


/ � � � "
� 7

 � 1 K M� ��


1 �D % �
7
0 �� '

The dilaton and its interaction with quarkonia does not change the model parameters

 /

,

 1

,
�

,�
, and � fixed in our earlier paper [22]
 / � %���	

MeV
( 
 1 � ��%�	

MeV
( � � � ' %�� GeV

(
(31)� � � ' ��� GeV

> � ( � � ��� ' % GeV
> � '

After the dilaton field is introduced into our model, there appear three new parameters: � , � 	 ,
and
�

. To determine these parameters, we use two equations (25) and (26) and the bare glueball
mass


 �� � � 2 � � � ��� �� � 	 ' (32)

We adjust it so that, in the output, the mass of the heaviest meson would be 1500 MeV or 1710
MeV and thereby fix � 	 . For the glueball condensate, we use the value

������	
MeV

� 5 [28]. The
result of our fit is presented in Table 1 where we show the spectrum of three physical scalar
isoscalar states

� � , � ��� and
� ����� . The parameters � � and

�
are fixed by the gluon condensate
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and constituent quark masses� � � � 	 ! ��� - �% � � � � % � � . (
(33)

� � � � � % �� ! ��� - % �� � � % � . ' (34)

It is worth noting that the mixing of the glueball with quarkonia shifts the quarkonia mass
spectrum. They become lighter, whereas the glueball becomes heavier. This is good for our
model because, in previous paper [22], the mass of

� ��� associated with
� � ������	��

was exaggerated.

6 Decay widths

Once all parameters are fixed, we estimate decay widths for the major strong decay modes of
the scalar mesons:

� ��� �!�
and

� ��� � � . We neglect decays into ��� and ���
	

as they are
small. The results are displayed below. The state

� � that we identify with
�����!��	�	 " �%
	�	��

decays
mostly into a pair of pions, and this process determines the width of

� � :
�  �
	��� 3 2 ��	 MeV ' (35)

The decay of the state
� ��� that we identify with

�����+����	��
into pions is noticeably enhanced by the

glueball component because of mixing with the  �� quarkonium. We obtain
�  ����	��� � ��� 2 MeV (36)

if
� ������� ��������
	�	��

and
�  ����	��� � � 2 MeV (37)

if
� ������� �������/��	��

. From experiment, we know that its decay width lies within the interval from
40 MeV to 100 MeV.

The decay width of
� ����� is slightly different for both cases. In case

� ����� is
�������
	�	��

, we
have

�  ��� �
	���� � ���
MeV

( �  �����
	���� � ����%
MeV

(
(38)

and in the other case (
� ������� ������������	��

)
�  ��� �
	���� � ��	��

MeV
( �  �����
	���� � ��� 2 MeV ' (39)

As one can see, we obtained reasonable values for the states which are mostly quarkonia and
overestimated decay width for the state

� ����� . This can be explained by that the mixing of  /� 
quarkonium with the glueball in this type of model is too large (it is proportional to the cubed
mass of strange quark, see (30)). As a result, the decay

� ����� � � � is large. This mixing
becomes a bit less, when we fit the paramers for a higher glueball mass.

Let us note also that we do not include the decay into
� �

. This process is not dominant in
our model (contrary to Ref. [10]). Our estimates are based on the assumption that the process� ����� � �*�

occurs through two intermediate
�

resonances
� ����� � �!� � � �

. We found
that

�  ������	 5 � does not exceed 20 MeV. Therefore, in both the cases, the total width of
� ����� is

approximately
% 2 	 MeV.
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7 Conclusion

In this work, we investigated a possible way of including the glueball into an effective chirally
symmetric meson Lagrangian. This Lagrangian was studied in Ref. [22] where the masses and
strong decay widths of the ground scalar meson states were estimated in the NJL model with the
’t Hooft interaction taken into account. Now, following Ref. [22], we considered the interaction
of the glueball with the ground scalar isoscalar ���� states

��������	�	 " �%
	�	��
and

����������	��
. The

mixing of the glueball with radially excited states
� � ��������	��

and
� � ��������	��

(if
� ����� � � � ������	�	��

)
was not taken into account. However, their mixing is very important and will be considered in
subsequent works. Therefore, the results obtained here are tentative and are not claimed for a
quantitative explanation of experimental data on scalar resonances.

As it was mentioned in the Introduction, nowadays there are many papers devoted to the
description of the scalar glueball in the framework of an effective meson Lagrangian [18–21].
The way, we introduce the scalar glueball, is closer to that used in Ref. [20], but our work differs
in two points. First, we take into account the ’t Hooft interaction leading to the singlet-octet
mixing of the scalar isoscalar quarkonia. The glueball is also involved in this mixing and changes
it. Next, we introduce the glueball as a dilaton field into the Lagrangian written in a chirally
symmetric form corresponding to the phase with chiral symmetry not broken spontaneously.
Thereby, the Lagrangian is given a highly symmetric form that keeps both the chiral symmetry
and scale invariance. In this form the dilaton fields are introduced only into the mass terms of
meson Lagrangian. The rest of Lagrangian terms are scale invariant except the term with the
current quark mass which explicitly breaks both the chiral symmetry and scale invariance.

As a result, we obtain reasonable estimates for the masses of the scalar mesons
� � �!��	�	("

�%
	�	��
,
� � ������	�� P

, and the glueball
� � ����
	�	��

(or
� � ����/��	��

) and also for their strong decay widths.
But we have to point out that the width of the

� � ����
	�	��
(or

� � �������	��
) resonance is, possibly,

overestimated ( �
%
	�	

MeV), however, it can change after the states
� � �������
	��

and
� � ��������	��

(or��������
	�	��
) are included into the whole picture.

The results that we obtained in this work, as one can see, are not enough to answer the ques-
tion: which of the states

��������
	�	��
and

�������/��	��
is the scalar glueball? We hope to make closer

towards the solution of this problem in our further works, where alternative ways of including the
glueball into an effective meson Lagrangian will be investigated, radially excited meson states
will be considered as well as the ground states, and the mixing of five scalar isoscalar states�����!��	�	 " ��%
	�	��

,
���������	��

,
�����������	��

,
�������
	�	��

, and
������������	��

will be taken into account.
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�
In Ref. [20], the ground ���� scalar states were presented by ���	��
����� and ���	��������� as ���� and ���� quarkonia mixed

with the glueball.
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