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An average Hamiltonian, which contains pair–atomic effects, is used to develop a theory
of the micromaser. A modified master equation is derived and both a steady–state and a
time–dependent solutions are found showing that the trapping conditions are disturbed by
influence of two–atomic events. An approximate as well as an exact spectrum are calculated
and narrowing of linewidth is demonstrated within the framework of presented theory.

PACS: 42.52.+x, 42.50Dv

1 Introduction

Maser action has been achieved with, on average, less than a single excited atom in a super-
conducting microwave cavity [1]. Rydberg atoms, i.e., atoms having extremely large dipole
moments for transitions to neighbouring levels, have been used in this one–atom maser or mi-
cromaser. Owing to very high quality factorsQ achieved in the cavity, the photon lifetime was
much longer than the flight time of the atom in the maser cavity [2]. A Fizeau–type velocity
selector [3] can then be used in accordance with the preselection of the atomic beam velocity.
Since the atomic flight time can be almost fixed, one can say that the micromaser fulfills, in an
almost perfect way, the idealized conditions of Jaynes–Cummings interactions. Under this cir-
cumstance, the field produced in the cavity shows nonclassical properties [4], i.e., the number
distribution of the photons in the cavity can be sub–Poissonian [5]; even a number state [6] or
quantum states [7] can be generated using a cavity with a high enough quality factor. One of the
very intriguing features of the micromaser is the possibility of obtaining the so–called trapping
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states. They are a direct consequence of the quantization of the electromagnetic field and just re-
cently, they have been found experimentally [2], where the maser was pumped with a low atomic
flux. Although, experimental schemes with only excited atoms show that if the field reduced
density matrix is initially diagonal, it remains diagonal and studies of phase diffusion show how
to create off–diagonal density matrix elements by preselecting a phase of atoms injected into the
cavity [8]. The spectrum of the micromaser originating from the presence of off-diagonal matrix
elements has been investigated [9]- [12]. A theory of the two–photon micromaser [13] has been
developed and experiments have been carried out [14]. The linewidth of a two–photon micro-
maser has also been investigated [15]. However, for higher pump rates, the probability of two
atom events will be non–zero [2,16] in the micromaser cavity, because we could not strictly con-
trol the time interval between the arrival of two atoms. However, besides the usual one–photon
transition, the presence of a second atom can cause two–photon transitions [17]. Co–operative
atomic interactions in a single–mode laser [18] or two–atom laser [19] have been examined, too.

In the present paper, we focus ourselves on the presence of the successive pair atomic effects
in the micromaser cavity and study how quantum co–operative effects can modify the standard
one–atomic operation. To do this, we adopt an average Hamiltonian which can approximately
describe the co–operative interactions in the micromaser. Based on derived master equations, we
find the steady–state solution and spectrum of the micromaser radiation.

2 Master equations

We concentrate on a little influence of the second atom on the first one, similarly, as was con-
sidered in previous two works by Orszag et al. [16] and by Wehner et al. [17]. In standard
micromaser experiments the collective events, in which two or more atoms are inside the res-
onator at one time, are very rare. Although, whenever two atoms are present in a microwave
cavity, one can model the system by a Hamiltonian in the interaction picture and in the dipole
and rotating–wave approximations as follows [18,19]

Ĥ = h̄(g1âσ̂
†
1 + g∗1 â

†σ̂1)⊗ 1̂2 + h̄(g2âσ̂
†
2 + g∗2 â

†σ̂2)⊗ 1̂1, (1)

whereσi represent the Pauli matrices for atom numberi (i = 1, 2) and they satisfy an identity
1̂i = |a〉ii〈a| + |b〉ii〈b|, if the upper and lower levels of thei-th atom are denoted by|a〉i and
|b〉i. The coefficientg1 is an atom–field coupling constant andg2 stands for|g2| = ∆|g1|, where
∆ � 1, in general, they can be complex. In fact, for one atomic event we have to change the
system Hamiltonian by a standard Jaynes–Cummings model, where∆ = 0. More realistically,
the Hamiltonian should be time–dependent, so that,∆ could be expressed, for instance, using
the usual step function depending upon the time intervals that two atoms are in the cavity. The
use of the step function in the Hamiltonian has been adopted by Scully et al. for the problem
of a simple Langevin treatment of the laser linewidth including atomic memory effects [20].
This treatment assumes that two–atomic events are very rare. In this spirit, we can correct this
calculation by adding a small term to the standard Jaynes–Cummings Hamiltonian, assuming
that it is a constant, i.e.,∆ =constant. This coefficient can be estimated only numerically. The
use of this average Hamiltonian (1) enables us to see the qualitative characteristics due to the two
atomic events. The system may be described by means of the basis|a〉1|a〉2, |a〉1|b〉2, |b〉1|a〉2
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and|b〉1|b〉2, therefore, the Hamiltonian can be written as

Ĥ =


0 g2â g1â 0

g∗2 â
† 0 0 g1â

g∗1 â
† 0 0 g2â

0 g∗1 â
† g∗2 â

† 0

 . (2)

The equation of motion for the wave function|Ψ〉 for the atom–field system is

d

dt
|Ψ(t)〉 = − i

h̄
Ĥ|Ψ(t)〉. (3)

At any time t, the state vector|Ψ(t)〉 is a linear combination of the states|α, β, n〉 in which
the first (second) atom is in the state|α〉 (|β〉) and the field hasn photons with the probability
amplitude, say,Cαβn, therefore, it reads

|Ψ(t)〉 =
∑
n

(Caan(t)|a, a, n〉+ Cabn(t)|a, b, n〉

+ Cban(t)|b, a, n〉+ Cbbn(t)|b, b, n〉). (4)

The interaction energy (1) can cause transitions between the states|a, a, n〉, |b, a, n+1〉, |a, b, n+
1〉 and|b, b, n+ 2〉. Therefore Eq. (3) becomes

d

dt
C(t) = −iM C(t), (5)

where

C(t) =


Caan(t)
Cabn+1(t)
Cban+1(t)
Cbbn+2(t)

 , (6)

M =


0 g2

√
n+ 1 g1

√
n+ 1 0

g∗2
√
n+ 1 0 0 g1

√
n+ 2

g∗1
√
n+ 1 0 0 g2

√
n+ 2

0 g∗1
√
n+ 2 g∗2

√
n+ 2 0

 . (7)

In the micromaser experiments, the atoms enter the resonator in one of the Rydberg states of the
maser transition and emerging atoms are probed for being in one of these two states. If at an
initial time t, the atoms are in their upper level, then we find the probability amplitudes at the
later timet+ τ as [18]

Caan(t+ τ) = A(1)
n (τ)Caan(t),

Cabn(t+ τ) = A
(2)
n−1(τ)Caan−1(t),

Cban(t+ τ) = A
(3)
n−1(τ)Caan−1(t),

Cbbn(t+ τ) = A
(4)
n−2(τ)Caan−2(t), (8)
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with

A(1)
n =

β′ − (g2
1 + g2

2)
2β′

cos(λ1τ) +
β′ + (g2

1 + g2
2)

2β′
cos(λ3τ),

A(2)
n =

−ig∗2
√
n+ 1

2β′

(
α′1 + β′

λ1
sin(λ1τ)− α′1 − β′

λ3
sin(λ3τ)

)
,

A(3)
n =

−ig∗1
√
n+ 1

2β′

(
(α′2 + β′

λ1
sin(λ1τ)− α′2 − β′

λ3
sin(λ3τ)

)
,

A(4)
n =

2g∗1g
∗
2

√
(n+ 1)(n+ 2)
β′

(cos(λ1τ)− cos(λ3τ)) , (9)

whereα′1(2) = (4n+ 7)g2
1(2) − g

2
2(1), β

′ = {(g2
1 + g2

2)2 + 16g2
1g

2
2(n+ 1)(n+ 2)}1/2, and

λ1,3 =
1√
2
{(g2

1 + g2
2)(2n+ 3)

± ((g2
1 + g2

2)2(2n+ 3)2 − 4(n+ 1)(n+ 2)(g2
1 − g2

2)2)1/2}1/2. (10)

Let us compose the master equation for the micromaser which is modified by two–atomic events.
On the basis of the density matrix elements we have the expression as

ρn,n′(t+ τ) = Caan(t+ τ)C∗aan′(t+ τ) + Cabn(t+ τ)C∗abn′(t+ τ)
+ Cban(t+ τ)C∗ban′(t+ τ) + Cbbn(t+ τ)C∗bbn′(t+ τ) (11)

and at the initial time it is expressed asρn,n′(t) = Caan(t)C∗aan′(t). In order to obtain the
equation of motion for the reduced density matrix of the maser field, we consider the coarse–
grained derivative as [20](

dρn,n′

dt

)
gain

= ra [ρn,n′(t+ τ)− ρn,n′(t)] , (12)

wherera is the rate of injection. This term describes the change inρn,n′(t) due to a pair of atoms
interacting with the field for a timeτ . The damping term is given by [20](

L̂ρ̂
)
n,n′

=

− γ

2
(n̄th + 1)(n+ n′)ρn,n′(t) + γ(n̄th + 1)

√
(n+ 1)(n′ + 1)ρn+1,n′+1(t)

− γ

2
n̄th(n+ n′ + 2)ρn,n′(t) + γn̄th

√
nn′ρn−1,n′−1(t); (13)

heren̄th is an average thermal photon number inside the cavity andγ is the cavity decay. The
equation of motion can be written in the following form

dρn,n′

dt
=
(
dρn,n′

dt

)
gain

+
(
L̂ρ̂
)
n,n′

. (14)

Substituting the expression (8) into (11) and using (12) and (13), the equation of motion becomes

ρ̇n,n′ = an,n′ρn,n′(t) + cn−1,n′−1ρn−1,n′−1(t)
+ dn+1,n′+1ρn+1,n′+1(t) + en−2,n′−2ρn−2,n′−2(t), (15)
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where the dot on the symbol denotes the derivative and the coefficients read

an,n′ = −ra
(

1−A(1)
n (A(1)

n′ )∗
)
− γ

(
n̄th(n+ n′ + 1) +

n+ n′

2

)
,

cn,n′ = ra

(
A(2)
n (A(2)

n′ )∗ +A(3)
n (A(3)

n′ )∗
)

+ γn̄th
√

(n+ 1)(n′ + 1),

dn,n′ = γ(n̄th + 1)
√
nn′, en,n′ = raA

(4)
n (A(4)

n′ )∗.

It is clear that forn = n′ Eq. (15) determines the probability of findingn photons in the cavity
in the timet+ τ ,

Ṗn(t) = ρ̇n,n = an,nPn(t) + cn−1,n−1Pn−1(t)
+ dn+1,n+1Pn+1(t) + en−2,n−2Pn−2(t), (16)

where the coefficients read

an,n = −ra(1− |A(1)
n |2)− γ(n̄th(2n+ 1) + n),

cn,n = ra(|A(2)
n+1|2 + |A(3)

n+1|2) + γn̄th(n+ 1),

dn,n = γ(n̄th + 1)n, en,n = ra|A(4)
n |2.

As is seen from (16), besides the coefficientsan,n, cn,n anddn,n associated with the usual one–
photon transition probabilities, the presence of the second atom leads to a new coefficienten,n
associated with two–photon transitions. One can see from the expression thaten,n ∼ ∆2 � 1,
as is expected. It may also be noted that [18,20]

an,n + cn,n + dn,n + en,n = 0. (17)

2.1 Steady–state solutions

Now we deal with the steady–state problem of (16). As is mentioned before, the influence of the
two–atomic events is rare, therefore it is physical to consider a steady–state solution in which
the ’flows’ of the energy in and out the cavity compensate. The steady–state photon number
distribution can be obtained from (16) by taking

Ṗ (n) = 0. (18)

We can express the steady–state solution as a product of continued fractions [18], so that

P (n) = P (0)
n∏
k=1

Qk, (19)

where

Qk =
1
dk,k


αk−1 + βk−1

αk−2 + βk−2

αk−3 + βk−3

...
α1+

β1
α0

 , (20)
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Fig. 1. Normalized mean photon numberl ≡ 〈n〉/Nex versus the pump parameterθ for Nex = 49, n̄th =
10−7, ∆ = 0 (a) and∆ = 0.01 (b).

with αk = ck,k + ek,k andβk = dk,kek−1,k−1. This expression forP (n) completely determines
the photon statistics caused by co–operative atomic effects in the cavity. Figure 1a shows the
normalized average number of photonsl ≡ 〈n〉/Nex, whereNex ≡ ra/γ is the average number
of atoms that traverse the cavity during the lifetime of the field as functions of the dimensionless
parameterθ defined as [5]

θ = (Nex)1/2g1τ (21)

for Nex = 49. As has been mentioned by Meystre [21] for very–low temperatures (with average
thermal photon number̄nth = 10−7), the steady–state photon statistics of the micromaser are
strongly influenced by the existence of trapping states. (Note that for higher resolution the dips
become more distinct.) In contrast, from Fig. 1b, one can see that these peculiar features of
the one–atom maser are almost removed by a little amount∆ = 0.01 of co–operative effects
involved in. Nevertheless, for a not very high atomic pump rate,Nex = 25, the ’hallmarks’ of
the existence of trapping states, i.e., the dips in Fig. 2a, are still remaining their features when
∆ = 0.01 (see Fig. 2b). In general, we could say that the presence of two–atomic events in the
cavity disturbs the trapping state condition and an atom can emit a photon.

2.2 Time–dependent approximate solutions

Furthermore, a modified Scully–Lamb master equation (15) can be written in a detailed balance
form as [20]

ρ̇(k)
n (t) = X(k)

n ρ(k)
n (t) + c

(k)
n−1ρ

(k)
n−1(t)− d(k)

n ρ(k)
n (t)

− c(k)
n ρ(k)

n (t) + d
(k)
n+1ρ

(k)
n+1(t) + e

(k)
n−2ρ

(k)
n−2(t)− e(k)

n ρ(k)
n (t), (22)
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Fig. 2. The same as in Fig. 1, butNex = 25.

where we substituten′ = n + k, rewrite ρn,n′(t) = ρ
(k)
n (t), an,n′ = a

(k)
n , cn,n′ = c

(k)
n ,

dn,n′ = d
(k)
n , en,n′ = e

(k)
n and

X(k)
n = a(k)

n + c(k)
n + d(k)

n + e(k)
n . (23)

This type of detailed balance master equation was used in [20] in the one–atom maser theory. In
that case, the coefficientse(k)

n ande(k)
n−2 do not appear. Using the fact thata(k)

0 = c
(k)
−1 = d

(k)
0 =

e
(k)
−1 = e

(k)
−2 = 0, the sum overn in Eq. (22) simply becomes

∞∑
n=0

ρ̇(k)
n (t) =

∞∑
n=0

(
X(k)
n ρ(k)

n (t)
)
, (24)

which has as a solution

ρ(k)
n (t) = ρ(k)

n (0) exp(X(k)
n t). (25)

Note that if the density matrix is initially diagonal, then it remains diagonal for all time.

3 Calculations of the spectrum

We now turn to the calculation of the micromaser spectrum which is originated from the simple
Hamiltonian (1) including pair–atomic effects. Although the spectrum of the micromaser cav-
ity field is not directly detected, it can include many of interesting features. The micromaser
spectrum is given as the Fourier transform

S(ω − ωc) = Re
∫ ∞

0

K(t)e−i(ω−ωc)tdt (26)
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of the two–time correlation function

K(t) = 〈â†(t)â(0)〉, (27)

which is related to the time dependence of the off-diagonal elements of the field density matrix.
Hereωc denotes the frequency of the cavity field. The central problem of the calculation of the
micromaser spectrum is therefore to find the time dependence ofK(t). In the next stage, we
consider two different but equivalent methods calculating the linewidth of the micromaser.

3.1 Exact numerical method: Eigenvalue approach

We mainly follow the work by Vogel et al. [11] and investigate how atomic co–operative effect
does modify the exact spectrum of the one–atom maser. The two–time correlation function can
read

K(t) = Trf,r
[
Û†(t)â†(0)Û(t)â(0)ρ̂f,r(0)

]
, (28)

thus,

K(t) = Trf
[
â†(0)ˆ̃ρ(t)

]
(29)

with

ˆ̃ρ(t) = Trr
[
Û(t)â(0)ρ̂f,r(0)Û†(t)

]
, (30)

where the time evolution operator of the combined field(f)–reservoir(r) system is used. In
the Markov approximation the operatorˆ̃ρ(t) satisfies the same equation of motion for the field
density operator̂ρ, but with the initial condition

ˆ̃ρ(0) = â(0)ρ̂(0), (31)

and, consequently, we can choose the steady–state solution of the field density operatorρ̂(s) as
the initial condition, that is,

ρ̃n,n+1(0) =
√
n+ 1Pn+1, (32)

where the steady–state photon statisticsP (n) are given by (19). In the next stage, after perform-
ing the trace in (29), we find

K(t) =
∞∑
n=0

√
n+ 1ρ̃n,n+1(t). (33)

As in [11], one can interpret the matrix elementsρ̃
(k)
n (t) as thenth component of the vectorxk(t),

i.e., (
x(k)(t)

)
n
≡ ρ̃(k)

n (t). (34)

Recalling that̃ρ(k)
n (t) satisfies (15) with̃ρ(k)

n (t) replacingρ(k)
n (t), the equation of motion for the

vectorx(k)(t) becomes

ẋ(k) = Q(k)x(k), (35)
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where the matrixQ(k) is composed of four diagonals, while in the one–atom maser theory, it is
composed of three diagonals, with the elements

Q(k)
n,n = a(k)

n , Q
(k)
n,n+1 = d

(k)
n+1, Q

(k)
n,n−1 = c

(k)
n−1, Q

(k)
n,n−2 = e

(k)
n−2. (36)

Since onlyx(1)(t) be needed to determineK(t) according to (33), the time–dependent solution
of (35) (fork = 1) can be found

x(1)(t) =
∑
l

B
(1)
l x(1)(0)A(1)

l e−λ
(1)
l
t, (37)

with the initial condition
[
x(1)(0)

]
n
≡ ρ̃

(1)
n (0), and we have to calculate the eigenvaluesλ

(1)
l

as well as the right– and left–sided eigenvectorsA
(1)
l andB(1)

l of the matrixQ(1), respectively.
The Fourier transform of (33)

S(ω − ωc) = Re
∞∑
l=0

Kl

λ
(1)
l + i(ω − ωc)

, (38)

is then the spectrum of the micromaser, where

Kl =
∞∑
n=0

√
n+ 1

∞∑
m=0

(
A

(1)
l

)
n

(
B

(1)
l

)
m
ρ̃(1)
m (0)

=

[ ∞∑
n=0

√
n+ 1

(
A

(1)
l

)
n

]
×

[ ∞∑
m=0

√
m+ 1

(
B

(1)
l

)
m
Pm+1

]
. (39)

It consists of Lorentzian distributions, weighted byKl. The full width at half maximum (FWHM)
of each individual Lorentzian distribution is the real part of the eigenvalue2λ(1)

l .

3.2 Approximate analytical solution: Green–function approach

We first express the correlation function (27) with the help of the Green–function of the master
equation for the field density operator following the work by Tran–Quang et al. [9]. We can
rewrite (28) as

K(t) = Trf,r
[
â†(0)Û(t)â(0)ρ̂f,r(0)Û†(t)

]
=
∑
l,m

G
(m)
l,l+1(t)

√
(l + 1)(m+ 1)Pm+1, (40)

where the Green functionG(m)
l,l+1(t) with the initial conditionGl,l+1(0) = δl,m is a matrix ele-

ment of the operator

Ĝ(m)(t) = Trr
[
Û(t)|m〉〈m+ 1|ρ̂(s)

r Û†(t)
]
, (41)

with Uj,k = 〈j|Û(t)|k〉 andU†j,k = 〈j|Û†(t)|k〉. To obtain (40), we have assumed that at the
steady state, that is at timet = 0, the density operator̂ρf,r(0) can be factorized into that of
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the field ρ̂(s) and the reservoir̂ρ(s)
r and the steady–state field density matrix is diagonal. Note

that the operator̂G(m)(t) must obey the same master equation as the field density operatorρ̂(t).
Therefore, it is clear from the obtained solution (25) that the element of the Green–function does
take the solution

G
(m)
l,l+1(t) = δn,meX

(1)
l
t, (42)

whereX(1)
n is given by (23). Substituting this solution into (40), we obtain

K(t) =
∑
m

(m+ 1)Pm+1eX
(1)
n t. (43)

The unnormalized spectrum (26) immediately becomes

S(ω − ωc) =
∞∑
n=0

(n+ 1)Pn+1

∣∣∣X(1)
n

∣∣∣(
X

(1)
n

)2

+ (ω − ωc)2

(44)

using the fact thatX(1)
n < 0. This is a sum (onn) of Lorentzians, each with linewidth2

∣∣∣X(1)
n

∣∣∣.
4 Discussion of the results

Now we demonstrate that the approximate spectrum matches the exact one much more accu-
rately. To do this, we solve the equation with respect to∆ω

I(ν + ∆ω) =
1
2
I(ν) (45)

(whereν is the micromaser frequency) for the spectrum (44), in order to find the approximate
FWHM 2∆ωap. We also apply such a search routine to the exact spectrum (38), to determine
the exact2∆ωex. We show in Fig. 3 the approximate linewidth along with the exact linewidth
for Nex = 50, n̄th = 0.0001 and∆ = 0 in range of the pumping parameterθ. The dotted curve
represents the approximation while the solid curve represents2∆ωex. In Fig. 4, the approximate
and the exact linewidths are depicted in the case of non–zero∆. We see that even for this case,
the two spectra are close each other. As is seen from Fig. 5, the little narrowing of the natural
linewidth is obtained when the one atomic behaviour in the micromaser is influenced by the
pair–atomic events.

In conclusion, we have dealt with the modification of the micromaser theory, from the view
point of the presence of co–operative atomic events. A standard Jaynes–Cummings Hamiltonian
has been modified by the effect of the pair of atoms. The probability amplitude method has
been adopted to find the solution of the equation of motion, which is the modified Scully–Lamb
master equation derived for the field density matrix elements. We have found the expression
for the coefficients associated with the probability for two–photon transitions in the micromaser
cavity. The steady–state solution has been found showing that the trapping states can disappear
by the small influence caused by atomic co–operative effects. Based on the approximate and
exact solution of the master equations, we have calculated the micromaser spectrum which gives
rise to the narrower linewidth compared to that obtained in the one–atom maser theory.
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Fig. 3. Comparison of linewidthsFWHM/γ of the approximate (the dotted curve) and the exact spectrum
(the solid curve) as functions of the pump parameterθ, whereNex = 50, n̄th = 0.0001, ∆ = 0.
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Fig. 4. Comparison of linewidthsFWHM/γ of the approximate (the dotted curve) and the exact spectrum
(the solid curve) as functions of the pump parameterθ, whereNex = 50, n̄th = 0.0001, ∆ = 0.01.
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Fig. 5. Comparison of linewidthsFWHM/γ calculated by the one–atom maser theory (the solid curve)
(as in Fig. 3) and the presented theory with including co–operative effects (dotted curve) (as in Fig. 4).
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