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A CONDITIONAL MEASUREMENT SCHEME FOR THE GENERATION
OF MAXIMALLY ENTANGLED BIMODAL FIELD STATES ∗
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A scheme for generating maximally entangled states of bimodal high-Q cavity field is pre-
sented. Its implementation is based on a Jaynes-Cummings like one photon interaction mech-
anism between a single three level Rydberg atom in the lambda configuration and two modes
of the radiation field. The practical feasibility of the project is discussed.

PACS: 42.50.-p, 42.50.+x

The term entanglement, introduced many years ago by Schrödinger [1], describes the state
of a system, composed by two or more subsystems, characterized by the fact that it cannot be
expressed as a product of states of each component. In such a condition the system exhibits
the astonishing property that the results of measurement on one subsystem cannot be specified
independently of the parameters of the measurements on the other components. Moreover, as
shown by Gisin [2], for any entangled state suitable observables can be found which lead to a
violation of a variant of Bell’s inequality. These puzzling behaviours, as well as others like the
Schr̈odinger cat paradoxes and the quantum non locality, also stemming from entanglement, have
stimulated a great deal of interest both of theoreticians and experimentalists. Apart their intrinsic
theoretical interest, entangled states form also the basis of experiments in the realm of quantum
information. In this context, a particularly interesting example is quantum state teleportation.
Teleportation protocol allows an unknown state of a quantum system to be faithfully transmitted
between two spatially separated parties. An essential step of this procedure is that sender and
receiver are initially sharing a maximally entangled state. Moreover, from an applicative point of
view, the possibility of generating in laboratory such states is of crucial importance in quantum
cryptography and, in general, in all implementations of quantum computers [3].

Previous works have concentrated essentially on the generation of entangled states of atoms
[4]. Recently, several kinds of entangled states of the electromagnetic field, such as, for exam-
ple, entangled coherent states [5], multimode even and odd coherent states [6], entangled photon
number states [7] and so on, have been discussed in literature. In the framework of cavity quan-
tum electrodynamics J.A. Bergou [8] has proposed a theoretical scheme for the generation of
entangled states of photons in spatially separated cavities.
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In this paper we propose a simple scheme, based on a conditional measurement approach, for
generating a class of maximally entangled states of two modes of a single cavity. Our method
exploits a Jaynes-Cummings-like one-photon interaction mechanism between a three level Ryd-
berg atom in the lambda configuration and two modes of the radiation cavity field. We will show
that, following the single atom procedure we are going to describe, it is possible to guide the
cavity field toward bimodal field states having the maximally entangled form

|φn〉 =
1√
2

(|n, n− 1〉+ eiφ|n− 1, n〉) n = 1, 2, .... (1)

The implementation of our scheme requires a single three levels Rydberg atom only, in the
lambda configuration, and a bimodal high-Q microcavity(Q ∼ 1010). Let’s indicate byω1 and
ω2 the frequencies of the two field modes and suppose thatω1 6= ω2. The three relevant atomic
circular Rydberg states are denoted by|0〉, |1〉 and|2〉.

We suppose that, indicating byEAj the energy level correspondent to the atomic state|j〉
(j = 0, 1, 2), withEA0 < EA1 < EA2 , the two resonance conditionsEA2 −EA1 ∼ ω2,EA2 −EA0 ∼
ω1 (h̄ = 1), are satisfied. Under these hypothesis the effective Hamiltonian model describing
our system, in the rotating wave approximation, can be written down in the following form:

H = H0 +HI (2)

with

H0 =
2∑
i=1

ωia
†
iai +

2∑
j=0

EAj |j〉〈j| (3)

and

HI = (g1a1|2〉〈0|+ h.c.) + (g2a2|2〉〈1|+ h.c.) (4)

In Eqs. (3) and (4)ai(a
†
i ) (i = 1, 2) is the annihilation (creation) operator relative to thei−th

mode of the bimodal cavity field whereas the two coupling constantsg1 and g2 measure the
strengths of the energy exchanges between the Rydberg atom and the mode 1 and 2 respectively.

Let’s now observe that the two operatorsN1,N2 defined as:

N1 = a†1a1 − |0〉〈0| (5)

N2 = a†2a2 − |1〉〈1|. (6)

are constants of motion. It is in fact easy to verify that:

[N1,H] = [N2,H] = 0. (7)

From Eqs. (5) and (6) immediately follows that the operatorN ≡ N1 + N2 = a†1a1 + a†2a2 +
|2〉〈2| − 1, is also a constant of motion. Moreover it is easy to see that

[N1, N2] = 0. (8)

This circumstance in particular means that if we prepare the atom-field system in the state
|ψj(0)〉 = |n1, n2, j〉 with j = 0, 1, 2, common eigenstate ofN1 andN2 correspondent to
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the eigenvalues(n1 − δj0) and(n2 − δj1) respectively, we may claim with certainty that, at any
time instantt, the state of the system can be written as superposition of a finite number of states
all pertaining to the same initial eigenvalues ofN1 andN2. This fact is of particular relevance
being at the origin of the possibility of exactly solving the time evolution of the coupled system.

Let’s consider, in fact, the initial condition|ψ0(0)〉 = |n1, n2, 0〉 and assume for simplicity
g1 = g2 = g. The state of the system at a generic timet can be written as:

|ψ0(t)〉 =
[
C(0)
n1,n2

(t)|n1, n2, 0〉+ C
(0)
n1−1,n2+1(t)|n1 − 1, n2 + 1, 1〉

+ C
(0)
n1−1,n2

(t)|n1 − 1, n2, 2〉
]
e−i(E0+n1ω1+n2ω2)t. (9)

Substituting Eq. (9) into the time dependent Schrödinger equation relative to the physical
system under scrutiny, we get a system of differential equations from which we straightforwardly
deduce the following three unknown amplitudes appearing into Eq. (9):

C(0)
n1,n2

=
(

n1

n1 + n2 + 1
cos(gt

√
n1 + n2 + 1) +

n2 + 1
n1 + n2 + 1

)
, (10)

C
(0)
n1−1,n2+1 =

√
n1(n2 + 1)

n1 + n2 + 1
(
cos(gt

√
n1 + n2 + 1)− 1

)
, (11)

C
(0)
n1−1,n2

= −i
√
n1√

n1 + n2 + 1
sin(gt

√
n1 + n2 + 1). (12)

Analogously, choosing|ψ1(0)〉 = |n1, n2, 1〉, it is possible to convince oneself that the state
|ψ1(t)〉 can be written down as follows:

|ψ1(t)〉 =
[
C(1)
n1,n2

(t)|n1, n2, 1〉+ C
(1)
n1+1,n2−1(t)|n1 + 1, n2 − 1, 0〉

+ C
(1)
n1,n2−1(t)|n1, n2 − 1, 2〉

]
e−i(E0+n1ω1+n2ω2+∆ω)t (13)

with ∆ω = ω1 − ω2 and

C(1)
n1,n2

=
(

n2

n1 + n2 + 1
cos(gt

√
n1 + n2 + 1) +

n1 + 1
n1 + n2 + 1

)
, (14)

C
(1)
n1+1,n2−1 =

√
n2(n1 + 1)

n1 + n2 + 1
(
cos(gt

√
n1 + n2 + 1)− 1

)
, (15)

C
(1)
n1,n2−1 = −i

√
n2√

n1 + n2 + 1
sin(gt

√
n1 + n2 + 1. (16)

The building up of a target state|φn〉 results from the success of asingleevent.
Let’s suppose that a Rydberg atom, initially prepared in the state1√

2
(|0〉 + |1〉) by means

an appropriate Ramsey zone, is injected into the cavity where the two field modes of interest are
excited in a Fock state with the same numbern of photons. The initial condition of the atom-field
system is thus given by

|ψ(0)〉 =
1√
2

(|0〉+ |1〉)|n, n〉. (17)



522 A Napoli, A Messina, S Maniscalco

Exploiting the results previously presented, it is immediate to demonstrate that at a generic
time t the state of the system, within an irrelevant overall phase factor, assumes the form:

|ψ(t)〉 = [C(0)
n,n(t)|n, n〉+ ei∆ωtC

(1)
n+1,n−1(t)|n+ 1, n− 1〉]|0〉+

+ [C(0)
n−1,n+1(t)|n− 1, n+ 1〉+ ei∆ωtC(1)

n,n(t)|n, n〉]|1〉+

+ [C(1)
n,n−1(t)|n, n− 1〉+ ei∆ωtC

(0)
n−1,n(t)|n− 1, n〉]|2〉 (18)

where the probability amplitudesC(j)
m,p, (j = 0, 1) and(m, p = n− 1, n, n+ 1), can be obtained

from Eqs. (10) - (16) puttingn1 = n2 = n.
Immediately after the atom has left the cavity its internal state is measured using the ion-

ization technique. Looking at Eq. (18) and taking into account Eqs. (12) and (16), it is easy to
convince oneself that, if the atomic state detector finds att = t1 the atom in its excited state|2〉,
the radiation field is projected onto the normalized state

|φn〉 =
1√
2

(|n, n− 1〉+ ei∆ωt1 |n− 1, n〉). (19)

In other words our scheme provides a method for guiding the cavity field from the factorized state
|n, n〉 toward the maximally entangled state expressed by Eq. (19) exploiting the interaction
between the cavity and a single Rydberg atom only. A relevant consequence is that, in the
context of our method, the low efficiency (∼50%) of the currently used experimental apparatus
for detecting the atomic state turns out to be reasonable countered.

It is worth noting that the state into which the cavity collapses due to a successful measure-
ment of the atomic internal state exhibits maximum entanglement regardless both of the initial
equal population given to the two cavity modes and the duration of interactiont1. In other words,
whatevern andt1 are, if the atom is measured in its excited state we may claim with certainty
that the cavity field reduces to a maximally entangled state having the form (19).

Of course to judge the efficiency of our scheme and in particular to appreciate whether it is of
experimental significance, we must evaluate the probability of detecting the atom in its excited
state. Taking into account Eq. (18) it is not difficult to convince oneself that the probability of
successP of our experimental scheme is given by:

P =
n

2n+ 1
sin2(gt1

√
2n+ 1). (20)

Thus, choosing the interaction timet1 between the atom and the cavity field in such a way that
the condition

gt1 =
π

2
1√

2n+ 1
(21)

is satisfied, the probability of measuring the atom in the excited state|2〉 becomes

1
3
≤ P ≡ n

2n+ 1
<

1
2

(22)

thus providing values of experimental interest. The circumstance that our procedure is a single-
atom scheme turns out once again of particular relevance since, in this case, the velocity of a
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single atom only has to be controlled. On the other hand, the accuracy of the velocity selectors
today available may be estimated of the order of1%− 2%. Both these considerations allows us
to guess that the probability of success of our scheme is practically immune from the fluctuations
of the interaction timet1.

It is important moreover to underline that the success of the procedure reported in this paper
for generating maximally entangled bimodal cavity field having the form (19), is strictly related
to the capacity of preparing the atom-field system in the state expressed by Eq. (17).

As far as the atomic initial state, it is well known that the Ramsey zone method, currently
used in laboratory for mixing two atomic states, is very efficient [9]. On the other hand, it is
possible to prepare the cavity field in an equally intensity bimodal Fock state|n, n〉, following, for
example, an experimental scheme very recently presented in literature by one of the authors [10].
In Ref. [10] it is shown that, taking into consideration important technological limits of the
apparatus currently used in laboratory, the probability of realizing the state|n, n〉, decreases with
n maintaining however values of experimental interest in correspondence ton ∼ 10.

It is important to observe, at this point, that, notwithstanding the high values of the quality
factorQ of the resonators today available, it could be illegitimate to neglect the cavity losses
whenn is too large, in view of the fact that the photon damping timeτ is such thatnτω = Q.

These considerations suggest that from an experimental point of view it should be better to
choose initial conditions such that the number of photons contained in both cavity modes att = 0
does not exceed 10.

In conclusion we wish to point out that the states generated following the procedure discussed
in this paper can be regarded as Bell like states thus providing an interesting starting point for
testing fundamental features of quantum mechanics.
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