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The Hamiltonian formulation of pure Yang-Mills theory is analysed in the case when Gauss’
law is satisfied identically by construction. It is shown that the theory has a Hamiltonian
formulation in this case, provided one uses a special gauge condition, which is a natural gen-
eralisation of the Coulomb gauge condition in electrodynamics. The Hamiltonian formulation
depends critically also on the boundary conditions used for the relevant field variables. Pos-
sible boundary conditions are analysed in detail. A comparison of the present formulation
in the generalised Coulomb gauge with the well known Weyl gauge (A0 = 0) formulation
is made. It appears that the Hamiltonians in these two formulations differ from one another
in a non-trivial way. It is still an open question whether these differences give rise to truly
different structures upon quantisation. An extension of the formalism to include coupling to
fermionic fields is briefly discussed.

PACS: 11.15.-q, 04.20.Fy, 04.60.Ds

1 Introduction

This paper is concerned with analysing the Hamiltonian formulation of pure Yang-Mills theory
[1] along the lines of two previous publications [2, 3], in which a new gauge condition, called
the generalized Coulomb gauge condition was introduced and used to obtain a straightforward
Hamiltonian formulation of Yang-Mills theory, in the case when Gauss law is satisfied identi-
cally by construction. In the previous papers certain assumptions were made concerning the
spatial boundary conditions of the Yang-Mills potentials. The boundary conditions in question
are very important for the elucidation of the Hamiltonian formulation. Here I will analyse the
requisite boundary conditions in detail, and show that there is a set of boundary conditions at
spatial infinity, which is consistent with the Hamiltonian formalism. Rigorous proofs and heavy
mathematical machinery are omitted here in the interest of simplicity.

The basic quantity of Yang-Mills theory is theactionS, which is given in terms of the gauge
fieldGµν as follows,

S = − 1
4

∫
d4x(Gµν(A), Gµν(A)). (1)
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where the inner product( , ) is defined below. For the gauge fieldGµν I use a matrix notation
(summation over repeated indices),

Gµν(A) ≡ G a
µν(A)Ta = ∂νAµ(x)− ∂µAν(x)− ig[Aµ(x), Aν(x)], (2)

where the quantitiesTa are matrices in a convenient representation of the Lie algebra of the
gauge groupG,

[Ta, Tb] = if c
ab Tc, (3)

and the quantitiesAµ are given in terms of the the gauge potential componentsAaµ,

Aµ(x) = A a
µ Ta. (4)

The Lie-algebra indexfree notation introduced above, i.e. the matrix notation (2) for the
gauge fieldGµν as well as the notation (4) for the gauge potentialAµ, respectively, using the
terminology of C. N. Yang [4], will be used systematically below.

It is assumed that the gauge groupG is semisimple and compact. The inner product( , )
for any two Lie algebra valued (matrix valued) quantitiesA = AaTa andB = BaTa is then
expressed with the aid of the Lie algebra structure constantsf c

ab as follows,

(A,B) = habA
aBb, (5)

where

hab = −f c′

ab′ f
b′

bc′ . (6)

The quantityhab and its inversehab are used to lower and rise Lie algebra indices, respectively.
The notation used here is otherwise pretty standard or self-explanatory, with e.g. Greek letters
used as indices denoting Minkowski space indices ranging from0 to 3, and latin indices from
the middle of the alphabet(k, `, ...) denoting space indices ranging from1 to 3. The Minkowski
space metric is taken to be diagonal, with signature(+,−,−,−). Unless otherwise stated, re-
peated indices are always summed over, be they Lie algebra-, spacetime- or space indices.

It is convenient for future reference to write the action (1) in terms of a LagrangianL. The
actionS is the integral of the LagrangianL in an appropriate time interval[x0

i , x
0
f ]. Thus,

S =
∫ x0

f

x0
i

dx0L, (7)

where

L = −1
2

∫
V

d3x
(
G0k(A), G0k(A)

)
− 1

4

∫
V

d3x
(
Gk`(A), Gk`(A)

)
. (8)

In the expression (8) for the LagrangianL, the quantityV is some appropriate domain inR3,
which yet has to be specified.

As is well known, requiring the action (1) to be stationary with respect to local variations of
all the potential componentsAµ, considered as independent quantities, yields the follwing field
equations,

∇ν(A)Gµν(A) = 0 , µ = 0, 1, 2, 3. (9)
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The ”covariant gradient”∇µ(A) used above in Eq. (9) is a convenient notion,

∇µ(A) ≡ ∂µ + ig [Aµ, ], (10)

which will be frequently used in what follows. The matrix-differential operator∇µ(A) is ap-
plicable to any linear combination of the Lie-algebra matricesTa in a given representation,
βa(x)Ta, with differentiable componentsβa, and yields the covariant derivative in the adjoint
representation for the array of components (βa), independently of the particular representation
used for the matricesTa.

The non-Abelian Gauss law is obtained from the equations (9) forµ = 0. Expressed in terms
of the potentialA the non-Abelian Gauss law reads as follows,

∇k(A)∇k(A)A0 −∇k(A)Ȧk = 0, (11)

where

Ȧk(x) ≡ ∂0Ak(x). (12)

The time derivative of any quantity will frequently in what follows be denoted by a dot on
top of that quantity, as in the equation (12) above.

1.1 The Hamiltonian or Weyl gauge formalism

It is well known [6] that Yang-Mills theory can be expressed in a canonical form in the Hamilto-
nian gauge, or so-called Weyl gauge [7]A0 = 0.

The Yang-Mills Lagrangian in the caseA0 = 0, which will be calledLW here, is obtained
from the expression (8) by puttingA0 = 0 in that expression,

LW = −1
2

∫
d3x(Ȧk, Ȧk)− 1

4

∫
d3x(Gk`, Gk`). (13)

The Lagrangian (13) describes a theory which is not quite the same as Yang-Mills theory, since
Gauss’ law is absent from the field equations following from the action principle with the ex-
pression (13) as Lagrangian. Gauss’ law takes the following form in the case whenA0 = 0, as
seen from Eq. (11) above,

∇k(A)Ȧk = 0. (14)

The usual way to analyse Yang-Mills theory in the Weyl gaugeA0 = 0, is to proceed from
the Lagrangian (13), disregarding Gauss’ law to begin with. Using the variablesAak andȦak as
generalised coordinates and velocities, respectively, it is then perfectly simple to derive a canon-
ical Hamiltonian formalism for the system defined by the Lagrangian (13). The corresponding
HamiltonianHW is,

HW = −1
2

∫
d3x(πk, πk) +

1
4

∫
d3x(Gk`, Gk`), (15)

i.e. a simple sum of a kinetic term, depending on canonical momentaπka only, and a potential, or
interaction term, depending on conjugate canonical coordinatesAak only.
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2 First attempt at a canonical formulation when Gauss’ law is in force

Gauss’ law, Eq. (11) above, will now be considered as an equation determining the (matrix
valued) potential componentA0, for given space componentsA and Ȧ. This equation is a
system oflinear, elliptic partial differential equationswith time x0 acting as a parameter in an
appropriate interval, withx ∈ V being the independet variables. I will discuss the solvability of
Eq. (11) subsequently, but proceed now by assuming the existence of unique solutionA0, which
is afunctionalof the space componentsA and their time derivatives∂0A ≡ Ȧ, i.e.

A0 = A0

{
A, Ȧ

}
. (16)

The question is then whether the Yang-Mills system, which is originally defined by the action
(1), permits a Hamiltonian formulation when the potential componentA0 is a solution to Gauss’
law (11), i.e. whenA0 is given in terms ofA andȦ by the expression (16). It is possible to get
some insight into this question without specifying the actual functional form of the relation (16)
in minute detail.

The Lagrangian of the Yang-Mills system, when the potential componentA0, is given by the
relation (16) above, is obtained simply by inserting the solution (16) forA0 into the Lagrangian
(8) above. The resulting Lagrangian will be calledL0, and is explicitly given as follows,

L0 = −1
2

∫
V

d3x
(
∇k(A)A0

{
A, Ȧ

}
− Ȧk,∇k(A)A0

{
A, Ȧ

}
− Ȧk

)
(17)

−1
4

∫
V

d3x
(
Gkl(A), Gkl(A)

)
.

At this point it is appropriate to check whether the action principle involving the Lagrangian
L0 in (17) above reproduces the field equations (9). It is perfectly straightforward to verify the
following result,

δ

∫ x0
f

x0
i

dx0L0 = −
∫ x0

f

x0
i

dx0

∫
V

d3x
(
δAk,∇0(A)(∇k(A)A0

{
A, Ȧ

}
− Ȧk)−∇`Gk`(A)

)
−
∫ x0

f

x0
i

dx0

∫
∂V

d2σk

(
δA0

{
A, Ȧ

}
,∇k(A)A0

{
A, Ȧ

}
− Ȧk

)
. (18)

Now the boundary conditions for the solutionA0 to Gauss’ law, i.e. the system of linear
elliptic partial differential equations (11), enter into the discussion. If the surface term in Eq. (18)
is non-vanishing, and not by itself a variation of some surface functional, then the Lagrangian
(17) is not a valid Lagrangian in the action principle which is supposed to lead to the field
equations (9) forµ = 1, 2, 3, whenA0 is given by (16).

In the first place the domainV is actually considered to be all ofR3. The integrals overV
will be given the following interpretation,∫

V

d3x · ·· = lim
R→∞

∫
|x|<R

d3x · ·· (19)

The vanishing of the surface term in Eq. (18) is then equivalent to the follwing,

lim
R→∞

∫
|x|=R

dΩR2
(
δA0[A, Ȧ],∇(r)(A)A0

{
A, Ȧ

}
− Ȧ(r)

)
= 0, (20)
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where the superscript(r) denotes theradial component of the corresponding quantity.
Thus,if the surface term (20) vanishes for all admissible variations of the independent gen-

eralised coordinatesA and velocitiesȦ, respectively, then the variational principle

δ

∫ x0
f

x0
i

dx0L0 = 0, (21)

leads to the following equations of motion,

∇0(A)(∇k(A)A0
{

A, Ȧ
}
− Ȧk)−∇`Gk`(A) = 0, (22)

as is evident from the relation (18). Needless to say, the equations (22) are nothing but the field
equations (9) forµ = 1, 2, 3, with A0 given by the formal solution (16) to Gauss’ law (11).
The vanishing of the surface term (20) depends on the assumed asymptotic behaviour of the
independentvariablesA andȦ, as well as on the boundary conditions (at spatial infinity) of
thedependentvariableA0. I will return to this question below, and continue for the time being
by assuming that the relation (20) is valid. Then the LagrangianL0 given in (17) ought to be
a suitable starting point for the construction of a Hamiltonian and the corresponding canonical
variables by means of a Legendre transform in the usual way.

The formal definition of the canonical momentumP ak conjugate to the coordinateAka is,

P ak (x0,x) ≡ δL0

δȦka(x0,x)
=
(
∇k(A)A0

{
A, Ȧ

})a
(x0,x)− Ȧak(x0,x), (23)

where the condition (20) has been used in the calculation of the functional derivative ofL0 in (23)
above. In view of the fact thatA0 in Eq. (23) satisfies Gauss’ law (11), one finds immediately
from (23) that

∇k(A)Pk(x0,x) ≡ 0. (24)

Now one is supposed to be able to solve Eq. (23) for the generalised velocityȦak in terms ofA
andP, respectively. But this is impossible, since, Eq. (23) can not be solved for the quantityΓ
defined below,

Γ(x0,x) ≡ ∇k(A)Ȧk(x0,x), (25)

i.e. if one tries to derive an equation for the quantityΓ defined above from Eq. (23), one gets a
completely vacuous identity for this quantity, as a result of Eq. (24).

It would seem then, that the canonical formalism breaks down for the case at hand. However
this is not necessarily the case. The difficulty described above can be avoided if one can manage
to makeA0 independentof the generalized velocity variableṡA. This can be accomplished in
the present situation (A0 6= 0) by imposing the followinggauge condition,

∇k(A)Ȧk(x0,x) = 0. (26)

The condition (26) is thegeneralized Coulomb gauge conditionreferred to previously. The fact
that this is actually aproper gauge condition, free from Gribov ambiguities [5], under appropriate
boundary conditions, was discussed in Ref. [2].

However, if one uses the gauge condition (26) then the generalised velocitiesȦk are no
longer independent quantities, and then one cannot use the formula (23) as it stands for the
construction of the canonical momentum variables. An alternative procedure which leads to a
proper canonical formalism will be given below.
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3 Gauss’ law and asymptotic conditions

I now assume that the generalized Coulomb gauge condition (26 is in force. Then Gauss’ law,
Eq. (11), takes the following form,

∇k(A)∇k(A)A0 = 0. (27)

If one demands that the solution to Eq. (27) vanishes roughlty speaking faster than| x |− 1
2 for

| x |→ ∞, then the solution vanishes identically. This can be seen as follows. Take the inner
product of Eq. (27) withA0 and integrate overx. Using the ordinary divergence theorem one
readily obtains the following result,

lim
R→∞

∫
|x|<R

d3x(∇k(A)A0,∇k(A)A0) = lim
R→∞

∫
|x|=R

dΩR2(A0,∇(r)(A)A0). (28)

Assuming now

A0(x0,x) ||x|=R ∼ R−γ , ∇(r)(A)A0(x0,x) ||x|=R ∼ R−γ−1 , γ >
1
2
, (29)

one finds that the limiting value of the right hand side of Eq. (28) is zero. Since the inner product
( , ) is positive definite, one then concludes from Eq. (28) thatA0 is covariantly constant.
However, sinceA0 vanishes at infinity by assumption, the covariant constant is zero, i.e.

A0(x0,x) ≡ 0. (30)

Needless to say, the asymptotic condition (29) above can be somewhat refined; all that is needed
to obtain the result (30) is that the right hand side of Eq. (28) vanishes, which guarantees that
A0 is covariantly constant, and then thatA0 has the limiting value0 at infinity (or at some finite
point), so that the covariant constant in question actually vanishes.

However, the class of functions with (roughly speaking) the asymptotic behaviour (29) does
not exhaust the class of possible solutions to Eq. (27). It is also possible to consider functions
A0 which approach a non-vanishingconstantmatrix at space infinity,

lim
|x|→∞

A0(x0,x) = Λ ≡ ΛaTa, (31)

where the real quantitiesΛa are absolute constants. In addition to Eq. (31) one can impose an
asymptotic condition on the radial derivative ofA0,

lim
|x|→∞

| x | ∂

∂ | x |
A0(x0,x) = 0. (32)

Requiring the validity of the asymptotic conditions (31) and (32) and using standard arguments
of potential theory [8], one now derives an integral representation for the functionA0 involving
the (ordinary) Laplacian of that function,

A0(x0,x) = Λ− 1
4π

∫
R3
d3y

1
| x− y |

∇2
yA0(x0,y), (33)



Hamiltonian formulation in Yang-Mills theory 375

Using the the present form of Gauss’ law, Eq. (27), one then converts (33) into an integral
equation for the determination ofA0. For this purpose it is convenient to introduce some new
notation,

Ukab(x
0,y) := 2gfabcA

kc(x0,y), (34)

and

V ab(x
0,y) := 2gfabc

∂

∂yk
Akc(x0,y) + g2fac′df

c′

ba′A
d
k (x0,y)Aka

′
(x0,y). (35)

One then obtains the following integral equations,

Aa0(x0,x)=Λa− 1
4π

∫
R3

d3y
| x− y |

{
Ukab(x

0,y)
∂Ab0(x0,y)

∂yk
+ V ab(x

0,y)Ab0(x0,y)
}
.(36)

The integral equations (36) constitute the starting point for the proof of existence of solutions
to the present form of Gauss’ law, Eq. (27). For this one needs naturally also to specify con-
ditions on the potential componentsAak, which, together with their space derivatives determine
the (unique) solution to Eq. (36). All this is a part of the ”heavy mechinery” mentioned in the
Introduction, which I will omit in this paper. However it is appropriate to note the following
asymptotic conditions, which are needed for the existence of solutionsAa0 to Eq. (36),

Aak(x0,x) ∼ 1
| x |1+ε

,
∂

∂x`
Aak(x0,x) ∼ 1

| x |2+ε
, ε > 0. (37)

I will now denote the solution of the system of integral equations (36) byA0 {A}, and the
corresponding Lagrangian byL00 (compare with Eq. (17)) ,

L00 = −1
2

∫
V

d3x
(
∇k(A)A0 {A} − Ȧk,∇k(A)A0 {A} − Ȧk

)
(38)

−1
4

∫
V

d3x
(
Gkl(A), Gkl(A)

)
.

The Lagrangian (38) will now in the next section be used to derive the Hamiltonian for the
Yang-Mills system under the condition that the generalized Coulomb gauge (26) is in force. I
implement this condition as aconstraint, by means of a (matrix valued) Lagrange multiplier field
C(x), which is used to modify the Lagrangian (38) as follows,

L00 → L′ = L00 +
∫
V

d3x(C(x),∇k(A)Ȧk). (39)

4 Canonical coordinates, momenta and Hamiltonian

I now make a direct transition to a Hamiltonian formulation using the modified Lagrangian (39)
above, in a manner described in the general case by Berezin [9]. The starting point is the familiar
definition of canonical momentum variablesπak ,

πak(x0,x) ≡ δL′

δȦka(x0,x)
= (∇k(A)A0 {A})a − Ȧak − (∇k(A)C)a , (40)
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The equations (40) above,togetherwith the constraint equations (26) are now supposed to be
solved for the quantitieṡAak andCa in terms of the canonical coordinatesAka and momentaπak ,
respectively. Using Eqns. (26) and (27), one finds immediately from Eq. (40) that

−∇k(A)∇k(A)C = ∇k(A)πk, (41)

which, together with appropriate boundary conditions, defines the quantityC as anx-dependent
functional ofA andπ, respectively,

C = C {A, π} (x0,x). (42)

It is certainly desirable that the solutionC {A, π} to Eq. (41) beunique. The uniqueness is
guaranteed if one uses the following boundary condition,

lim
R→∞

∫
|x|=R

dΩR2(C(x),∇(r)(A)C(x)) = 0. (43)

The proof of uniqueness of the solution to Eq. (41) under the condition (43) has essentially
already been given above in connection with Eq. (27). Namely, if there are two distinct solutions
to Eq. (41), then their difference satisfies the corresponding homogeneous equation, which is
precisely of the form (27). However, under the condition (43), the homogeneous equation in
question has only the trivial zero solution, as demonstrated in the discussion following Eq. (27).
Hence the solutionC {A, π} is unique.

One now straightforwardly expresses the generalised velocity in terms of coordinate- and
momentum variables,

Ȧak = (∇k(A0 {A} − C))a − πak . (44)

The construction of the HamiltonianH then proceeds in the usual way. The relation defining the
HamiltonianH is the following,

H =
∫
V

d3x(πk, Ȧk)− L00, (45)

where the quantityȦk ocurring in the expressions in (45) should be given in terms of canonical
variables by the expression (44). It should be observed, that it is indeed the LagrangianL00

which enters in the definition of the HamiltonianH above, since at this stage the constraint (26)
is an identity.

By straightforward calculation one finally obtains the Hamiltonian expressed in terms of
canonical variables from the definition (45),

H = −1
2

∫
V

d3x
(
πk, π

k
)

+
1
4

∫
V

d3x
(
Gkl(A), Gkl(A)

)
(46)

+
∫
V

d3x
(
πk,∇k(A)A0 {A}

)
+

1
2

∫
V

d3x
(
∇k(A)C,∇k(A)C

)
,

where the quantityC is the appropriate solution to the system of linear elliptic partial differential
equations (41), as discussed previously.
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5 The Hamiltonian equations of motion

The Hamiltonian equations of motion are obtained by functional differentiation of the Hamilto-
nian (46) with respect to the canonical momenta and coordinates, respectively.

The equations of motion for the coordinates are as follows,

Ȧak(x0,x) ≡ δH

δπka(x0,x)
= (∇k(A)(A0 {A} − C))a − πak , (47)

which agree precisely with the expressions (44) as they should. In the calculation leading to Eq.
(47) one encounters the following surface term,

lim
R→∞

∫
|x|<R

d3x∂k(C,∇k(A)δπC) = lim
R→∞

∫
dΩR2(C,∇(r)(A)δπC), (48)

which must vanish in order that the functional derivative in Eq. (47) be well defined. The surface
term (48) in question vanishes as it should, in view of the general boundary conditions (43)
imposed on the quantityC {A, π}.

The calculation of the functional derivative of the Hamiltonian (46) with respect to the gen-
eralized coordinate variablesAak is fairly lengthy, but nevertheless straightforward. In the course
of the calculation one finds that a surface term analoguous to Eq. (20) has to vanish in order that
the functional derivative in question be well defined, i.e. that

lim
R→∞

∫
|x|=R

dΩR2
(
δA0[A],∇(r)(A)A0 {A} − Ȧ(r)

)
= 0. (49)

The condition (49) is quite non-trivial. It should be remembered, that the variation of the quantity
A0 can not be declared to vanish outside some finite region, sinceA0 is a dependent variable,
determined by Gauss’ law, i.e. in the present case by Eq. (36). Under essentially the conditions
(37) with ε > 0, I have been able to prove, that the iterative solution of the Eqns. (36), which are
equivalent to the system of partial differential equations (27) with the boundary conditions (31)
and (32), is such that, for large| x |,

δA0(A)(x0,x) = O

(
1
| x |

)
, (50)

for any local variationsδA. If one assumes thatε > 1 in the discussion above, it is essentially
trivial to show conclusively that Eq. (50) is valid. However, I will proceed by assuming that Eq.
(50) is valid also if one merely takesε > 0, which is a plausible assumption as discussed above.

If the conditions (37) and (50) are valid, or more precisely if the condition (49) is in force,
then one obtains,

π̇ka(x0,x) ≡ − δH

δAak(x0,x)
= −ig[A0 {A} − C,∇k(A)C + πk]a (51)

+
(
∇`Gk`(A)

)
a
− ig[C,∇k(A)A0 {A}]a.

The pairs of equations, (47) and (51) are supposed to be equivalent to the original field equa-
tions (9). I will analyse this equivalence below. For this purpose it is convenient to note that the
equations (47) and (51) admit aconstant of motion,

∂0(∇k(A)πk) = 0, (52)
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which is crucial for the establishing of the equivalence between Eqns. (9) and the Hamiltonian
equations of motion (47) and (51). Recalling the equation (41) defining the quantityC together
with the boundary conditions (43), one finds using Eq. (52) that

∇k(A)∇k(A)C = K1, (53)

whereK1 denotes a constant.
So, if the equations of motion for the canonical variablesA andπ, respectively, are in force,

then the quantityC is determined by the equation (53), where the constantK1 is so far unknown.
Eliminating the canonical momentum variablesπ between the equations (47) and (51) one

obtains the following equations,

∇ν(A)Gkν(A) +∇k(A)Ċ + 2ig
[
Ȧk, C

]
= 0 , k = 1, 2, 3. (54)

At this point one should recall that Gauss’ law is in force by construction,

∇k(A)G0k(A) = 0. (55)

Were it not for the terms involving the quantityC in Eqns. (54) one could now conclude that the
Hamiltonian equations of motion (47) and (51) are equivalent to the original field equations (9).
In order to obtain the required equivalence one must demand that

∇k(A)Ċ + 2ig
[
Ȧk, C

]
= 0, (56)

simultaneously with the Hamiltonian equations of motion. In this situation the quantityC is
determined by the partial differential equations (53). However, it does not appear to be possible
to prove that the unique solution to (53) also satisfies (56) if the constantK1 has an arbitrary
value, different from zero. However if

K1 = 0, (57)

then substituting this value in Eq. (53) one obtains the final equation determining the quantityC,
when all the other equations of motion are in force,

∇k(A)∇k(A)C = 0. (58)

But Eq. (58) has only the trivial solutionC = 0 in the class of functions satisfying the boundary
conditions (43) as discussed previously. Hence if the constant of integrationK1 in Eq. (53)
equals zero, then Eq. (56) is trivially true, whence the Hamiltonian equations (47) and (51) are
completely equivalent to the original field equations (9). Thus by demanding that the condition
(57) be valid, one obtainscomplete equivalencebetween the original field equations (9) and the
Hamiltonian equations of motion (47) and (51) which have been obtained using the generalized
Coulomb gauge condition (26).

It is now appropriate to return to the Hamiltonian (46). This Hamiltonian differs in a non-
trivial way from the Hamiltonian in the Weyl gauge, i.e. from the expression (15), mainly due to
theC -dependent terms in the former expression, but also due to the fact that a non-trivialA0-
dependence is possible in the case of the Hamiltonian (46). The fact that the functionalC {A, π}
actually becomes zero when all the equations of motion are in force, does not mean that one can
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setC equal to zero in the Hamiltonian (46) and use the resulting expression to generate the ap-
propriate equations of motion by means of functional differentiation. Thefunctionaldependence
of the quantityC {A, π} in the Hamiltonian (46) is essential in order to generate the proper
equations of motion.

Finally I comment briefly on the possibilities to generalize the considerations in this paper to
a situation in which one couples the Yang-Mills field to e.g. a fermionic field. The field equations
(9) then get replaced by the following,

∇ν(A)Gµν(A) = Jµ ≡ gψ̄γµTaψT a, (59)

to which one has to add the field equations for the fermionic fields. Also in this case is it possible
to use the generalized Coulomb gauge condition (26) so that the Gauss’ law takes the form

∇k(A)∇k(A)A0 = J0. (60)

The construction of the canonical variables and Hamiltonian in this case, along similar lines
to those presented here for the pure Yang-Mills case, does not meet with any difficulties of
principle. Likewise, coupling the Yang-Mills field to a scalar field also gives rise to a system
which has a Hamiltonian formulation. Details of these constructs as well as some mathematical
detail only briefly touched upon in this paper will be given in future publications [10].
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